CINXE.COM
Matrix (mathematics) - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Matrix (mathematics) - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"aa25511b-26bb-4a7d-bcae-8727f02dbdf4","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Matrix_(mathematics)","wgTitle":"Matrix (mathematics)","wgCurRevisionId":1257361949,"wgRevisionId":1257361949,"wgArticleId" :20556859,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Matrix_(mathematics)","wgRelevantArticleId":20556859,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath": "","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"azb","autonym": "تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym": "閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"eml","autonym": "emiliàn e rumagnòl","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym": "Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{ "lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li", "autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir": "ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir": "ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym": "Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir": "ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{ "lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo", "es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw", "szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q44337","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false, "overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/1200px-MatrixLabelled.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="840"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/800px-MatrixLabelled.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="560"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/640px-MatrixLabelled.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="448"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Matrix (mathematics) - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Matrix_(mathematics)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Matrix_(mathematics)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Matrix_mathematics rootpage-Matrix_mathematics stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Matrix+%28mathematics%29" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Matrix+%28mathematics%29" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Matrix (mathematics)</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Matrix_(mathematics)" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Matrix_(mathematics)" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Matrix+%28mathematics%29" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Matrix_(mathematics)&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable"><span>"Matrix theory" redirects here. For the physics topic, see <a href="/wiki/Matrix_theory_(physics)" title="Matrix theory (physics)">Matrix theory (physics)</a>.</span> <span>For other uses of "Matrix", see <a href="/wiki/Matrix_(disambiguation)" class="mw-redirect mw-disambig" title="Matrix (disambiguation)">Matrix (disambiguation)</a>.</span></div> <p class="mw-empty-elt"> </p> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>matrix</b> (<abbr title="plural form">pl.</abbr>: <b>matrices</b>) is a <a href="/wiki/Rectangle" title="Rectangle">rectangular</a> array or table of <a href="/wiki/Number" title="Number">numbers</a>, <a href="/wiki/Symbol_(formal)" title="Symbol (formal)">symbols</a>, or <a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">expressions</a>, with elements or entries arranged in rows and columns, which is used to represent a <a href="/wiki/Mathematical_object" title="Mathematical object">mathematical object</a> or property of such an object. </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:MatrixLabelled.svg" class="mw-file-description"><img alt="Two tall square brackets with m-many rows each containing n-many subscripted letter 'a' variables. Each letter 'a' is given a row number and column number as its subscript." src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/220px-MatrixLabelled.svg.png" decoding="async" width="220" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/330px-MatrixLabelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d4/MatrixLabelled.svg/440px-MatrixLabelled.svg.png 2x" data-file-width="140" data-file-height="98"></a><figcaption>An <span class="texhtml"><i>m</i> × <i>n</i></span> matrix: the <span class="texhtml"><i>m</i></span> rows are horizontal and the <span class="texhtml"><i>n</i></span> columns are vertical. Each element of a matrix is often denoted by a variable with two <a href="/wiki/Index_notation" title="Index notation">subscripts</a>. For example, <span class="texhtml"><i> a</i><sub>2,1</sub></span> represents the element at the second row and first column of the matrix.</figcaption></figure> <p>For example, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&9&-13\\20&5&-6\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>9</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>13</mn> </mtd> </mtr> <mtr> <mtd> <mn>20</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&9&-13\\20&5&-6\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61f786996bcfb75972dd77712c90122bc8765269" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.472ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&9&-13\\20&5&-6\end{bmatrix}}}"></span> is a matrix with two rows and three columns. This is often referred to as a "two-by-three matrix", a "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\times 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>×<!-- × --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\times 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b74d5a424cfb56b99e1060910dbfed284314da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 2\times 3}"></span> matrix", or a matrix of dimension <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\times 3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>×<!-- × --></mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\times 3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b74d5a424cfb56b99e1060910dbfed284314da0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 2\times 3}"></span>. </p><p>Matrices are commonly related to <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>. Notable exceptions include <a href="/wiki/Incidence_matrix" title="Incidence matrix">incidence matrices</a> and <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrices</a> in <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> This article focuses on matrices related to linear algebra, and, unless otherwise specified, all matrices represent <a href="/wiki/Linear_map" title="Linear map">linear maps</a> or may be viewed as such. </p><p><i><a href="/wiki/Square_matrices" class="mw-redirect" title="Square matrices">Square matrices</a></i>, matrices with the same number of rows and columns, play a major role in matrix theory. Square matrices of a given dimension form a <a href="/wiki/Noncommutative_ring" title="Noncommutative ring">noncommutative ring</a>, which is one of the most common examples of a noncommutative ring. The <a href="/wiki/Determinant" title="Determinant">determinant</a> of a square matrix is a number associated with the matrix, which is fundamental for the study of a square matrix; for example, a square matrix is <a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible</a> if and only if it has a nonzero determinant and the <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of a square matrix are the roots of a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> determinant. </p><p>In <a href="/wiki/Geometry" title="Geometry">geometry</a>, matrices are widely used for specifying and representing <a href="/wiki/Geometric_transformation" title="Geometric transformation">geometric transformations</a> (for example <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a>) and <a href="/wiki/Coordinate_change" class="mw-redirect" title="Coordinate change">coordinate changes</a>. In <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical analysis</a>, many computational problems are solved by reducing them to a matrix computation, and this often involves computing with matrices of huge dimensions. Matrices are used in most areas of mathematics and scientific fields, either directly, or through their use in geometry and numerical analysis. </p><p><b>Matrix theory</b> is the <a href="/wiki/Branch_of_mathematics" class="mw-redirect" title="Branch of mathematics">branch of mathematics</a> that focuses on the study of matrices. It was initially a sub-branch of <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>, but soon grew to include subjects related to <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>, <a href="/wiki/Algebra" title="Algebra">algebra</a>, <a href="/wiki/Combinatorics" title="Combinatorics">combinatorics</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Definition"><span class="tocnumber">1</span> <span class="toctext">Definition</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="#Size"><span class="tocnumber">1.1</span> <span class="toctext">Size</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-3"><a href="#Notation"><span class="tocnumber">2</span> <span class="toctext">Notation</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Basic_operations"><span class="tocnumber">3</span> <span class="toctext">Basic operations</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#Addition,_scalar_multiplication,_subtraction_and_transposition"><span class="tocnumber">3.1</span> <span class="toctext">Addition, scalar multiplication, subtraction and transposition</span></a></li> <li class="toclevel-2 tocsection-6"><a href="#Matrix_multiplication"><span class="tocnumber">3.2</span> <span class="toctext">Matrix multiplication</span></a></li> <li class="toclevel-2 tocsection-7"><a href="#Row_operations"><span class="tocnumber">3.3</span> <span class="toctext">Row operations</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Submatrix"><span class="tocnumber">3.4</span> <span class="toctext">Submatrix</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#Linear_equations"><span class="tocnumber">4</span> <span class="toctext">Linear equations</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Linear_transformations"><span class="tocnumber">5</span> <span class="toctext">Linear transformations</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Square_matrix"><span class="tocnumber">6</span> <span class="toctext">Square matrix</span></a> <ul> <li class="toclevel-2 tocsection-12"><a href="#Main_types"><span class="tocnumber">6.1</span> <span class="toctext">Main types</span></a> <ul> <li class="toclevel-3 tocsection-13"><a href="#Diagonal_and_triangular_matrix"><span class="tocnumber">6.1.1</span> <span class="toctext">Diagonal and triangular matrix</span></a></li> <li class="toclevel-3 tocsection-14"><a href="#Identity_matrix"><span class="tocnumber">6.1.2</span> <span class="toctext">Identity matrix</span></a></li> <li class="toclevel-3 tocsection-15"><a href="#Symmetric_or_skew-symmetric_matrix"><span class="tocnumber">6.1.3</span> <span class="toctext">Symmetric or skew-symmetric matrix</span></a></li> <li class="toclevel-3 tocsection-16"><a href="#Invertible_matrix_and_its_inverse"><span class="tocnumber">6.1.4</span> <span class="toctext">Invertible matrix and its inverse</span></a></li> <li class="toclevel-3 tocsection-17"><a href="#Definite_matrix"><span class="tocnumber">6.1.5</span> <span class="toctext">Definite matrix</span></a></li> <li class="toclevel-3 tocsection-18"><a href="#Orthogonal_matrix"><span class="tocnumber">6.1.6</span> <span class="toctext">Orthogonal matrix</span></a></li> </ul> </li> <li class="toclevel-2 tocsection-19"><a href="#Main_operations"><span class="tocnumber">6.2</span> <span class="toctext">Main operations</span></a> <ul> <li class="toclevel-3 tocsection-20"><a href="#Trace"><span class="tocnumber">6.2.1</span> <span class="toctext">Trace</span></a></li> <li class="toclevel-3 tocsection-21"><a href="#Determinant"><span class="tocnumber">6.2.2</span> <span class="toctext">Determinant</span></a></li> <li class="toclevel-3 tocsection-22"><a href="#Eigenvalues_and_eigenvectors"><span class="tocnumber">6.2.3</span> <span class="toctext">Eigenvalues and eigenvectors</span></a></li> </ul> </li> </ul> </li> <li class="toclevel-1 tocsection-23"><a href="#Computational_aspects"><span class="tocnumber">7</span> <span class="toctext">Computational aspects</span></a></li> <li class="toclevel-1 tocsection-24"><a href="#Decomposition"><span class="tocnumber">8</span> <span class="toctext">Decomposition</span></a></li> <li class="toclevel-1 tocsection-25"><a href="#Abstract_algebraic_aspects_and_generalizations"><span class="tocnumber">9</span> <span class="toctext">Abstract algebraic aspects and generalizations</span></a> <ul> <li class="toclevel-2 tocsection-26"><a href="#Matrices_with_more_general_entries"><span class="tocnumber">9.1</span> <span class="toctext">Matrices with more general entries</span></a></li> <li class="toclevel-2 tocsection-27"><a href="#Relationship_to_linear_maps"><span class="tocnumber">9.2</span> <span class="toctext">Relationship to linear maps</span></a></li> <li class="toclevel-2 tocsection-28"><a href="#Matrix_groups"><span class="tocnumber">9.3</span> <span class="toctext">Matrix groups</span></a></li> <li class="toclevel-2 tocsection-29"><a href="#Infinite_matrices"><span class="tocnumber">9.4</span> <span class="toctext">Infinite matrices</span></a></li> <li class="toclevel-2 tocsection-30"><a href="#Empty_matrix"><span class="tocnumber">9.5</span> <span class="toctext">Empty matrix</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-31"><a href="#Applications"><span class="tocnumber">10</span> <span class="toctext">Applications</span></a> <ul> <li class="toclevel-2 tocsection-32"><a href="#Graph_theory"><span class="tocnumber">10.1</span> <span class="toctext">Graph theory</span></a></li> <li class="toclevel-2 tocsection-33"><a href="#Analysis_and_geometry"><span class="tocnumber">10.2</span> <span class="toctext">Analysis and geometry</span></a></li> <li class="toclevel-2 tocsection-34"><a href="#Probability_theory_and_statistics"><span class="tocnumber">10.3</span> <span class="toctext">Probability theory and statistics</span></a></li> <li class="toclevel-2 tocsection-35"><a href="#Symmetries_and_transformations_in_physics"><span class="tocnumber">10.4</span> <span class="toctext">Symmetries and transformations in physics</span></a></li> <li class="toclevel-2 tocsection-36"><a href="#Linear_combinations_of_quantum_states"><span class="tocnumber">10.5</span> <span class="toctext">Linear combinations of quantum states</span></a></li> <li class="toclevel-2 tocsection-37"><a href="#Normal_modes"><span class="tocnumber">10.6</span> <span class="toctext">Normal modes</span></a></li> <li class="toclevel-2 tocsection-38"><a href="#Geometrical_optics"><span class="tocnumber">10.7</span> <span class="toctext">Geometrical optics</span></a></li> <li class="toclevel-2 tocsection-39"><a href="#Electronics"><span class="tocnumber">10.8</span> <span class="toctext">Electronics</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-40"><a href="#History"><span class="tocnumber">11</span> <span class="toctext">History</span></a> <ul> <li class="toclevel-2 tocsection-41"><a href="#Other_historical_usages_of_the_word_%22matrix%22_in_mathematics"><span class="tocnumber">11.1</span> <span class="toctext">Other historical usages of the word "matrix" in mathematics</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-42"><a href="#See_also"><span class="tocnumber">12</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-43"><a href="#Notes"><span class="tocnumber">13</span> <span class="toctext">Notes</span></a></li> <li class="toclevel-1 tocsection-44"><a href="#References"><span class="tocnumber">14</span> <span class="toctext">References</span></a> <ul> <li class="toclevel-2 tocsection-45"><a href="#Physics_references"><span class="tocnumber">14.1</span> <span class="toctext">Physics references</span></a></li> <li class="toclevel-2 tocsection-46"><a href="#Historical_references"><span class="tocnumber">14.2</span> <span class="toctext">Historical references</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-47"><a href="#Further_reading"><span class="tocnumber">15</span> <span class="toctext">Further reading</span></a></li> <li class="toclevel-1 tocsection-48"><a href="#External_links"><span class="tocnumber">16</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Definition">Definition</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=1" title="Edit section: Definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>A <i>matrix</i> is a rectangular array of <a href="/wiki/Number" title="Number">numbers</a> (or other mathematical objects), called the <i>entries</i> of the matrix. Matrices are subject to standard <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">operations</a> such as <a href="#Basic_operations">addition</a> and <a href="#Matrix_multiplication">multiplication</a>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Most commonly, a matrix over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <i>F</i> is a rectangular array of <a href="/wiki/Element_(mathematics)" title="Element (mathematics)">elements</a> of <i>F</i>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> A <b>real matrix</b> and a <b>complex matrix</b> are matrices whose entries are respectively <a href="/wiki/Real_number" title="Real number">real numbers</a> or <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>. More general types of entries are discussed <a href="#Matrices_with_more_general_entries">below</a>. For instance, this is a real matrix: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1.3</mn> </mtd> <mtd> <mn>0.6</mn> </mtd> </mtr> <mtr> <mtd> <mn>20.4</mn> </mtd> <mtd> <mn>5.5</mn> </mtd> </mtr> <mtr> <mtd> <mn>9.7</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6.2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93197553f2e35e42d461b20ee549ea2fde617e1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:21.499ex; height:9.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 21.499ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93197553f2e35e42d461b20ee549ea2fde617e1e" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>The numbers, symbols, or expressions in the matrix are called its <i>entries</i> or its <i>elements</i>. The horizontal and vertical lines of entries in a matrix are called <i>rows</i> and <i>columns</i>, respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Size">Size</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=2" title="Edit section: Size" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The size of a matrix is defined by the number of rows and columns it contains. There is no limit to the number of rows and columns, that a matrix (in the usual sense) can have as long as they are positive integers. A matrix with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle {m}}"></noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" data-alt="{\displaystyle {m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> rows and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle {n}}"></noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" data-alt="{\displaystyle {n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> columns is called an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m\times n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76721b23ee82292ce7de5c1228513859661b51f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle {m\times n}}"></noscript><span class="lazy-image-placeholder" style="width: 6.276ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76721b23ee82292ce7de5c1228513859661b51f3" data-alt="{\displaystyle {m\times n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle {m}}"></noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" data-alt="{\displaystyle {m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>-by-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle {n}}"></noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" data-alt="{\displaystyle {n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle {m}}"></noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989d8ed6300d470470571f438bbe51f0693fb7b2" data-alt="{\displaystyle {m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle {n}}"></noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b6881107a598c20a60e72fe82bc41a4a1f7f4c" data-alt="{\displaystyle {n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are called its <i>dimensions</i>. For example, the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724d496b798f73a7173ef082565f5111ca547bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle {\mathbf {A} }}"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724d496b798f73a7173ef082565f5111ca547bb6" data-alt="{\displaystyle {\mathbf {A} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> above is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {3\times 2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>×<!-- × --></mo> <mn>2</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {3\times 2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f657f2e0de15cb9309ee4d1566b03ec938b03d45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle {3\times 2}}"></noscript><span class="lazy-image-placeholder" style="width: 5.165ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f657f2e0de15cb9309ee4d1566b03ec938b03d45" data-alt="{\displaystyle {3\times 2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix. </p><p>Matrices with a single row are called <i><a href="/wiki/Row_vector" class="mw-redirect" title="Row vector">row vectors</a></i>, and those with a single column are called <i><a href="/wiki/Column_vectors" class="mw-redirect" title="Column vectors">column vectors</a></i>. A matrix with the same number of rows and columns is called a <i><a href="/wiki/Square_matrix" title="Square matrix">square matrix</a></i>.<sup id="cite_ref-:4_5-0" class="reference"><a href="#cite_note-:4-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> A matrix with an infinite number of rows or columns (or both) is called an <a href="#Infinite_matrices"><i> infinite matrix</i></a>. In some contexts, such as <a href="/wiki/Computer_algebra_system" title="Computer algebra system">computer algebra programs</a>, it is useful to consider a matrix with no rows or no columns, called an <a href="#Empty_matrix"><i> empty matrix</i></a>. </p> <table class="wiki table"> <caption>Overview of a matrix size </caption> <tbody><tr> <th scope="col">Name </th> <th scope="col">Size </th> <th scope="col">Example </th> <th scope="col">Description </th> <th scope="col">Notation </th></tr> <tr> <th scope="row"><a href="/wiki/Row_vector" class="mw-redirect" title="Row vector">Row vector</a> </th> <td>1<span class="nowrap"> </span>×<span class="nowrap"> </span><i>n</i></td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}3&7&2\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}3&7&2\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47374c1d98d87b805e7c798d77865d060fc9780d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.178ex; height:2.843ex;" alt="{\displaystyle {\begin{bmatrix}3&7&2\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.178ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47374c1d98d87b805e7c798d77865d060fc9780d" data-alt="{\displaystyle {\begin{bmatrix}3&7&2\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td>A matrix with one row, sometimes used to represent a vector </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">{a_{i}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/666961495bcc9330e949be5e4d0ddabacd6da633" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{a_{i}}"></noscript><span class="lazy-image-placeholder" style="width: 2.029ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/666961495bcc9330e949be5e4d0ddabacd6da633" data-alt="{a_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <th scope="col"><a href="/wiki/Column_vector" class="mw-redirect" title="Column vector">Column vector</a> </th> <td><i>n</i><span class="nowrap"> </span>×<span class="nowrap"> </span>1</td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}4\\1\\8\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}4\\1\\8\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5f6732e6903bb84f36b682d8762f9ec5f8b489d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:5.015ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}4\\1\\8\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 5.015ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5f6732e6903bb84f36b682d8762f9ec5f8b489d" data-alt="{\displaystyle {\begin{bmatrix}4\\1\\8\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td>A matrix with one column, sometimes used to represent a vector </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{a_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">{a_{j}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a06eb52f2e6e616b5e99c5acf2d4c54023ee07dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.14ex; height:2.343ex;" alt="{a_{j}}"></noscript><span class="lazy-image-placeholder" style="width: 2.14ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a06eb52f2e6e616b5e99c5acf2d4c54023ee07dc" data-alt="{a_{j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <th scope="col"><a href="/wiki/Square_matrix" title="Square matrix">Square matrix</a> </th> <td><i>n</i><span class="nowrap"> </span>×<span class="nowrap"> </span><i>n</i></td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}9&13&5\\1&11&7\\2&6&3\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>9</mn> </mtd> <mtd> <mn>13</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>11</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}9&13&5\\1&11&7\\2&6&3\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55375914df4213b621f22cb1e5a0d6eb09af29df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:13.147ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}9&13&5\\1&11&7\\2&6&3\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 13.147ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55375914df4213b621f22cb1e5a0d6eb09af29df" data-alt="{\displaystyle {\begin{bmatrix}9&13&5\\1&11&7\\2&6&3\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td>A matrix with the same number of rows and columns, sometimes used to represent a <a href="#Linear_transformations">linear transformation</a> from a vector space to itself, such as <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a>, <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotation</a>, or <a href="/wiki/Shear_mapping" title="Shear mapping">shearing</a>. </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <annotation encoding="application/x-tex">{\mathbf {A} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a09c945b21828304a091e2d9706d13e876bd0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\mathbf {A} }"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1a09c945b21828304a091e2d9706d13e876bd0d" data-alt="{\mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr></tbody></table> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notation">Notation</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=3" title="Edit section: Notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>The specifics of symbolic matrix notation vary widely, with some prevailing trends. Matrices are commonly written in <a href="/wiki/Square_bracket" class="mw-redirect" title="Square bracket">square brackets</a> or <a href="/wiki/Parentheses" class="mw-redirect" title="Parentheses">parentheses</a>, so that an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></noscript><span class="lazy-image-placeholder" style="width: 6.276ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" data-alt="{\displaystyle m\times n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is represented as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}={\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}={\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{pmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5467918c1f72eed942e20d1c7662188194246f80" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:60.116ex; height:14.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}={\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{pmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 60.116ex;height: 14.176ex;vertical-align: -6.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5467918c1f72eed942e20d1c7662188194246f80" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}={\begin{pmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{pmatrix}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> This may be abbreviated by writing only a single generic term, possibly along with indices, as in <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} =\left(a_{ij}\right),\quad \left[a_{ij}\right],\quad {\text{or}}\quad \left(a_{ij}\right)_{1\leq i\leq m,\;1\leq j\leq n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="1em"></mspace> <mrow> <mo>[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>]</mo> </mrow> <mo>,</mo> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="1em"></mspace> <msub> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mo>,</mo> <mspace width="thickmathspace"></mspace> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} =\left(a_{ij}\right),\quad \left[a_{ij}\right],\quad {\text{or}}\quad \left(a_{ij}\right)_{1\leq i\leq m,\;1\leq j\leq n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc2e9990806f2830d7a3865e6adb451a66e546c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:41.802ex; height:3.343ex;" alt="{\displaystyle \mathbf {A} =\left(a_{ij}\right),\quad \left[a_{ij}\right],\quad {\text{or}}\quad \left(a_{ij}\right)_{1\leq i\leq m,\;1\leq j\leq n}}"></noscript><span class="lazy-image-placeholder" style="width: 41.802ex;height: 3.343ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc2e9990806f2830d7a3865e6adb451a66e546c" data-alt="{\displaystyle \mathbf {A} =\left(a_{ij}\right),\quad \left[a_{ij}\right],\quad {\text{or}}\quad \left(a_{ij}\right)_{1\leq i\leq m,\;1\leq j\leq n}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} =(a_{i,j})_{1\leq i,j\leq n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} =(a_{i,j})_{1\leq i,j\leq n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e03f4cd8c02d54ca318a68dab549b3011837a0d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.391ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} =(a_{i,j})_{1\leq i,j\leq n}}"></noscript><span class="lazy-image-placeholder" style="width: 16.391ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e03f4cd8c02d54ca318a68dab549b3011837a0d2" data-alt="{\displaystyle \mathbf {A} =(a_{i,j})_{1\leq i,j\leq n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in the case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=m}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480d6131c6cb07a90f4ec18a376a59fab884b860" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.534ex; height:1.676ex;" alt="{\displaystyle n=m}"></noscript><span class="lazy-image-placeholder" style="width: 6.534ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/480d6131c6cb07a90f4ec18a376a59fab884b860" data-alt="{\displaystyle n=m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>Matrices are usually symbolized using <a href="/wiki/Upper-case" class="mw-redirect" title="Upper-case">upper-case</a> letters (such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724d496b798f73a7173ef082565f5111ca547bb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle {\mathbf {A} }}"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/724d496b798f73a7173ef082565f5111ca547bb6" data-alt="{\displaystyle {\mathbf {A} }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in the examples above), while the corresponding <a href="/wiki/Lower-case" class="mw-redirect" title="Lower-case">lower-case</a> letters, with two subscript indices (e.g., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{11}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{11}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56a8aa9ca995d8bf721fc1be41447cf5ada51de8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.106ex; height:2.009ex;" alt="{\displaystyle {a_{11}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.106ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56a8aa9ca995d8bf721fc1be41447cf5ada51de8" data-alt="{\displaystyle {a_{11}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{1,1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{1,1}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4f8dec3f252168c3943d0ce7101c48b93a10546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.563ex; height:2.343ex;" alt="{\displaystyle {a_{1,1}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.563ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4f8dec3f252168c3943d0ce7101c48b93a10546" data-alt="{\displaystyle {a_{1,1}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>), represent the entries. In addition to using upper-case letters to symbolize matrices, many authors use a special <a href="/wiki/Emphasis_(typography)" title="Emphasis (typography)">typographical style</a>, commonly boldface Roman (non-italic), to further distinguish matrices from other mathematical objects. An alternative notation involves the use of a double-underline with the variable name, with or without boldface style, as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underline {\underline {A}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <munder> <mi>A</mi> <mo>_<!-- _ --></mo> </munder> <mo>_<!-- _ --></mo> </munder> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underline {\underline {A}}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998c5de9803c6c1eaf3a4944fcdceed6f0af959f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.02ex; margin-bottom: -0.818ex; width:1.748ex; height:3.676ex;" alt="{\displaystyle {\underline {\underline {A}}}}"></noscript><span class="lazy-image-placeholder" style="width: 1.748ex;height: 3.676ex;vertical-align: -1.02ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/998c5de9803c6c1eaf3a4944fcdceed6f0af959f" data-alt="{\displaystyle {\underline {\underline {A}}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>The entry in the <span class="texhtml"><i>i</i></span>-th row and <span class="texhtml"><i>j</i></span>-th column of a matrix <span class="texhtml"><b>A</b></span> is sometimes referred to as the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {i,j}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5876095735fdb75f51433429203661da7fca390f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.794ex; height:2.509ex;" alt="{\displaystyle {i,j}}"></noscript><span class="lazy-image-placeholder" style="width: 2.794ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5876095735fdb75f51433429203661da7fca390f" data-alt="{\displaystyle {i,j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {(i,j)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {(i,j)}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a73d586334f9b11ebc9abee6a8fa7bcc01d7afd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.604ex; height:2.843ex;" alt="{\displaystyle {(i,j)}}"></noscript><span class="lazy-image-placeholder" style="width: 4.604ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a73d586334f9b11ebc9abee6a8fa7bcc01d7afd" data-alt="{\displaystyle {(i,j)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> entry of the matrix, and commonly denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{i,j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{i,j}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ce39a2b3dbcebc3eddfd54e07da2154858868e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.164ex; height:2.343ex;" alt="{\displaystyle {a_{i,j}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.164ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30ce39a2b3dbcebc3eddfd54e07da2154858868e" data-alt="{\displaystyle {a_{i,j}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{ij}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{ij}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eae96c51109ab849da6fafb657ec794631abd37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.707ex; height:2.343ex;" alt="{\displaystyle {a_{ij}}}"></noscript><span class="lazy-image-placeholder" style="width: 2.707ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7eae96c51109ab849da6fafb657ec794631abd37" data-alt="{\displaystyle {a_{ij}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Alternative notations for that entry are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} [i,j]}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">[</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} [i,j]}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb3630aa110e0aa90d0bc0e4c0b55f659d3d63e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.108ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} [i,j]}}"></noscript><span class="lazy-image-placeholder" style="width: 6.108ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eeb3630aa110e0aa90d0bc0e4c0b55f659d3d63e" data-alt="{\displaystyle {\mathbf {A} [i,j]}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} _{i,j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} _{i,j}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8257645480f71cc7d9c081fe0a45dff9a31ec1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.954ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} _{i,j}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.954ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a8257645480f71cc7d9c081fe0a45dff9a31ec1" data-alt="{\displaystyle {\mathbf {A} _{i,j}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. For example, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,3)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c80e593e3953231c56d0887f5b247bbe517461f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.168ex; height:2.843ex;" alt="{\displaystyle (1,3)}"></noscript><span class="lazy-image-placeholder" style="width: 5.168ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c80e593e3953231c56d0887f5b247bbe517461f" data-alt="{\displaystyle (1,3)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> entry of the following matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is <span class="texhtml">5</span> (also denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{13}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{13}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff4257b367283e6ecdf4af184f8355c0c2b4d34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.106ex; height:2.009ex;" alt="{\displaystyle {a_{13}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.106ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ff4257b367283e6ecdf4af184f8355c0c2b4d34" data-alt="{\displaystyle {a_{13}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {a_{1,3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {a_{1,3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb06a058031e3f07851a7ee7ee31140021cb0a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.563ex; height:2.343ex;" alt="{\displaystyle {a_{1,3}}}"></noscript><span class="lazy-image-placeholder" style="width: 3.563ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb06a058031e3f07851a7ee7ee31140021cb0a06" data-alt="{\displaystyle {a_{1,3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} [1,3]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">[</mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} [1,3]}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa3b9da80148fbbfe012952941a2bdc0d8393c38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.672ex; height:2.843ex;" alt="{\displaystyle \mathbf {A} [1,3]}"></noscript><span class="lazy-image-placeholder" style="width: 6.672ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa3b9da80148fbbfe012952941a2bdc0d8393c38" data-alt="{\displaystyle \mathbf {A} [1,3]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{\mathbf {A} }_{1,3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{\mathbf {A} }_{1,3}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e49001b42606ad3da547f8d6efa13e48d9ed1dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.353ex; height:2.843ex;" alt="{\displaystyle {{\mathbf {A} }_{1,3}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.353ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e49001b42606ad3da547f8d6efa13e48d9ed1dd" data-alt="{\displaystyle {{\mathbf {A} }_{1,3}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}4&-7&\color {red}{5}&0\\-2&0&11&8\\19&1&-3&12\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>7</mn> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </mstyle> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>11</mn> </mtd> <mtd> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mn>19</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> <mtd> <mn>12</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}4&-7&\color {red}{5}&0\\-2&0&11&8\\19&1&-3&12\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9d58776afc906466b6163beaf584405eaf7a97f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:27.175ex; height:9.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}4&-7&\color {red}{5}&0\\-2&0&11&8\\19&1&-3&12\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 27.175ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9d58776afc906466b6163beaf584405eaf7a97f" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}4&-7&\color {red}{5}&0\\-2&0&11&8\\19&1&-3&12\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Sometimes, the entries of a matrix can be defined by a formula such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i,j}=f(i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i,j}=f(i,j)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4451079309af20865d76b996b62f06fbe41314e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.145ex; height:3.009ex;" alt="{\displaystyle a_{i,j}=f(i,j)}"></noscript><span class="lazy-image-placeholder" style="width: 12.145ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4451079309af20865d76b996b62f06fbe41314e" data-alt="{\displaystyle a_{i,j}=f(i,j)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. For example, each of the entries of the following matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is determined by the formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}=i-j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}=i-j}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2d745dd14d76ec708e0c984bf2489509caecd2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.406ex; height:2.843ex;" alt="{\displaystyle a_{ij}=i-j}"></noscript><span class="lazy-image-placeholder" style="width: 10.406ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2d745dd14d76ec708e0c984bf2489509caecd2c" data-alt="{\displaystyle a_{ij}=i-j}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}0&-1&-2&-3\\1&0&-1&-2\\2&1&0&-1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}0&-1&-2&-3\\1&0&-1&-2\\2&1&0&-1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f51de53bfecb43be29e3905aad271db49679f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:26.012ex; height:9.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}0&-1&-2&-3\\1&0&-1&-2\\2&1&0&-1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 26.012ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f51de53bfecb43be29e3905aad271db49679f50" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}0&-1&-2&-3\\1&0&-1&-2\\2&1&0&-1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>In this case, the matrix itself is sometimes defined by that formula, within square brackets or double parentheses. For example, the matrix above is defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }=[i-j]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }=[i-j]}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9724402762df013fda41e49ca5572dc9b89cd9cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.013ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} }=[i-j]}"></noscript><span class="lazy-image-placeholder" style="width: 11.013ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9724402762df013fda41e49ca5572dc9b89cd9cc" data-alt="{\displaystyle {\mathbf {A} }=[i-j]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }=((i-j))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }=((i-j))}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/502ff9ccab5be63b40f2c8901ab77cdf15d45712" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.337ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} }=((i-j))}"></noscript><span class="lazy-image-placeholder" style="width: 13.337ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/502ff9ccab5be63b40f2c8901ab77cdf15d45712" data-alt="{\displaystyle {\mathbf {A} }=((i-j))}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. If matrix size is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></noscript><span class="lazy-image-placeholder" style="width: 6.276ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" data-alt="{\displaystyle m\times n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, the above-mentioned formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(i,j)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(i,j)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceb5444a99e0ebb8684c4544152ab1268160da20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.882ex; height:2.843ex;" alt="{\displaystyle f(i,j)}"></noscript><span class="lazy-image-placeholder" style="width: 5.882ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceb5444a99e0ebb8684c4544152ab1268160da20" data-alt="{\displaystyle f(i,j)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is valid for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i=1,\dots ,m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i=1,\dots ,m}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38508db1c01a8fbea6da93f1866f86944e3f12d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.282ex; height:2.509ex;" alt="{\displaystyle i=1,\dots ,m}"></noscript><span class="lazy-image-placeholder" style="width: 12.282ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38508db1c01a8fbea6da93f1866f86944e3f12d" data-alt="{\displaystyle i=1,\dots ,m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j=1,\dots ,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j=1,\dots ,n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9393eaa189f1fb2c747b687b7b8d67640d5f1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:11.819ex; height:2.509ex;" alt="{\displaystyle j=1,\dots ,n}"></noscript><span class="lazy-image-placeholder" style="width: 11.819ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9393eaa189f1fb2c747b687b7b8d67640d5f1e" data-alt="{\displaystyle j=1,\dots ,n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. This can be specified separately or indicated using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\times n}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.276ex; height:1.676ex;" alt="{\displaystyle m\times n}"></noscript><span class="lazy-image-placeholder" style="width: 6.276ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12b23d207d23dd430b93320539abbb0bde84870d" data-alt="{\displaystyle m\times n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> as a subscript. For instance, the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.019ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} }"></noscript><span class="lazy-image-placeholder" style="width: 2.019ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0795cc96c75d81520a120482662b90f024c9a1a1" data-alt="{\displaystyle \mathbf {A} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> above is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3\times 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>×<!-- × --></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3\times 4}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fda443e7a6e78fa880a6dccbf8bdf43a10d9988" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.165ex; height:2.176ex;" alt="{\displaystyle 3\times 4}"></noscript><span class="lazy-image-placeholder" style="width: 5.165ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fda443e7a6e78fa880a6dccbf8bdf43a10d9988" data-alt="{\displaystyle 3\times 4}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and can be defined as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }=[i-j](i=1,2,3;j=1,\dots ,4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo stretchy="false">]</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }=[i-j](i=1,2,3;j=1,\dots ,4)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad68413c2769db2a39b51a017fb2e45cd793d3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.872ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} }=[i-j](i=1,2,3;j=1,\dots ,4)}"></noscript><span class="lazy-image-placeholder" style="width: 34.872ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad68413c2769db2a39b51a017fb2e45cd793d3b" data-alt="{\displaystyle {\mathbf {A} }=[i-j](i=1,2,3;j=1,\dots ,4)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A} }=[i-j]_{3\times 4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>i</mi> <mo>−<!-- − --></mo> <mi>j</mi> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>×<!-- × --></mo> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A} }=[i-j]_{3\times 4}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ab376d25a953520208baf764ea114a1ee565b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.167ex; height:2.843ex;" alt="{\displaystyle {\mathbf {A} }=[i-j]_{3\times 4}}"></noscript><span class="lazy-image-placeholder" style="width: 14.167ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ab376d25a953520208baf764ea114a1ee565b9" data-alt="{\displaystyle {\mathbf {A} }=[i-j]_{3\times 4}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. </p><p>Some programming languages utilize doubly subscripted arrays (or arrays of arrays) to represent an <span class="texhtml"><i>m</i></span>-by-<span class="texhtml"><i>n</i></span> matrix. Some programming languages start the numbering of array indexes at zero, in which case the entries of an <span class="texhtml"><i>m</i></span>-by-<span class="texhtml"><i>n</i></span> matrix are indexed by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq i\leq m-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq i\leq m-1}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4b2f05ce28398ed53128680921025e92b3fc4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.205ex; height:2.343ex;" alt="{\displaystyle 0\leq i\leq m-1}"></noscript><span class="lazy-image-placeholder" style="width: 14.205ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4b2f05ce28398ed53128680921025e92b3fc4e" data-alt="{\displaystyle 0\leq i\leq m-1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0\leq j\leq n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0\leq j\leq n-1}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80ba06f8c7cb92e65b1932f837ceb3e9a405e51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.715ex; height:2.509ex;" alt="{\displaystyle 0\leq j\leq n-1}"></noscript><span class="lazy-image-placeholder" style="width: 13.715ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a80ba06f8c7cb92e65b1932f837ceb3e9a405e51" data-alt="{\displaystyle 0\leq j\leq n-1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> This article follows the more common convention in mathematical writing where enumeration starts from <span class="texhtml">1</span>. </p><p>The <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all <span class="texhtml"><i>m</i></span>-by-<span class="texhtml"><i>n</i></span> real matrices is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}(m,n),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}(m,n),}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31ef01d32be11aa8c6420356b7d17a6233b134ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.716ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}(m,n),}"></noscript><span class="lazy-image-placeholder" style="width: 9.716ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31ef01d32be11aa8c6420356b7d17a6233b134ce" data-alt="{\displaystyle {\mathcal {M}}(m,n),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}_{m\times n}(\mathbb {R} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}_{m\times n}(\mathbb {R} ).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b72ca9be1664df5941623f3faacf9a45225bb07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.865ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}_{m\times n}(\mathbb {R} ).}"></noscript><span class="lazy-image-placeholder" style="width: 10.865ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b72ca9be1664df5941623f3faacf9a45225bb07" data-alt="{\displaystyle {\mathcal {M}}_{m\times n}(\mathbb {R} ).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> The set of all <span class="texhtml"><i>m</i></span>-by-<span class="texhtml"><i>n</i></span> matrices over another <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, or over a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="texhtml">R</span>, is similarly denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}(m,n,R),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}(m,n,R),}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7e466405aaaf3c8009e3404fe51b31c6bd70448" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.514ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}(m,n,R),}"></noscript><span class="lazy-image-placeholder" style="width: 12.514ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7e466405aaaf3c8009e3404fe51b31c6bd70448" data-alt="{\displaystyle {\mathcal {M}}(m,n,R),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}_{m\times n}(R).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}_{m\times n}(R).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6640d032642fde9cae2e4025ad394382b66a27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.951ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}_{m\times n}(R).}"></noscript><span class="lazy-image-placeholder" style="width: 10.951ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6640d032642fde9cae2e4025ad394382b66a27" data-alt="{\displaystyle {\mathcal {M}}_{m\times n}(R).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> If <span class="texhtml"><i>m</i><span class="nowrap"> </span>=<span class="nowrap"> </span><i>n</i></span>, such as in the case of <a href="/wiki/Square_matrices" class="mw-redirect" title="Square matrices">square matrices</a>, one does not repeat the dimension: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}(n,R),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>,</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}(n,R),}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f410ab3e0df4825b08083b93949bb36d82d32536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.439ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}(n,R),}"></noscript><span class="lazy-image-placeholder" style="width: 9.439ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f410ab3e0df4825b08083b93949bb36d82d32536" data-alt="{\displaystyle {\mathcal {M}}(n,R),}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}_{n}(R).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}_{n}(R).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53681a5d65e9480980a5cc7e66ddfa16ecea430c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.229ex; height:2.843ex;" alt="{\displaystyle {\mathcal {M}}_{n}(R).}"></noscript><span class="lazy-image-placeholder" style="width: 8.229ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53681a5d65e9480980a5cc7e66ddfa16ecea430c" data-alt="{\displaystyle {\mathcal {M}}_{n}(R).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-Pop-Furdui_7-0" class="reference"><a href="#cite_note-Pop-Furdui-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></span> Often, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></noscript><span class="lazy-image-placeholder" style="width: 2.442ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" data-alt="{\displaystyle M}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mat} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mat</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mat} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42fdf1777541a3ef4e694461fa576f1aabe4375f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.198ex; height:2.176ex;" alt="{\displaystyle \operatorname {Mat} }"></noscript><span class="lazy-image-placeholder" style="width: 4.198ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42fdf1777541a3ef4e694461fa576f1aabe4375f" data-alt="{\displaystyle \operatorname {Mat} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, is used in place of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {M}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">M</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {M}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/101831116f6abff5a4a6d5f21af9b643bd0bd865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.437ex; height:2.176ex;" alt="{\displaystyle {\mathcal {M}}.}"></noscript><span class="lazy-image-placeholder" style="width: 3.437ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/101831116f6abff5a4a6d5f21af9b643bd0bd865" data-alt="{\displaystyle {\mathcal {M}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Basic_operations">Basic operations</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=4" title="Edit section: Basic operations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Several basic operations can be applied to matrices. Some, such as <i>transposition</i> and <i>submatrix</i> do not depend on the nature of the entries. Others, such as <i>matrix addition</i>, <i>scalar multiplication</i>, <i>matrix multiplication</i>, and <i>row operations</i> involve operations on matrix entries and therefore require that matrix entries are numbers or belong to a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> or a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>In this section, it is supposed that matrix entries belong to a fixed ring, which is typically a field of numbers. </p> <div class="mw-heading mw-heading3"><h3 id="Addition,_scalar_multiplication,_subtraction_and_transposition"><span id="Addition.2C_scalar_multiplication.2C_subtraction_and_transposition"></span>Addition, scalar multiplication, subtraction and transposition</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=5" title="Edit section: Addition, scalar multiplication, subtraction and transposition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <dl><dt><a href="/wiki/Matrix_addition" title="Matrix addition">Addition</a></dt></dl> <p>The <i>sum</i> <span class="texhtml"><b>A</b> + <b>B</b></span> of two <span class="texhtml"><i>m</i>×<i>n</i></span> matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> is calculated entrywise: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathbf {A}}+{\mathbf {B}})_{i,j}={\mathbf {A}}_{i,j}+{\mathbf {B}}_{i,j},\quad 1\leq i\leq m,\quad 1\leq j\leq n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mspace width="1em"></mspace> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mo>,</mo> <mspace width="1em"></mspace> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathbf {A}}+{\mathbf {B}})_{i,j}={\mathbf {A}}_{i,j}+{\mathbf {B}}_{i,j},\quad 1\leq i\leq m,\quad 1\leq j\leq n.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa806786f57e2ead8e350d89213a682bc2f1d2a3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:51.507ex; height:3.009ex;" alt="{\displaystyle ({\mathbf {A}}+{\mathbf {B}})_{i,j}={\mathbf {A}}_{i,j}+{\mathbf {B}}_{i,j},\quad 1\leq i\leq m,\quad 1\leq j\leq n.}"></noscript><span class="lazy-image-placeholder" style="width: 51.507ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa806786f57e2ead8e350d89213a682bc2f1d2a3" data-alt="{\displaystyle ({\mathbf {A}}+{\mathbf {B}})_{i,j}={\mathbf {A}}_{i,j}+{\mathbf {B}}_{i,j},\quad 1\leq i\leq m,\quad 1\leq j\leq n.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> For example, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&3&1\\1&0&0\end{bmatrix}}+{\begin{bmatrix}0&0&5\\7&5&0\end{bmatrix}}={\begin{bmatrix}1+0&3+0&1+5\\1+7&0+5&0+0\end{bmatrix}}={\begin{bmatrix}1&3&6\\8&5&0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>7</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> <mo>+</mo> <mn>0</mn> </mtd> <mtd> <mn>3</mn> <mo>+</mo> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>+</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>+</mo> <mn>7</mn> </mtd> <mtd> <mn>0</mn> <mo>+</mo> <mn>5</mn> </mtd> <mtd> <mn>0</mn> <mo>+</mo> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&3&1\\1&0&0\end{bmatrix}}+{\begin{bmatrix}0&0&5\\7&5&0\end{bmatrix}}={\begin{bmatrix}1+0&3+0&1+5\\1+7&0+5&0+0\end{bmatrix}}={\begin{bmatrix}1&3&6\\8&5&0\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e600aa691a93ceb33f0fdac290002d1391d6688" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:66.402ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&3&1\\1&0&0\end{bmatrix}}+{\begin{bmatrix}0&0&5\\7&5&0\end{bmatrix}}={\begin{bmatrix}1+0&3+0&1+5\\1+7&0+5&0+0\end{bmatrix}}={\begin{bmatrix}1&3&6\\8&5&0\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 66.402ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e600aa691a93ceb33f0fdac290002d1391d6688" data-alt="{\displaystyle {\begin{bmatrix}1&3&1\\1&0&0\end{bmatrix}}+{\begin{bmatrix}0&0&5\\7&5&0\end{bmatrix}}={\begin{bmatrix}1+0&3+0&1+5\\1+7&0+5&0+0\end{bmatrix}}={\begin{bmatrix}1&3&6\\8&5&0\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dt><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></dt></dl> <p>The product <span class="texhtml"><i>c</i><b>A</b></span> of a number <span class="texhtml mvar" style="font-style:italic;">c</span> (also called a <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalar</a> in this context) and a matrix <span class="texhtml"><b>A</b></span> is computed by multiplying every entry of <span class="texhtml"><b>A</b></span> by <span class="texhtml mvar" style="font-style:italic;">c</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (c{\mathbf {A}})_{i,j}=c\cdot {\mathbf {A}}_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (c{\mathbf {A}})_{i,j}=c\cdot {\mathbf {A}}_{i,j}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99dc53991b812afcf155f2e546cd41a6ae36f10" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.509ex; height:3.009ex;" alt="{\displaystyle (c{\mathbf {A}})_{i,j}=c\cdot {\mathbf {A}}_{i,j}}"></noscript><span class="lazy-image-placeholder" style="width: 16.509ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99dc53991b812afcf155f2e546cd41a6ae36f10" data-alt="{\displaystyle (c{\mathbf {A}})_{i,j}=c\cdot {\mathbf {A}}_{i,j}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> This operation is called <i>scalar multiplication</i>, but its result is not named "scalar product" to avoid confusion, since "scalar product" is often used as a synonym for "<a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a>". For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\cdot {\begin{bmatrix}1&8&-3\\4&-2&5\end{bmatrix}}={\begin{bmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{bmatrix}}={\begin{bmatrix}2&16&-6\\8&-4&10\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>8</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>4</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>5</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> <mtd> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>16</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>8</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>4</mn> </mtd> <mtd> <mn>10</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\cdot {\begin{bmatrix}1&8&-3\\4&-2&5\end{bmatrix}}={\begin{bmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{bmatrix}}={\begin{bmatrix}2&16&-6\\8&-4&10\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf7fe1075c8c575225e74096007bef9205c88964" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:62.429ex; height:6.176ex;" alt="{\displaystyle 2\cdot {\begin{bmatrix}1&8&-3\\4&-2&5\end{bmatrix}}={\begin{bmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{bmatrix}}={\begin{bmatrix}2&16&-6\\8&-4&10\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 62.429ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf7fe1075c8c575225e74096007bef9205c88964" data-alt="{\displaystyle 2\cdot {\begin{bmatrix}1&8&-3\\4&-2&5\end{bmatrix}}={\begin{bmatrix}2\cdot 1&2\cdot 8&2\cdot -3\\2\cdot 4&2\cdot -2&2\cdot 5\end{bmatrix}}={\begin{bmatrix}2&16&-6\\8&-4&10\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dt><a href="/wiki/Matrix_subtraction" class="mw-redirect" title="Matrix subtraction">Subtraction</a></dt></dl> <p>The subtraction of two <span class="texhtml"><i>m</i>×<i>n</i></span> matrices is defined by composing matrix addition with scalar multiplication by <span class="texhtml">–1</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} -\mathbf {B} =\mathbf {A} +(-1)\cdot \mathbf {B} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} -\mathbf {B} =\mathbf {A} +(-1)\cdot \mathbf {B} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1743905b472434f9b2ffec5c159062c1b77e9643" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.079ex; height:2.843ex;" alt="{\displaystyle \mathbf {A} -\mathbf {B} =\mathbf {A} +(-1)\cdot \mathbf {B} }"></noscript><span class="lazy-image-placeholder" style="width: 23.079ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1743905b472434f9b2ffec5c159062c1b77e9643" data-alt="{\displaystyle \mathbf {A} -\mathbf {B} =\mathbf {A} +(-1)\cdot \mathbf {B} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dt><a href="/wiki/Transpose" title="Transpose">Transposition</a></dt></dl> <p>The <i>transpose</i> of an <span class="texhtml"><i>m</i>×<i>n</i></span> matrix <span class="texhtml"><b>A</b></span> is the <span class="texhtml"><i>n</i>×<i>m</i></span> matrix <span class="texhtml"><b>A</b><sup>T</sup></span> (also denoted <span class="texhtml"><b>A</b><sup>tr</sup></span> or <span class="texhtml"><sup>t</sup><b>A</b></span>) formed by turning rows into columns and vice versa: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\mathbf {A}}^{\rm {T}}\right)_{i,j}={\mathbf {A}}_{j,i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo>(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\mathbf {A}}^{\rm {T}}\right)_{i,j}={\mathbf {A}}_{j,i}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a593edc189c58430468491beba276358a71a8761" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:15.202ex; height:3.843ex;" alt="{\displaystyle \left({\mathbf {A}}^{\rm {T}}\right)_{i,j}={\mathbf {A}}_{j,i}.}"></noscript><span class="lazy-image-placeholder" style="width: 15.202ex;height: 3.843ex;vertical-align: -1.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a593edc189c58430468491beba276358a71a8761" data-alt="{\displaystyle \left({\mathbf {A}}^{\rm {T}}\right)_{i,j}={\mathbf {A}}_{j,i}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&2&3\\0&-6&7\end{bmatrix}}^{\mathrm {T} }={\begin{bmatrix}1&0\\2&-6\\3&7\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>7</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&2&3\\0&-6&7\end{bmatrix}}^{\mathrm {T} }={\begin{bmatrix}1&0\\2&-6\\3&7\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51f6dba024e104b412ed0562163ca9a11fcb9463" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:27.972ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}1&2&3\\0&-6&7\end{bmatrix}}^{\mathrm {T} }={\begin{bmatrix}1&0\\2&-6\\3&7\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 27.972ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51f6dba024e104b412ed0562163ca9a11fcb9463" data-alt="{\displaystyle {\begin{bmatrix}1&2&3\\0&-6&7\end{bmatrix}}^{\mathrm {T} }={\begin{bmatrix}1&0\\2&-6\\3&7\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Familiar properties of numbers extend to these operations on matrices: for example, addition is <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a>, that is, the matrix sum does not depend on the order of the summands: <span class="texhtml"><b>A</b> + <b>B</b> = <b>B</b> + <b>A</b></span>.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> The transpose is compatible with addition and scalar multiplication, as expressed by <span class="texhtml">(<i>c</i><b>A</b>)<sup>T</sup> = <i>c</i>(<b>A</b><sup>T</sup>)</span> and <span class="texhtml">(<b>A</b> + <b>B</b>)<sup>T</sup> = <b>A</b><sup>T</sup> + <b>B</b><sup>T</sup></span>. Finally, <span class="texhtml">(<b>A</b><sup>T</sup>)<sup>T</sup> = <b>A</b></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Matrix_multiplication">Matrix multiplication</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=6" title="Edit section: Matrix multiplication" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Matrix multiplication</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:MatrixMultiplication.png" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/MatrixMultiplication.png/300px-MatrixMultiplication.png" decoding="async" width="300" height="180" class="mw-file-element" data-file-width="1000" data-file-height="599"></noscript><span class="lazy-image-placeholder" style="width: 300px;height: 180px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/MatrixMultiplication.png/300px-MatrixMultiplication.png" data-width="300" data-height="180" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/MatrixMultiplication.png/450px-MatrixMultiplication.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/MatrixMultiplication.png/600px-MatrixMultiplication.png 2x" data-class="mw-file-element"> </span></a><figcaption>Schematic depiction of the matrix product <span class="texhtml"><b>AB</b></span> of two matrices <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span></figcaption></figure> <p><i>Multiplication</i> of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If <span class="texhtml"><b>A</b></span> is an <span class="texhtml"><i>m</i>×<i>n</i></span> matrix and <span class="texhtml"><b>B</b></span> is an <span class="texhtml"><i>n</i>×<i>p</i></span> matrix, then their <i>matrix product</i> <span class="texhtml"><b>AB</b></span> is the <span class="texhtml"><i>m</i>×<i>p</i></span> matrix whose entries are given by <a href="/wiki/Dot_product" title="Dot product">dot product</a> of the corresponding row of <span class="texhtml"><b>A</b></span> and the corresponding column of <span class="texhtml"><b>B</b></span>:<sup id="cite_ref-:5_10-0" class="reference"><a href="#cite_note-:5-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span id="matrix_product"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mathbf {AB} ]_{i,j}=a_{i,1}b_{1,j}+a_{i,2}b_{2,j}+\cdots +a_{i,n}b_{n,j}=\sum _{r=1}^{n}a_{i,r}b_{r,j},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mathbf {AB} ]_{i,j}=a_{i,1}b_{1,j}+a_{i,2}b_{2,j}+\cdots +a_{i,n}b_{n,j}=\sum _{r=1}^{n}a_{i,r}b_{r,j},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c903c2c14d249005ce9ebaa47a8d6c6710c1c29e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:55.128ex; height:6.843ex;" alt="{\displaystyle [\mathbf {AB} ]_{i,j}=a_{i,1}b_{1,j}+a_{i,2}b_{2,j}+\cdots +a_{i,n}b_{n,j}=\sum _{r=1}^{n}a_{i,r}b_{r,j},}"></noscript><span class="lazy-image-placeholder" style="width: 55.128ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c903c2c14d249005ce9ebaa47a8d6c6710c1c29e" data-alt="{\displaystyle [\mathbf {AB} ]_{i,j}=a_{i,1}b_{1,j}+a_{i,2}b_{2,j}+\cdots +a_{i,n}b_{n,j}=\sum _{r=1}^{n}a_{i,r}b_{r,j},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span></dd></dl> <p>where <span class="texhtml">1 ≤ <i>i</i> ≤ <i>m</i></span> and <span class="texhtml">1 ≤ <i>j</i> ≤ <i>p</i></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> For example, the underlined entry 2340 in the product is calculated as <span class="texhtml">(2 × 1000) + (3 × 100) + (4 × 10) = 2340:</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\begin{bmatrix}{\underline {2}}&{\underline {3}}&{\underline {4}}\\1&0&0\\\end{bmatrix}}{\begin{bmatrix}0&{\underline {1000}}\\1&{\underline {100}}\\0&{\underline {10}}\\\end{bmatrix}}&={\begin{bmatrix}3&{\underline {2340}}\\0&1000\\\end{bmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>2</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>3</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>4</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>1000</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>100</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>10</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <munder> <mn>2340</mn> <mo>_<!-- _ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1000</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\begin{bmatrix}{\underline {2}}&{\underline {3}}&{\underline {4}}\\1&0&0\\\end{bmatrix}}{\begin{bmatrix}0&{\underline {1000}}\\1&{\underline {100}}\\0&{\underline {10}}\\\end{bmatrix}}&={\begin{bmatrix}3&{\underline {2340}}\\0&1000\\\end{bmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8435ba88efca5a73e7d1b122bb19f99ef136d71e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.979ex; margin-bottom: -0.859ex; width:39.169ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}{\begin{bmatrix}{\underline {2}}&{\underline {3}}&{\underline {4}}\\1&0&0\\\end{bmatrix}}{\begin{bmatrix}0&{\underline {1000}}\\1&{\underline {100}}\\0&{\underline {10}}\\\end{bmatrix}}&={\begin{bmatrix}3&{\underline {2340}}\\0&1000\\\end{bmatrix}}.\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 39.169ex;height: 10.176ex;vertical-align: -3.979ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8435ba88efca5a73e7d1b122bb19f99ef136d71e" data-alt="{\displaystyle {\begin{aligned}{\begin{bmatrix}{\underline {2}}&{\underline {3}}&{\underline {4}}\\1&0&0\\\end{bmatrix}}{\begin{bmatrix}0&{\underline {1000}}\\1&{\underline {100}}\\0&{\underline {10}}\\\end{bmatrix}}&={\begin{bmatrix}3&{\underline {2340}}\\0&1000\\\end{bmatrix}}.\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Matrix multiplication satisfies the rules <span class="texhtml">(<b>AB</b>)<b>C</b> = <b>A</b>(<b>BC</b>)</span> (<a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a>), and <span class="texhtml">(<b>A</b> + <b>B</b>)<b>C</b> = <b>AC</b> + <b>BC</b></span> as well as <span class="texhtml"><b>C</b>(<b>A</b> + <b>B</b>) = <b>CA</b> + <b>CB</b></span> (left and right <a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributivity</a>), whenever the size of the matrices is such that the various products are defined.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> The product <span class="texhtml"><b>AB</b></span> may be defined without <span class="texhtml"><b>BA</b></span> being defined, namely if <span class="texhtml"><b>A</b></span> and <span class="texhtml"><b>B</b></span> are <span class="texhtml"><i>m</i>×<i>n</i></span> and <span class="texhtml"><i>n</i>×<i>k</i></span> matrices, respectively, and <span class="texhtml"><i>m</i> ≠ <i>k</i>.</span> Even if both products are defined, they generally need not be equal, that is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {AB}}\neq {\mathbf {BA}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>≠<!-- ≠ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {AB}}\neq {\mathbf {BA}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c668f86bb3696952f5ff52998df9d0a6ba8c73" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.586ex; height:2.676ex;" alt="{\displaystyle {\mathbf {AB}}\neq {\mathbf {BA}}.}"></noscript><span class="lazy-image-placeholder" style="width: 11.586ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c668f86bb3696952f5ff52998df9d0a6ba8c73" data-alt="{\displaystyle {\mathbf {AB}}\neq {\mathbf {BA}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>In other words, <span id="non_commutative">matrix multiplication is not <a href="/wiki/Commutative_property" title="Commutative property">commutative</a>,</span> in marked contrast to (rational, real, or complex) numbers, whose product is independent of the order of the factors.<sup id="cite_ref-:5_10-1" class="reference"><a href="#cite_note-:5-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> An example of two matrices not commuting with each other is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}{\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}={\begin{bmatrix}0&1\\0&3\\\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>3</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}{\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}={\begin{bmatrix}0&1\\0&3\\\end{bmatrix}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f04b29d8a273a3d2ccff8b2ac98c9e75c305c7bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.307ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}{\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}={\begin{bmatrix}0&1\\0&3\\\end{bmatrix}},}"></noscript><span class="lazy-image-placeholder" style="width: 27.307ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f04b29d8a273a3d2ccff8b2ac98c9e75c305c7bd" data-alt="{\displaystyle {\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}{\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}={\begin{bmatrix}0&1\\0&3\\\end{bmatrix}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>whereas </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}{\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}={\begin{bmatrix}3&4\\0&0\\\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}{\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}={\begin{bmatrix}3&4\\0&0\\\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3d260e7e7dda974d50647f542f9968c9267eff0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.307ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}{\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}={\begin{bmatrix}3&4\\0&0\\\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 27.307ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3d260e7e7dda974d50647f542f9968c9267eff0" data-alt="{\displaystyle {\begin{bmatrix}0&1\\0&0\\\end{bmatrix}}{\begin{bmatrix}1&2\\3&4\\\end{bmatrix}}={\begin{bmatrix}3&4\\0&0\\\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Besides the ordinary matrix multiplication just described, other less frequently used operations on matrices that can be considered forms of multiplication also exist, such as the <a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a> and the <a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> They arise in solving matrix equations such as the <a href="/wiki/Sylvester_equation" title="Sylvester equation">Sylvester equation</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Row_operations">Row operations</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=7" title="Edit section: Row operations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Row_operations" class="mw-redirect" title="Row operations">Row operations</a></div> <p>There are three types of row operations: </p> <ol><li>row addition, that is adding a row to another.</li> <li>row multiplication, that is multiplying all entries of a row by a non-zero constant;</li> <li>row switching, that is interchanging two rows of a matrix;</li></ol> <p>These operations are used in several ways, including solving <a href="/wiki/Linear_equation" title="Linear equation">linear equations</a> and finding <a href="/wiki/Matrix_inverse" class="mw-redirect" title="Matrix inverse">matrix inverses</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Submatrix"><span class="anchor" id="Submatrix"></span> Submatrix</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=8" title="Edit section: Submatrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A <b>submatrix</b> of a matrix is a matrix obtained by deleting any collection of rows and/or columns.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Protter_1970_869_16-0" class="reference"><a href="#cite_note-Protter_1970_869-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> For example, from the following 3-by-4 matrix, we can construct a 2-by-3 submatrix by removing row 3 and column 2: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&\color {red}{2}&3&4\\5&\color {red}{6}&7&8\\\color {red}{9}&\color {red}{10}&\color {red}{11}&\color {red}{12}\end{bmatrix}}\rightarrow {\begin{bmatrix}1&3&4\\5&7&8\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </mstyle> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </mstyle> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>8</mn> </mtd> </mtr> <mtr> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </mstyle> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </mstyle> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </mstyle> </mtd> <mtd> <mstyle mathcolor="red"> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mstyle> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> <mtr> <mtd> <mn>5</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>8</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}1&\color {red}{2}&3&4\\5&\color {red}{6}&7&8\\\color {red}{9}&\color {red}{10}&\color {red}{11}&\color {red}{12}\end{bmatrix}}\rightarrow {\begin{bmatrix}1&3&4\\5&7&8\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7347ef1fbe8802dde70d98638277d3ca81ec4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:39.675ex; height:9.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&\color {red}{2}&3&4\\5&\color {red}{6}&7&8\\\color {red}{9}&\color {red}{10}&\color {red}{11}&\color {red}{12}\end{bmatrix}}\rightarrow {\begin{bmatrix}1&3&4\\5&7&8\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 39.675ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7347ef1fbe8802dde70d98638277d3ca81ec4e" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&\color {red}{2}&3&4\\5&\color {red}{6}&7&8\\\color {red}{9}&\color {red}{10}&\color {red}{11}&\color {red}{12}\end{bmatrix}}\rightarrow {\begin{bmatrix}1&3&4\\5&7&8\end{bmatrix}}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>The <a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">minors</a> and cofactors of a matrix are found by computing the <a href="/wiki/Determinant" title="Determinant">determinant</a> of certain submatrices.<sup id="cite_ref-Protter_1970_869_16-1" class="reference"><a href="#cite_note-Protter_1970_869-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>A <b>principal submatrix</b> is a square submatrix obtained by removing certain rows and columns. The definition varies from author to author. According to some authors, a principal submatrix is a submatrix in which the set of row indices that remain is the same as the set of column indices that remain.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Other authors define a principal submatrix as one in which the first <span class="texhtml mvar" style="font-style:italic;">k</span> rows and columns, for some number <span class="texhtml mvar" style="font-style:italic;">k</span>, are the ones that remain;<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> this type of submatrix has also been called a <b>leading principal submatrix</b>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Linear_equations">Linear equations</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=9" title="Edit section: Linear equations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Linear_equation" title="Linear equation">Linear equation</a> and <a href="/wiki/System_of_linear_equations" title="System of linear equations">System of linear equations</a></div> <p>Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if <span class="texhtml"><b>A</b></span> is an <span class="texhtml"><i>m</i>×<i>n</i></span> matrix, <span class="texhtml"><b>x</b></span> designates a column vector (that is, <span class="texhtml"><i>n</i>×1</span>-matrix) of <span class="texhtml mvar" style="font-style:italic;">n</span> variables <span class="texhtml"><i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>,</span> and <span class="texhtml"><b>b</b></span> is an <span class="texhtml"><i>m</i>×1</span>-column vector, then the matrix equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Ax} =\mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {Ax} =\mathbf {b} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e68388b7df59f536a3bef4e70def2f2bb36f48c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.014ex; height:2.176ex;" alt="{\displaystyle \mathbf {Ax} =\mathbf {b} }"></noscript><span class="lazy-image-placeholder" style="width: 8.014ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e68388b7df59f536a3bef4e70def2f2bb36f48c0" data-alt="{\displaystyle \mathbf {Ax} =\mathbf {b} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>is equivalent to the system of linear equations<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}a_{1,1}x_{1}+a_{1,2}x_{2}+&\cdots +a_{1,n}x_{n}=b_{1}\\&\ \ \vdots \\a_{m,1}x_{1}+a_{m,2}x_{2}+&\cdots +a_{m,n}x_{n}=b_{m}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> </mtd> <mtd> <mi></mi> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mtext> </mtext> <mtext> </mtext> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> </mtd> <mtd> <mi></mi> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}a_{1,1}x_{1}+a_{1,2}x_{2}+&\cdots +a_{1,n}x_{n}=b_{1}\\&\ \ \vdots \\a_{m,1}x_{1}+a_{m,2}x_{2}+&\cdots +a_{m,n}x_{n}=b_{m}\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4d36435b1869be0a1174a28d251c44929556218" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.388ex; margin-bottom: -0.284ex; width:37.155ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}a_{1,1}x_{1}+a_{1,2}x_{2}+&\cdots +a_{1,n}x_{n}=b_{1}\\&\ \ \vdots \\a_{m,1}x_{1}+a_{m,2}x_{2}+&\cdots +a_{m,n}x_{n}=b_{m}\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 37.155ex;height: 10.509ex;vertical-align: -4.388ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4d36435b1869be0a1174a28d251c44929556218" data-alt="{\displaystyle {\begin{aligned}a_{1,1}x_{1}+a_{1,2}x_{2}+&\cdots +a_{1,n}x_{n}=b_{1}\\&\ \ \vdots \\a_{m,1}x_{1}+a_{m,2}x_{2}+&\cdots +a_{m,n}x_{n}=b_{m}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Using matrices, this can be solved more compactly than would be possible by writing out all the equations separately. If <span class="texhtml"><i>n</i> = <i>m</i></span> and the equations are <a href="/wiki/Independent_equation" title="Independent equation">independent</a>, then this can be done by writing </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {x} =\mathbf {A} ^{-1}\mathbf {b} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {x} =\mathbf {A} ^{-1}\mathbf {b} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079fdc93cc44d2d3d6bdf92dadb0ad8ade2efe09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.347ex; height:2.676ex;" alt="{\displaystyle \mathbf {x} =\mathbf {A} ^{-1}\mathbf {b} }"></noscript><span class="lazy-image-placeholder" style="width: 10.347ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079fdc93cc44d2d3d6bdf92dadb0ad8ade2efe09" data-alt="{\displaystyle \mathbf {x} =\mathbf {A} ^{-1}\mathbf {b} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>where <span class="texhtml"><b>A</b><sup>−1</sup></span> is the <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse matrix</a> of <span class="texhtml"><b>A</b></span>. If <span class="texhtml"><b>A</b></span> has no inverse, solutions—if any—can be found using its <a href="/wiki/Generalized_inverse" title="Generalized inverse">generalized inverse</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Linear_transformations">Linear transformations</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=10" title="Edit section: Linear transformations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">Linear transformation</a> and <a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation matrix</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Area_parallellogram_as_determinant.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Area_parallellogram_as_determinant.svg/220px-Area_parallellogram_as_determinant.svg.png" decoding="async" width="220" height="253" class="mw-file-element" data-file-width="870" data-file-height="1000"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 253px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Area_parallellogram_as_determinant.svg/220px-Area_parallellogram_as_determinant.svg.png" data-width="220" data-height="253" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Area_parallellogram_as_determinant.svg/330px-Area_parallellogram_as_determinant.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/ad/Area_parallellogram_as_determinant.svg/440px-Area_parallellogram_as_determinant.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>The vectors represented by a 2-by-2 matrix correspond to the sides of a unit square transformed into a parallelogram.</figcaption></figure> <p>Matrices and matrix multiplication reveal their essential features when related to <i>linear transformations</i>, also known as <i>linear maps</i>. <span id="linear_maps">A real <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix <span class="texhtml"><b>A</b></span> gives rise to a linear transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cccdefd5f0e00fc2fa5fde2d8cbb039cc408a035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.864ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}"></noscript><span class="lazy-image-placeholder" style="width: 9.864ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cccdefd5f0e00fc2fa5fde2d8cbb039cc408a035" data-alt="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> mapping each vector <span class="texhtml"><b>x</b></span> in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></noscript><span class="lazy-image-placeholder" style="width: 2.897ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" data-alt="{\displaystyle \mathbb {R} ^{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> to the (matrix) product <span class="texhtml"><b>Ax</b></span>, which is a vector in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{m}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300954c24584ecb8256b59b1d1e6ea54ae1ae889" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{m}.}"></noscript><span class="lazy-image-placeholder" style="width: 4ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/300954c24584ecb8256b59b1d1e6ea54ae1ae889" data-alt="{\displaystyle \mathbb {R} ^{m}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> Conversely, each linear transformation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad78382c3d23bcb4051b3148f1a23b1d0ba52e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.079ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}}"></noscript><span class="lazy-image-placeholder" style="width: 13.079ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad78382c3d23bcb4051b3148f1a23b1d0ba52e3" data-alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> arises from a unique <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix <span class="texhtml"><b>A</b></span>: explicitly, the <span class="texhtml">(<i>i</i>, <i>j</i>)</span>-entry of <span class="texhtml"><b>A</b></span> is the <span class="texhtml mvar" style="font-style:italic;">i</span>th coordinate of <span class="texhtml"><i>f</i> (<b>e</b><sub><i>j</i></sub>)</span>, where <span class="texhtml"><b>e</b><sub><i>j</i></sub> = (0, ..., 0, 1, 0, ..., 0)</span> is the <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a> with 1 in the <span class="texhtml mvar" style="font-style:italic;">j</span>th position and 0 elsewhere.</span> The matrix <span class="texhtml"><b>A</b></span> is said to represent the linear map <span class="texhtml mvar" style="font-style:italic;">f</span>, and <span class="texhtml"><b>A</b></span> is called the <i>transformation matrix</i> of <span class="texhtml mvar" style="font-style:italic;">f</span>. </p><p>For example, the 2×2 matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}a&c\\b&d\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>d</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}a&c\\b&d\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0996c87b9d5163ae1a5e132fd08eb0abced82042" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:13.093ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}a&c\\b&d\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 13.093ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0996c87b9d5163ae1a5e132fd08eb0abced82042" data-alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}a&c\\b&d\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>can be viewed as the transform of the <a href="/wiki/Unit_square" title="Unit square">unit square</a> into a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> with vertices at <span class="texhtml">(0, 0)</span>, <span class="texhtml">(<i>a</i>, <i>b</i>)</span>, <span class="texhtml">(<i>a</i> + <i>c</i>, <i>b</i> + <i>d</i>)</span>, and <span class="texhtml">(<i>c</i>, <i>d</i>)</span>. The parallelogram pictured at the right is obtained by multiplying <span class="texhtml"><b>A</b></span> with each of the column vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0\\0\end{bmatrix}},{\begin{bmatrix}1\\0\end{bmatrix}},{\begin{bmatrix}1\\1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0\\0\end{bmatrix}},{\begin{bmatrix}1\\0\end{bmatrix}},{\begin{bmatrix}1\\1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee78c2dd87473db52d51e244cefb9172eea1bb58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.175ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0\\0\end{bmatrix}},{\begin{bmatrix}1\\0\end{bmatrix}},{\begin{bmatrix}1\\1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 15.175ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee78c2dd87473db52d51e244cefb9172eea1bb58" data-alt="{\displaystyle {\begin{bmatrix}0\\0\end{bmatrix}},{\begin{bmatrix}1\\0\end{bmatrix}},{\begin{bmatrix}1\\1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0\\1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0\\1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b48db099856bd05394c31adef4678aa9a6f9bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:4.369ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0\\1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 4.369ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b48db099856bd05394c31adef4678aa9a6f9bee" data-alt="{\displaystyle {\begin{bmatrix}0\\1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in turn. These vectors define the vertices of the unit square. </p><p>The following table shows several 2×2 real matrices with the associated linear maps of <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066b155c535a38739cc0c4b288324cbb7a4a227a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.379ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}.}"></noscript><span class="lazy-image-placeholder" style="width: 3.379ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/066b155c535a38739cc0c4b288324cbb7a4a227a" data-alt="{\displaystyle \mathbb {R} ^{2}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> The <span style="color:blue;">blue</span> original is mapped to the <span style="color:green;">green</span> grid and shapes. The origin <span class="texhtml">(0, 0)</span> is marked with a black point. </p> <table class="wikitable" style="text-align:center; margin:1em auto 1em auto;"> <tbody><tr> <td><a href="/wiki/Shear_mapping" title="Shear mapping">Horizontal shear</a><br>with <i>m</i> = 1.25. </td> <td><a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">Reflection</a> through the vertical axis </td> <td><a href="/wiki/Squeeze_mapping" title="Squeeze mapping">Squeeze mapping</a><br>with <i>r</i> = 3/2 </td> <td><a href="/wiki/Scaling_(geometry)" title="Scaling (geometry)">Scaling</a><br>by a factor of 3/2 </td> <td><span id="rotation_matrix"><a href="/wiki/Rotation_matrix" title="Rotation matrix">Rotation</a><br>by <span class="texhtml mvar" style="font-style:italic;">π</span>/6 = 30°</span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&1.25\\0&1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1.25</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&1.25\\0&1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952686ab43a12dcc73b5a2faaef995e28c54af2b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.826ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}1&1.25\\0&1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.826ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952686ab43a12dcc73b5a2faaef995e28c54af2b" data-alt="{\displaystyle {\begin{bmatrix}1&1.25\\0&1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}-1&0\\0&1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo>−<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}-1&0\\0&1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5ddc64d626699bfb8b3b1722d8156c6d71b3101" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.662ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}-1&0\\0&1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.662ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5ddc64d626699bfb8b3b1722d8156c6d71b3101" data-alt="{\displaystyle {\begin{bmatrix}-1&0\\0&1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {2}{3}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {2}{3}}\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed82dee99393f43ca58ca109a07882c8502039fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:9.101ex; height:7.843ex;" alt="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {2}{3}}\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.101ex;height: 7.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed82dee99393f43ca58ca109a07882c8502039fa" data-alt="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {2}{3}}\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {3}{2}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {3}{2}}\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb4cd5330d9744daf8cce4670f5d7baeb8405c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:9.101ex; height:7.843ex;" alt="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {3}{2}}\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.101ex;height: 7.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfb4cd5330d9744daf8cce4670f5d7baeb8405c1" data-alt="{\displaystyle {\begin{bmatrix}{\frac {3}{2}}&0\\0&{\frac {3}{2}}\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\cos \left({\frac {\pi }{6}}\right)&-\sin \left({\frac {\pi }{6}}\right)\\\sin \left({\frac {\pi }{6}}\right)&\cos \left({\frac {\pi }{6}}\right)\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>cos</mi> <mo><!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>sin</mi> <mo><!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mo><!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mo><!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>6</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\cos \left({\frac {\pi }{6}}\right)&-\sin \left({\frac {\pi }{6}}\right)\\\sin \left({\frac {\pi }{6}}\right)&\cos \left({\frac {\pi }{6}}\right)\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30963a4382db630e21570eedf5fa461cbf06cfb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:23.444ex; height:9.843ex;" alt="{\displaystyle {\begin{bmatrix}\cos \left({\frac {\pi }{6}}\right)&-\sin \left({\frac {\pi }{6}}\right)\\\sin \left({\frac {\pi }{6}}\right)&\cos \left({\frac {\pi }{6}}\right)\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 23.444ex;height: 9.843ex;vertical-align: -4.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30963a4382db630e21570eedf5fa461cbf06cfb7" data-alt="{\displaystyle {\begin{bmatrix}\cos \left({\frac {\pi }{6}}\right)&-\sin \left({\frac {\pi }{6}}\right)\\\sin \left({\frac {\pi }{6}}\right)&\cos \left({\frac {\pi }{6}}\right)\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td width="20%"><span typeof="mw:File"><a href="/wiki/File:VerticalShear_m%3D1.25.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/VerticalShear_m%3D1.25.svg/175px-VerticalShear_m%3D1.25.svg.png" decoding="async" width="175" height="79" class="mw-file-element" data-file-width="1225" data-file-height="550"></noscript><span class="lazy-image-placeholder" style="width: 175px;height: 79px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/VerticalShear_m%3D1.25.svg/175px-VerticalShear_m%3D1.25.svg.png" data-width="175" data-height="79" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/VerticalShear_m%3D1.25.svg/263px-VerticalShear_m%3D1.25.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/VerticalShear_m%3D1.25.svg/350px-VerticalShear_m%3D1.25.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td width="20%"><span typeof="mw:File"><a href="/wiki/File:Flip_map.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Flip_map.svg/150px-Flip_map.svg.png" decoding="async" width="150" height="97" class="mw-file-element" data-file-width="858" data-file-height="554"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 97px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Flip_map.svg/150px-Flip_map.svg.png" data-width="150" data-height="97" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Flip_map.svg/225px-Flip_map.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Flip_map.svg/300px-Flip_map.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td width="20%"><span typeof="mw:File"><a href="/wiki/File:Squeeze_r%3D1.5.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Squeeze_r%3D1.5.svg/150px-Squeeze_r%3D1.5.svg.png" decoding="async" width="150" height="101" class="mw-file-element" data-file-width="820" data-file-height="550"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 101px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Squeeze_r%3D1.5.svg/150px-Squeeze_r%3D1.5.svg.png" data-width="150" data-height="101" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Squeeze_r%3D1.5.svg/225px-Squeeze_r%3D1.5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Squeeze_r%3D1.5.svg/300px-Squeeze_r%3D1.5.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td width="20%"><span typeof="mw:File"><a href="/wiki/File:Scaling_by_1.5.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Scaling_by_1.5.svg/125px-Scaling_by_1.5.svg.png" decoding="async" width="125" height="125" class="mw-file-element" data-file-width="825" data-file-height="825"></noscript><span class="lazy-image-placeholder" style="width: 125px;height: 125px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Scaling_by_1.5.svg/125px-Scaling_by_1.5.svg.png" data-width="125" data-height="125" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Scaling_by_1.5.svg/188px-Scaling_by_1.5.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Scaling_by_1.5.svg/250px-Scaling_by_1.5.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td width="20%"><span typeof="mw:File"><a href="/wiki/File:Rotation_by_pi_over_6.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Rotation_by_pi_over_6.svg/125px-Rotation_by_pi_over_6.svg.png" decoding="async" width="125" height="125" class="mw-file-element" data-file-width="748" data-file-height="748"></noscript><span class="lazy-image-placeholder" style="width: 125px;height: 125px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Rotation_by_pi_over_6.svg/125px-Rotation_by_pi_over_6.svg.png" data-width="125" data-height="125" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Rotation_by_pi_over_6.svg/188px-Rotation_by_pi_over_6.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Rotation_by_pi_over_6.svg/250px-Rotation_by_pi_over_6.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p>Under the <a href="/wiki/Bijection" title="Bijection">1-to-1 correspondence</a> between matrices and linear maps, matrix multiplication corresponds to <a href="/wiki/Function_composition" title="Function composition">composition</a> of maps:<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> if a <span class="texhtml mvar" style="font-style:italic;">k</span>-by-<span class="texhtml mvar" style="font-style:italic;">m</span> matrix <span class="texhtml"><b>B</b></span> represents another linear map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g:\mathbb {R} ^{m}\to \mathbb {R} ^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g:\mathbb {R} ^{m}\to \mathbb {R} ^{k}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccc4b5d55e98cf86ea55aa1a57e470fc6b3076fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.787ex; height:3.009ex;" alt="{\displaystyle g:\mathbb {R} ^{m}\to \mathbb {R} ^{k}}"></noscript><span class="lazy-image-placeholder" style="width: 12.787ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccc4b5d55e98cf86ea55aa1a57e470fc6b3076fe" data-alt="{\displaystyle g:\mathbb {R} ^{m}\to \mathbb {R} ^{k}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, then the composition <span class="texhtml"><i>g</i> ∘ <i>f</i></span> is represented by <span class="texhtml"><b>BA</b></span> since <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (g\circ f)({\mathbf {x}})=g(f({\mathbf {x}}))=g({\mathbf {Ax}})={\mathbf {B}}({\mathbf {Ax}})=({\mathbf {BA}}){\mathbf {x}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>g</mi> <mo>∘<!-- ∘ --></mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (g\circ f)({\mathbf {x}})=g(f({\mathbf {x}}))=g({\mathbf {Ax}})={\mathbf {B}}({\mathbf {Ax}})=({\mathbf {BA}}){\mathbf {x}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7449df2e95a0fe52fd087e3f8d3b32e09606c338" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.721ex; height:2.843ex;" alt="{\displaystyle (g\circ f)({\mathbf {x}})=g(f({\mathbf {x}}))=g({\mathbf {Ax}})={\mathbf {B}}({\mathbf {Ax}})=({\mathbf {BA}}){\mathbf {x}}.}"></noscript><span class="lazy-image-placeholder" style="width: 50.721ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7449df2e95a0fe52fd087e3f8d3b32e09606c338" data-alt="{\displaystyle (g\circ f)({\mathbf {x}})=g(f({\mathbf {x}}))=g({\mathbf {Ax}})={\mathbf {B}}({\mathbf {Ax}})=({\mathbf {BA}}){\mathbf {x}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>The last equality follows from the above-mentioned associativity of matrix multiplication. </p><p>The <a href="/wiki/Rank_of_a_matrix" class="mw-redirect" title="Rank of a matrix">rank of a matrix</a> <span class="texhtml"><b>A</b></span> is the maximum number of <a href="/wiki/Linear_independence" title="Linear independence">linearly independent</a> row vectors of the matrix, which is the same as the maximum number of linearly independent column vectors.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> Equivalently it is the <a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">dimension</a> of the <a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a> of the linear map represented by <span class="texhtml"><b>A</b></span>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Rank%E2%80%93nullity_theorem" title="Rank–nullity theorem">rank–nullity theorem</a> states that the dimension of the <a href="/wiki/Kernel_(matrix)" class="mw-redirect" title="Kernel (matrix)">kernel</a> of a matrix plus the rank equals the number of columns of the matrix.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Square_matrix">Square matrix</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=11" title="Edit section: Square matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Square_matrix" title="Square matrix">Square matrix</a></div> <p>A <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> is a matrix with the same number of rows and columns.<sup id="cite_ref-:4_5-1" class="reference"><a href="#cite_note-:4-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> An <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix is known as a square matrix of order <span class="texhtml mvar" style="font-style:italic;">n</span>. Any two square matrices of the same order can be added and multiplied. The entries <span class="texhtml mvar" style="font-style:italic;">a<sub>ii</sub></span> form the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom right corner of the matrix. </p> <div class="mw-heading mw-heading3"><h3 id="Main_types">Main types</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=12" title="Edit section: Main types" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <dl><dd><table class="wikitable" style="float:right; margin:0ex 0ex 2ex 2ex;"> <tbody><tr> <th>Name</th> <th>Example with <span class="texhtml"><i>n</i> = 3</span> </th></tr> <tr> <td><a href="/wiki/Diagonal_matrix" title="Diagonal matrix">Diagonal matrix</a></td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\\\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58c1cbd586cf9fd90a642b4a7ca5e78e92418557" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:17.815ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\\\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.815ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58c1cbd586cf9fd90a642b4a7ca5e78e92418557" data-alt="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\\\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><a href="/wiki/Lower_triangular_matrix" class="mw-redirect" title="Lower triangular matrix">Lower triangular matrix</a></td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\\\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0cfe35165701bd0692e6063e5fca0c636b5b905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:17.815ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\\\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.815ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0cfe35165701bd0692e6063e5fca0c636b5b905" data-alt="{\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\\\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><a href="/wiki/Upper_triangular_matrix" class="mw-redirect" title="Upper triangular matrix">Upper triangular matrix</a></td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\\\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a33db4eee227aa187ac0a47dfbe1079336bcae86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:17.815ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\\\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.815ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a33db4eee227aa187ac0a47dfbe1079336bcae86" data-alt="{\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\\\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Diagonal_and_triangular_matrix">Diagonal and triangular matrix</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=13" title="Edit section: Diagonal and triangular matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>If all entries of <span class="texhtml"><b>A</b></span> below the main diagonal are zero, <span class="texhtml"><b>A</b></span> is called an <i>upper <a href="/wiki/Triangular_matrix" title="Triangular matrix">triangular matrix</a></i>. Similarly, if all entries of <span class="texhtml"><b>A</b></span> above the main diagonal are zero, <span class="texhtml"><b>A</b></span> is called a <i>lower triangular matrix</i>. If all entries outside the main diagonal are zero, <span class="texhtml"><b>A</b></span> is called a <a href="/wiki/Diagonal_matrix" title="Diagonal matrix">diagonal matrix</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Identity_matrix">Identity matrix</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=14" title="Edit section: Identity matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Identity_matrix" title="Identity matrix">Identity matrix</a></div> <p>The <i>identity matrix</i> <span class="texhtml"><b>I</b><sub><i>n</i></sub></span> of size <span class="texhtml mvar" style="font-style:italic;">n</span> is the <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix in which all the elements on the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> are equal to 1 and all other elements are equal to 0, for example, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {I} _{1}&={\begin{bmatrix}1\end{bmatrix}},\\[4pt]\mathbf {I} _{2}&={\begin{bmatrix}1&0\\0&1\end{bmatrix}},\\[4pt]\vdots &\\[4pt]\mathbf {I} _{n}&={\begin{bmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{bmatrix}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd></mtd> </mtr> <mtr> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋱<!-- ⋱ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mathbf {I} _{1}&={\begin{bmatrix}1\end{bmatrix}},\\[4pt]\mathbf {I} _{2}&={\begin{bmatrix}1&0\\0&1\end{bmatrix}},\\[4pt]\vdots &\\[4pt]\mathbf {I} _{n}&={\begin{bmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{bmatrix}}\end{aligned}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f691509cf9deb5416f60f917b8dfc543b1c6d3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.671ex; width:23.368ex; height:30.509ex;" alt="{\displaystyle {\begin{aligned}\mathbf {I} _{1}&={\begin{bmatrix}1\end{bmatrix}},\\[4pt]\mathbf {I} _{2}&={\begin{bmatrix}1&0\\0&1\end{bmatrix}},\\[4pt]\vdots &\\[4pt]\mathbf {I} _{n}&={\begin{bmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{bmatrix}}\end{aligned}}}"></noscript><span class="lazy-image-placeholder" style="width: 23.368ex;height: 30.509ex;vertical-align: -14.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f691509cf9deb5416f60f917b8dfc543b1c6d3" data-alt="{\displaystyle {\begin{aligned}\mathbf {I} _{1}&={\begin{bmatrix}1\end{bmatrix}},\\[4pt]\mathbf {I} _{2}&={\begin{bmatrix}1&0\\0&1\end{bmatrix}},\\[4pt]\vdots &\\[4pt]\mathbf {I} _{n}&={\begin{bmatrix}1&0&\cdots &0\\0&1&\cdots &0\\\vdots &\vdots &\ddots &\vdots \\0&0&\cdots &1\end{bmatrix}}\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> It is a square matrix of order <span class="texhtml mvar" style="font-style:italic;">n</span>, and also a special kind of <a href="/wiki/Diagonal_matrix" title="Diagonal matrix">diagonal matrix</a>. It is called an identity matrix because multiplication with it leaves a matrix unchanged: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {AI}}_{n}={\mathbf {I}}_{m}{\mathbf {A}}={\mathbf {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {AI}}_{n}={\mathbf {I}}_{m}{\mathbf {A}}={\mathbf {A}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9f23e8b30561da7e7566d0b4b6f6e2e3ea424d6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.177ex; height:2.509ex;" alt="{\displaystyle {\mathbf {AI}}_{n}={\mathbf {I}}_{m}{\mathbf {A}}={\mathbf {A}}}"></noscript><span class="lazy-image-placeholder" style="width: 17.177ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9f23e8b30561da7e7566d0b4b6f6e2e3ea424d6" data-alt="{\displaystyle {\mathbf {AI}}_{n}={\mathbf {I}}_{m}{\mathbf {A}}={\mathbf {A}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> for any <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrix <span class="texhtml"><b>A</b></span>. </p><p>A nonzero scalar multiple of an identity matrix is called a <i>scalar</i> matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group of nonzero elements of the field. </p> <div class="mw-heading mw-heading4"><h4 id="Symmetric_or_skew-symmetric_matrix">Symmetric or skew-symmetric matrix</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=15" title="Edit section: Symmetric or skew-symmetric matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A square matrix <span class="texhtml"><b>A</b></span> that is equal to its transpose, that is, <span class="texhtml"><b>A</b> = <b>A</b><sup>T</sup></span>, is a <a href="/wiki/Symmetric_matrix" title="Symmetric matrix">symmetric matrix</a>. If instead, <span class="texhtml"><b>A</b></span> is equal to the negative of its transpose, that is, <span class="texhtml"><b>A</b> = −<b>A</b><sup>T</sup></span>, then <span class="texhtml"><b>A</b></span> is a <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric matrix</a>. In complex matrices, symmetry is often replaced by the concept of <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrices</a>, which satisfies <span class="texhtml"><b>A</b><sup>∗</sup> = <b>A</b></span>, where the star or <a href="/wiki/Asterisk" title="Asterisk">asterisk</a> denotes the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a> of the matrix, that is, the transpose of the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> of <span class="texhtml"><b>A</b></span>. </p><p>By the <a href="/wiki/Spectral_theorem" title="Spectral theorem">spectral theorem</a>, real symmetric matrices and complex Hermitian matrices have an <a href="/wiki/Eigenbasis" class="mw-redirect" title="Eigenbasis">eigenbasis</a>; that is, every vector is expressible as a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of eigenvectors. In both cases, all eigenvalues are real.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> This theorem can be generalized to infinite-dimensional situations related to matrices with infinitely many rows and columns, see <a href="#Infinite_matrices">below</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Invertible_matrix_and_its_inverse">Invertible matrix and its inverse</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=16" title="Edit section: Invertible matrix and its inverse" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A square matrix <span class="texhtml"><b>A</b></span> is called <i><a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible</a></i> or <i>non-singular</i> if there exists a matrix <span class="texhtml"><b>B</b></span> such that<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {AB}}={\mathbf {BA}}={\mathbf {I}}_{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {AB}}={\mathbf {BA}}={\mathbf {I}}_{n},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce3183e5c83ae58ed74e6dea8bf59174800f86f2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.917ex; height:2.509ex;" alt="{\displaystyle {\mathbf {AB}}={\mathbf {BA}}={\mathbf {I}}_{n},}"></noscript><span class="lazy-image-placeholder" style="width: 16.917ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce3183e5c83ae58ed74e6dea8bf59174800f86f2" data-alt="{\displaystyle {\mathbf {AB}}={\mathbf {BA}}={\mathbf {I}}_{n},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> where <span class="texhtml"><b>I</b><sub><i>n</i></sub></span> is the <span class="texhtml"><i>n</i>×<i>n</i></span> <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> with 1s on the <a href="/wiki/Main_diagonal" title="Main diagonal">main diagonal</a> and 0s elsewhere. If <span class="texhtml"><b>B</b></span> exists, it is unique and is called the <i><a href="/wiki/Invertible_matrix" title="Invertible matrix">inverse matrix</a></i> of <span class="texhtml"><b>A</b></span>, denoted <span class="texhtml"><b>A</b><sup>−1</sup></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Definite_matrix">Definite matrix</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=17" title="Edit section: Definite matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <table class="wikitable" style="float:right; text-align:center; margin:0ex 0ex 2ex 2ex;"> <tbody><tr> <th><a href="/wiki/Positive_definite_matrix" class="mw-redirect" title="Positive definite matrix">Positive definite matrix</a></th> <th><a href="/wiki/Indefinite_matrix" class="mw-redirect" title="Indefinite matrix">Indefinite matrix</a> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&1\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&1\\\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6b3f39260b6d0dee463e5765d97348abe2433c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:8.605ex; height:7.509ex;" alt="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&1\\\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 8.605ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f6b3f39260b6d0dee463e5765d97348abe2433c" data-alt="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&1\\\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&-{\frac {1}{4}}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&-{\frac {1}{4}}\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdcf7cd95e30f375ac7f0bf077507688e78a758a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:10.909ex; height:7.509ex;" alt="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&-{\frac {1}{4}}\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 10.909ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdcf7cd95e30f375ac7f0bf077507688e78a758a" data-alt="{\displaystyle {\begin{bmatrix}{\frac {1}{4}}&0\\0&-{\frac {1}{4}}\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}+y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}+y^{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da7a2535f99b29a4deb6ec7f4e3e1d3494f6e12d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:19.703ex; height:5.176ex;" alt="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}+y^{2}}"></noscript><span class="lazy-image-placeholder" style="width: 19.703ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da7a2535f99b29a4deb6ec7f4e3e1d3494f6e12d" data-alt="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}+y^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}-{\frac {1}{4}}y^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}-{\frac {1}{4}}y^{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8556380d0b0d296c6ac1b3f56b5730429eb04113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.701ex; height:5.176ex;" alt="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}-{\frac {1}{4}}y^{2}}"></noscript><span class="lazy-image-placeholder" style="width: 21.701ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8556380d0b0d296c6ac1b3f56b5730429eb04113" data-alt="{\displaystyle Q(x,y)={\frac {1}{4}}x^{2}-{\frac {1}{4}}y^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Ellipse_in_coordinate_system_with_semi-axes_labelled.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Ellipse_in_coordinate_system_with_semi-axes_labelled.svg/150px-Ellipse_in_coordinate_system_with_semi-axes_labelled.svg.png" decoding="async" width="150" height="100" class="mw-file-element" data-file-width="512" data-file-height="341"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 100px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Ellipse_in_coordinate_system_with_semi-axes_labelled.svg/150px-Ellipse_in_coordinate_system_with_semi-axes_labelled.svg.png" data-width="150" data-height="100" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Ellipse_in_coordinate_system_with_semi-axes_labelled.svg/225px-Ellipse_in_coordinate_system_with_semi-axes_labelled.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Ellipse_in_coordinate_system_with_semi-axes_labelled.svg/300px-Ellipse_in_coordinate_system_with_semi-axes_labelled.svg.png 2x" data-class="mw-file-element"> </span></a></span> <br>Points such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Q(x,y)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Q(x,y)=1}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a7b404d61be48d4968c117c8cefaf259e838dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.428ex; height:2.843ex;" alt="{\textstyle Q(x,y)=1}"></noscript><span class="lazy-image-placeholder" style="width: 11.428ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a7b404d61be48d4968c117c8cefaf259e838dd" data-alt="{\textstyle Q(x,y)=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> <br> (<a href="/wiki/Ellipse" title="Ellipse">Ellipse</a>) </td> <td><span typeof="mw:File"><a href="/wiki/File:Hyperbola2_SVG.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Hyperbola2_SVG.svg/150px-Hyperbola2_SVG.svg.png" decoding="async" width="150" height="150" class="mw-file-element" data-file-width="512" data-file-height="512"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 150px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Hyperbola2_SVG.svg/150px-Hyperbola2_SVG.svg.png" data-width="150" data-height="150" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Hyperbola2_SVG.svg/225px-Hyperbola2_SVG.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/Hyperbola2_SVG.svg/300px-Hyperbola2_SVG.svg.png 2x" data-class="mw-file-element"> </span></a></span> <br> Points such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Q(x,y)=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Q(x,y)=1}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a7b404d61be48d4968c117c8cefaf259e838dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.428ex; height:2.843ex;" alt="{\textstyle Q(x,y)=1}"></noscript><span class="lazy-image-placeholder" style="width: 11.428ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73a7b404d61be48d4968c117c8cefaf259e838dd" data-alt="{\textstyle Q(x,y)=1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><br> (<a href="/wiki/Hyperbola" title="Hyperbola">Hyperbola</a>) </td></tr></tbody></table> <p>A symmetric real matrix <span class="texhtml"><b>A</b></span> is called <a href="/wiki/Positive-definite_matrix" class="mw-redirect" title="Positive-definite matrix"><i>positive-definite</i></a> if the associated <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic form</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f({\mathbf {x}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ax}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">x</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f({\mathbf {x}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ax}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2424901a8cf7b01fee4adbba41b4497930367b08" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.858ex; height:3.176ex;" alt="{\displaystyle f({\mathbf {x}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ax}}}"></noscript><span class="lazy-image-placeholder" style="width: 13.858ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2424901a8cf7b01fee4adbba41b4497930367b08" data-alt="{\displaystyle f({\mathbf {x}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ax}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> has a positive value for every nonzero vector <span class="texhtml"><b>x</b></span> in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></noscript><span class="lazy-image-placeholder" style="width: 3.543ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" data-alt="{\displaystyle \mathbb {R} ^{n}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> If <span class="texhtml"><i>f</i> (<b>x</b>)</span> only yields negative values then <span class="texhtml"><b>A</b></span> is <a href="/wiki/Definiteness_of_a_matrix#Negative_definite" class="mw-redirect" title="Definiteness of a matrix"><i>negative-definite</i></a>; if <span class="texhtml mvar" style="font-style:italic;">f</span> does produce both negative and positive values then <span class="texhtml"><b>A</b></span> is <a href="/wiki/Definiteness_of_a_matrix#Indefinite" class="mw-redirect" title="Definiteness of a matrix"><i> indefinite</i></a>.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> If the quadratic form <span class="texhtml mvar" style="font-style:italic;">f</span> yields only non-negative values (positive or zero), the symmetric matrix is called <i>positive-semidefinite</i> (or if only non-positive values, then negative-semidefinite); hence the matrix is indefinite precisely when it is neither positive-semidefinite nor negative-semidefinite. </p><p>A symmetric matrix is positive-definite if and only if all its eigenvalues are positive, that is, the matrix is positive-semidefinite and it is invertible.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> The table at the right shows two possibilities for 2-by-2 matrices. </p><p>Allowing as input two different vectors instead yields the <a href="/wiki/Bilinear_form" title="Bilinear form">bilinear form</a> associated to <span class="texhtml"><b>A</b></span>:<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{\mathbf {A}}({\mathbf {x}},{\mathbf {y}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ay}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">y</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{\mathbf {A}}({\mathbf {x}},{\mathbf {y}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ay}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a051ec59e1d36edd416b57f306d96b54811d40e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.095ex; height:3.176ex;" alt="{\displaystyle B_{\mathbf {A}}({\mathbf {x}},{\mathbf {y}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ay}}.}"></noscript><span class="lazy-image-placeholder" style="width: 19.095ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a051ec59e1d36edd416b57f306d96b54811d40e" data-alt="{\displaystyle B_{\mathbf {A}}({\mathbf {x}},{\mathbf {y}})={\mathbf {x}}^{\rm {T}}{\mathbf {Ay}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>In the case of complex matrices, the same terminology and result apply, with <i>symmetric matrix</i>, <i>quadratic form</i>, <i>bilinear form</i>, and <i>transpose</i> <span class="texhtml"><b>x</b><sup>T</sup></span> replaced respectively by <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a>, <a href="/wiki/Hermitian_form" class="mw-redirect" title="Hermitian form">Hermitian form</a>, <a href="/wiki/Sesquilinear_form" title="Sesquilinear form">sesquilinear form</a>, and <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a> <span class="texhtml"><b>x</b><sup>H</sup></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Orthogonal_matrix">Orthogonal matrix</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=18" title="Edit section: Orthogonal matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal matrix</a></div> <p>An <i>orthogonal matrix</i> is a square matrix with <a href="/wiki/Real_number" title="Real number">real</a> entries whose columns and rows are <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a> <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a> (that is, <a href="/wiki/Orthonormality" title="Orthonormality">orthonormal</a> vectors). Equivalently, a matrix <span class="texhtml"><b>A</b></span> is orthogonal if its <a href="/wiki/Transpose" title="Transpose">transpose</a> is equal to its <a href="/wiki/Invertible_matrix" title="Invertible matrix">inverse</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{\mathrm {T} }=\mathbf {A} ^{-1},\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mspace width="thinmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{\mathrm {T} }=\mathbf {A} ^{-1},\,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f07fbcf3f405d35734fe7d362ec752cec6582b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.923ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} ^{\mathrm {T} }=\mathbf {A} ^{-1},\,}"></noscript><span class="lazy-image-placeholder" style="width: 11.923ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f07fbcf3f405d35734fe7d362ec752cec6582b" data-alt="{\displaystyle \mathbf {A} ^{\mathrm {T} }=\mathbf {A} ^{-1},\,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>which entails </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ^{\mathrm {T} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {T} }=\mathbf {I} _{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ^{\mathrm {T} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {T} }=\mathbf {I} _{n},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e78d5149a8e1b1ad0708fa65a56aa43879587d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.992ex; height:3.009ex;" alt="{\displaystyle \mathbf {A} ^{\mathrm {T} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {T} }=\mathbf {I} _{n},}"></noscript><span class="lazy-image-placeholder" style="width: 19.992ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e78d5149a8e1b1ad0708fa65a56aa43879587d0" data-alt="{\displaystyle \mathbf {A} ^{\mathrm {T} }\mathbf {A} =\mathbf {A} \mathbf {A} ^{\mathrm {T} }=\mathbf {I} _{n},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>where <span class="texhtml"><b>I</b><sub><i>n</i></sub></span> is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> of size <span class="texhtml mvar" style="font-style:italic;">n</span>. </p><p>An orthogonal matrix <span class="texhtml"><b>A</b></span> is necessarily <a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible</a> (with inverse <span class="texhtml"><b>A</b><sup>−1</sup> = <b>A</b><sup>T</sup></span>), <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary</a> (<span class="texhtml"><b>A</b><sup>−1</sup> = <b>A</b>*</span>), and <a href="/wiki/Normal_matrix" title="Normal matrix">normal</a> (<span class="texhtml"><b>A</b>*<b>A</b> = <b>AA</b>*</span>). The <a href="/wiki/Determinant" title="Determinant">determinant</a> of any orthogonal matrix is either <span class="texhtml">+1</span> or <span class="texhtml">−1</span>. A <i>special orthogonal matrix</i> is an orthogonal matrix with <a href="/wiki/Determinant" title="Determinant">determinant</a> +1. As a <a href="/wiki/Linear_transformation" class="mw-redirect" title="Linear transformation">linear transformation</a>, every orthogonal matrix with determinant <span class="texhtml">+1</span> is a pure <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotation</a> without reflection, i.e., the transformation preserves the orientation of the transformed structure, while every orthogonal matrix with determinant <span class="texhtml">-1</span> reverses the orientation, i.e., is a composition of a pure <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">reflection</a> and a (possibly null) rotation. The identity matrices have determinant <span class="texhtml">1</span> and are pure rotations by an angle zero. </p><p>The <a href="/wiki/Complex_number" title="Complex number">complex</a> analog of an orthogonal matrix is a <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrix</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Main_operations">Main operations</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=19" title="Edit section: Main operations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <div class="mw-heading mw-heading4"><h4 id="Trace">Trace</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=20" title="Edit section: Trace" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The <a href="/wiki/Trace_of_a_matrix" class="mw-redirect" title="Trace of a matrix">trace</a>, <span class="texhtml">tr(<b>A</b>)</span> of a square matrix <span class="texhtml"><b>A</b></span> is the sum of its diagonal entries. While matrix multiplication is not commutative as mentioned <a href="#_noncommutative">above</a>, the trace of the product of two matrices is independent of the order of the factors: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\operatorname {tr} (\mathbf {BA} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {AB} )=\operatorname {tr} (\mathbf {BA} ).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348b05db9499e85326f9e41f5bcb6cf7eb053350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.837ex; height:2.843ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\operatorname {tr} (\mathbf {BA} ).}"></noscript><span class="lazy-image-placeholder" style="width: 18.837ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/348b05db9499e85326f9e41f5bcb6cf7eb053350" data-alt="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\operatorname {tr} (\mathbf {BA} ).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>This is immediate from the definition of matrix multiplication: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\operatorname {tr} (\mathbf {BA} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> <mi mathvariant="bold">A</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} (\mathbf {AB} )=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\operatorname {tr} (\mathbf {BA} ).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0caa4f820bb74d566e181ba5cf3d09181a2e9cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:34.602ex; height:7.176ex;" alt="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\operatorname {tr} (\mathbf {BA} ).}"></noscript><span class="lazy-image-placeholder" style="width: 34.602ex;height: 7.176ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0caa4f820bb74d566e181ba5cf3d09181a2e9cb8" data-alt="{\displaystyle \operatorname {tr} (\mathbf {AB} )=\sum _{i=1}^{m}\sum _{j=1}^{n}a_{ij}b_{ji}=\operatorname {tr} (\mathbf {BA} ).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>It follows that the trace of the product of more than two matrices is independent of <a href="/wiki/Cyclic_permutation" title="Cyclic permutation">cyclic permutations</a> of the matrices, however, this does not in general apply for arbitrary permutations (for example, <span class="texhtml">tr(<b>ABC</b>) ≠ tr(<b>BAC</b>)</span>, in general). Also, the trace of a matrix is equal to that of its transpose, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {tr} ({\mathbf {A}})=\operatorname {tr} ({\mathbf {A}}^{\rm {T}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>tr</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {tr} ({\mathbf {A}})=\operatorname {tr} ({\mathbf {A}}^{\rm {T}}).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06c85c23ef3930b8eb98802873e47d727ad1ec49" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.454ex; height:3.176ex;" alt="{\displaystyle \operatorname {tr} ({\mathbf {A}})=\operatorname {tr} ({\mathbf {A}}^{\rm {T}}).}"></noscript><span class="lazy-image-placeholder" style="width: 16.454ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06c85c23ef3930b8eb98802873e47d727ad1ec49" data-alt="{\displaystyle \operatorname {tr} ({\mathbf {A}})=\operatorname {tr} ({\mathbf {A}}^{\rm {T}}).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p> <div class="mw-heading mw-heading4"><h4 id="Determinant">Determinant</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=21" title="Edit section: Determinant" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Determinant" title="Determinant">Determinant</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Determinant_example.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Determinant_example.svg/300px-Determinant_example.svg.png" decoding="async" width="300" height="126" class="mw-file-element" data-file-width="512" data-file-height="215"></noscript><span class="lazy-image-placeholder" style="width: 300px;height: 126px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Determinant_example.svg/300px-Determinant_example.svg.png" data-width="300" data-height="126" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Determinant_example.svg/450px-Determinant_example.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Determinant_example.svg/600px-Determinant_example.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>A linear transformation on <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></noscript><span class="lazy-image-placeholder" style="width: 2.732ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" data-alt="{\displaystyle \mathbb {R} ^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> given by the indicated matrix. The determinant of this matrix is −1, as the area of the green parallelogram at the right is 1, but the map reverses the <a href="/wiki/Orientation_(mathematics)" class="mw-redirect" title="Orientation (mathematics)">orientation</a>, since it turns the counterclockwise orientation of the vectors to a clockwise one.</figcaption></figure> <p>The <i>determinant</i> of a square matrix <span class="texhtml"><b>A</b></span> (denoted <span class="texhtml">det(<b>A</b>)</span> or <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><b>A</b></span>|</span>) is a number encoding certain properties of the matrix. A matrix is invertible <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> its determinant is nonzero. Its <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> equals the area (in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{2}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{2}}"></noscript><span class="lazy-image-placeholder" style="width: 2.732ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e150115ab9f63023215109595b76686a1ff890fd" data-alt="{\displaystyle \mathbb {R} ^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span>) or volume (in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{3}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{3}}"></noscript><span class="lazy-image-placeholder" style="width: 2.732ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936ddf584f8f3dd2a0ed08917001b7a404c10b5" data-alt="{\displaystyle \mathbb {R} ^{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span>) of the image of the unit square (or cube), while its sign corresponds to the orientation of the corresponding linear map: the determinant is positive if and only if the orientation is preserved. </p><p>The determinant of 2-by-2 matrices is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det {\begin{bmatrix}a&b\\c&d\end{bmatrix}}=ad-bc.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mi>d</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>a</mi> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det {\begin{bmatrix}a&b\\c&d\end{bmatrix}}=ad-bc.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8138b2141d7b9406cebd3eb82b3cf05b238ca851" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.627ex; height:6.176ex;" alt="{\displaystyle \det {\begin{bmatrix}a&b\\c&d\end{bmatrix}}=ad-bc.}"></noscript><span class="lazy-image-placeholder" style="width: 22.627ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8138b2141d7b9406cebd3eb82b3cf05b238ca851" data-alt="{\displaystyle \det {\begin{bmatrix}a&b\\c&d\end{bmatrix}}=ad-bc.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-:3_33-0" class="reference"><a href="#cite_note-:3-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The determinant of 3-by-3 matrices involves 6 terms (<a href="/wiki/Rule_of_Sarrus" title="Rule of Sarrus">rule of Sarrus</a>). The more lengthy <a href="/wiki/Leibniz_formula_for_determinants" title="Leibniz formula for determinants">Leibniz formula</a> generalizes these two formulae to all dimensions.<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p><p>The determinant of a product of square matrices equals the product of their determinants: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det({\mathbf {AB}})=\det({\mathbf {A}})\cdot \det({\mathbf {B}}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det({\mathbf {AB}})=\det({\mathbf {A}})\cdot \det({\mathbf {B}}),}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41efa7afe8f21c3ccbd03f26ae04e75dd8970157" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.382ex; height:2.843ex;" alt="{\displaystyle \det({\mathbf {AB}})=\det({\mathbf {A}})\cdot \det({\mathbf {B}}),}"></noscript><span class="lazy-image-placeholder" style="width: 28.382ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41efa7afe8f21c3ccbd03f26ae04e75dd8970157" data-alt="{\displaystyle \det({\mathbf {AB}})=\det({\mathbf {A}})\cdot \det({\mathbf {B}}),}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> or using alternate notation:<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\mathbf {AB}}|=|{\mathbf {A}}|\cdot |{\mathbf {B}}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\mathbf {AB}}|=|{\mathbf {A}}|\cdot |{\mathbf {B}}|.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2c1367abab8f34a3bcea0c4eb1c3751555af3c1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.147ex; height:2.843ex;" alt="{\displaystyle |{\mathbf {AB}}|=|{\mathbf {A}}|\cdot |{\mathbf {B}}|.}"></noscript><span class="lazy-image-placeholder" style="width: 17.147ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2c1367abab8f34a3bcea0c4eb1c3751555af3c1" data-alt="{\displaystyle |{\mathbf {AB}}|=|{\mathbf {A}}|\cdot |{\mathbf {B}}|.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> Adding a multiple of any row to another row, or a multiple of any column to another column does not change the determinant. Interchanging two rows or two columns affects the determinant by multiplying it by −1.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> Using these operations, any matrix can be transformed to a lower (or upper) triangular matrix, and for such matrices, the determinant equals the product of the entries on the main diagonal; this provides a method to calculate the determinant of any matrix. Finally, the <a href="/wiki/Laplace_expansion" title="Laplace expansion">Laplace expansion</a> expresses the determinant in terms of <a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">minors</a>, that is, determinants of smaller matrices.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> This expansion can be used for a recursive definition of determinants (taking as starting case the determinant of a 1-by-1 matrix, which is its unique entry, or even the determinant of a 0-by-0 matrix, which is 1), that can be seen to be equivalent to the Leibniz formula. Determinants can be used to solve <a href="/wiki/Linear_system" title="Linear system">linear systems</a> using <a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a>, where the division of the determinants of two related square matrices equates to the value of each of the system's variables.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Eigenvalues_and_eigenvectors">Eigenvalues and eigenvectors</h4><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=22" title="Edit section: Eigenvalues and eigenvectors" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Eigenvalue,_eigenvector_and_eigenspace" class="mw-redirect" title="Eigenvalue, eigenvector and eigenspace">Eigenvalues and eigenvectors</a></div> <p>A number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f801b46dadd4b4d0ba4c6592b232053bd79e080b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\textstyle \lambda }"></noscript><span class="lazy-image-placeholder" style="width: 1.355ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f801b46dadd4b4d0ba4c6592b232053bd79e080b" data-alt="{\textstyle \lambda }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and a non-zero vector <span class="texhtml"><b>v</b></span> satisfying </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} \mathbf {v} =\lambda \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} \mathbf {v} =\lambda \mathbf {v} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb4bca75ce898b48e51ff4f79b0a8cc3c53afdee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.295ex; height:2.176ex;" alt="{\displaystyle \mathbf {A} \mathbf {v} =\lambda \mathbf {v} }"></noscript><span class="lazy-image-placeholder" style="width: 9.295ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb4bca75ce898b48e51ff4f79b0a8cc3c53afdee" data-alt="{\displaystyle \mathbf {A} \mathbf {v} =\lambda \mathbf {v} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>are called an <i>eigenvalue</i> and an <i>eigenvector</i> of <span class="texhtml"><b>A</b></span>, respectively.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> The number <span class="texhtml mvar" style="font-style:italic;">λ</span> is an eigenvalue of an <span class="texhtml"><i>n</i>×<i>n</i></span>-matrix <span class="texhtml"><b>A</b></span> if and only if <span class="texhtml">(<b>A</b> − λ<b>I</b><sub><i>n</i></sub>)</span> is not invertible, which is <a href="/wiki/Logical_equivalence" title="Logical equivalence">equivalent</a> to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(\mathbf {A} -\lambda \mathbf {I} )=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(\mathbf {A} -\lambda \mathbf {I} )=0.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2df8eef1d708ca2a7cfbc4fa8fc10088ddc2b26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.176ex; height:2.843ex;" alt="{\displaystyle \det(\mathbf {A} -\lambda \mathbf {I} )=0.}"></noscript><span class="lazy-image-placeholder" style="width: 17.176ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2df8eef1d708ca2a7cfbc4fa8fc10088ddc2b26" data-alt="{\displaystyle \det(\mathbf {A} -\lambda \mathbf {I} )=0.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The polynomial <span class="texhtml"><i>p</i><sub><b>A</b></sub></span> in an <a href="/wiki/Indeterminate_(variable)" title="Indeterminate (variable)">indeterminate</a> <span class="texhtml mvar" style="font-style:italic;">X</span> given by evaluation of the determinant <span class="texhtml">det(<i>X</i> <b>I</b><sub><i>n</i></sub> − <b>A</b>)</span> is called the <a href="/wiki/Characteristic_polynomial" title="Characteristic polynomial">characteristic polynomial</a> of <span class="texhtml"><b>A</b></span>. It is a <a href="/wiki/Monic_polynomial" title="Monic polynomial">monic polynomial</a> of <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a> <span class="texhtml mvar" style="font-style:italic;">n</span>. Therefore the polynomial equation <span class="texhtml"><i>p</i><sub><b>A</b></sub>(λ) = 0</span> has at most <span class="texhtml mvar" style="font-style:italic;">n</span> different solutions, that is, eigenvalues of the matrix.<sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> They may be complex even if the entries of <span class="texhtml"><b>A</b></span> are real. According to the <a href="/wiki/Cayley%E2%80%93Hamilton_theorem" title="Cayley–Hamilton theorem">Cayley–Hamilton theorem</a>, <span class="texhtml"><i>p</i><sub><b>A</b></sub>(<b>A</b>) = <b>0</b></span>, that is, the result of substituting the matrix itself into its characteristic polynomial yields the <a href="/wiki/Zero_matrix" title="Zero matrix">zero matrix</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Computational_aspects">Computational aspects</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=23" title="Edit section: Computational aspects" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>Matrix calculations can be often performed with different techniques. Many problems can be solved by both direct algorithms and iterative approaches. For example, the eigenvectors of a square matrix can be obtained by finding a <a href="/wiki/Sequence_(mathematics)" class="mw-redirect" title="Sequence (mathematics)">sequence</a> of vectors <span class="texhtml"><b>x</b><sub><i>n</i></sub></span> <a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">converging</a> to an eigenvector when <span class="texhtml mvar" style="font-style:italic;">n</span> tends to <a href="/wiki/Infinity" title="Infinity">infinity</a>.<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> </p><p>To choose the most appropriate algorithm for each specific problem, it is important to determine both the effectiveness and precision of all the available algorithms. The domain studying these matters is called <a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">numerical linear algebra</a>.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> As with other numerical situations, two main aspects are the <a href="/wiki/Complexity_analysis" class="mw-redirect" title="Complexity analysis">complexity</a> of algorithms and their <a href="/wiki/Numerical_stability" title="Numerical stability">numerical stability</a>. </p><p>Determining the complexity of an algorithm means finding <a href="/wiki/Upper_bound" class="mw-redirect" title="Upper bound">upper bounds</a> or estimates of how many elementary operations such as additions and multiplications of scalars are necessary to perform some algorithm, for example, <a href="/wiki/Matrix_multiplication_algorithm" title="Matrix multiplication algorithm">multiplication of matrices</a>. Calculating the matrix product of two <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices using the definition given above needs <span class="texhtml"><i>n</i><sup>3</sup></span> multiplications, since for any of the <span class="texhtml"><i>n</i><sup>2</sup></span> entries of the product, <span class="texhtml mvar" style="font-style:italic;">n</span> multiplications are necessary. The <a href="/wiki/Strassen_algorithm" title="Strassen algorithm">Strassen algorithm</a> outperforms this "naive" algorithm; it needs only <span class="texhtml"><i>n</i><sup>2.807</sup></span> multiplications.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> A refined approach also incorporates specific features of the computing devices. </p><p>In many practical situations, additional information about the matrices involved is known. An important case is <a href="/wiki/Sparse_matrix" title="Sparse matrix">sparse matrices</a>, that is, matrices most of whose entries are zero. There are specifically adapted algorithms for, say, solving linear systems <span class="texhtml"><b>Ax</b> = <b>b</b></span> for sparse matrices <span class="texhtml"><b>A</b></span>, such as the <a href="/wiki/Conjugate_gradient_method" title="Conjugate gradient method">conjugate gradient method</a>.<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup> </p><p>An algorithm is, roughly speaking, numerically stable if little deviations in the input values do not lead to big deviations in the result. For example, calculating the inverse of a matrix via Laplace expansion (<span class="texhtml">adj(<b>A</b>)</span> denotes the <a href="/wiki/Adjugate_matrix" title="Adjugate matrix">adjugate matrix</a> of <span class="texhtml"><b>A</b></span>) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A}}^{-1}=\operatorname {adj} ({\mathbf {A}})/\det({\mathbf {A}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>adj</mi> <mo><!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A}}^{-1}=\operatorname {adj} ({\mathbf {A}})/\det({\mathbf {A}})}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b8cc0e88357362edc4bc9e8ad9df1559a4f310" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.054ex; height:3.176ex;" alt="{\displaystyle {\mathbf {A}}^{-1}=\operatorname {adj} ({\mathbf {A}})/\det({\mathbf {A}})}"></noscript><span class="lazy-image-placeholder" style="width: 23.054ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b8cc0e88357362edc4bc9e8ad9df1559a4f310" data-alt="{\displaystyle {\mathbf {A}}^{-1}=\operatorname {adj} ({\mathbf {A}})/\det({\mathbf {A}})}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> may lead to significant rounding errors if the determinant of the matrix is very small. The <a href="/wiki/Matrix_norm" title="Matrix norm">norm of a matrix</a> can be used to capture the <a href="/wiki/Condition_number" title="Condition number">conditioning</a> of linear algebraic problems, such as computing a matrix's inverse.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p><p>Most computer <a href="/wiki/Programming_language" title="Programming language">programming languages</a> support arrays but are not designed with built-in commands for matrices. Instead, available external libraries provide matrix operations on arrays, in nearly all currently used programming languages. Matrix manipulation was among the earliest numerical applications of computers.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> The original <a href="/wiki/Dartmouth_BASIC" title="Dartmouth BASIC">Dartmouth BASIC</a> had built-in commands for matrix arithmetic on arrays from its <a href="/wiki/Dartmouth_BASIC#Second_Edition,_CARDBASIC" title="Dartmouth BASIC">second edition</a> implementation in 1964. As early as the 1970s, some engineering desktop computers such as the <a href="/wiki/HP_9830" class="mw-redirect" title="HP 9830">HP 9830</a> had <a href="/wiki/HP_9800_series#Programming" title="HP 9800 series">ROM cartridges to add BASIC commands for matrices</a>. Some computer languages such as <a href="/wiki/APL_(programming_language)" title="APL (programming language)">APL</a> were designed to manipulate matrices, and <a href="/wiki/List_of_numerical-analysis_software" title="List of numerical-analysis software">various mathematical programs</a> can be used to aid computing with matrices.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> As of 2023, most computers have some form of built-in matrix operations at a low level implementing the standard <a href="/wiki/BLAS" class="mw-redirect" title="BLAS">BLAS</a> specification, upon which most higher-level matrix and linear algebra libraries (e.g., <a href="/wiki/EISPACK" title="EISPACK">EISPACK</a>, <a href="/wiki/LINPACK" title="LINPACK">LINPACK</a>, <a href="/wiki/LAPACK" title="LAPACK">LAPACK</a>) rely. While most of these libraries require a professional level of coding, <a href="/wiki/LAPACK" title="LAPACK">LAPACK</a> can be accessed by higher-level (and user-friendly) bindings such as <a href="/wiki/NumPy" title="NumPy">NumPy</a>/<a href="/wiki/SciPy" title="SciPy">SciPy</a>, <a href="/wiki/R_(programming_language)" title="R (programming language)">R</a>, <a href="/wiki/GNU_Octave" title="GNU Octave">GNU Octave</a>, <a href="/wiki/MATLAB" title="MATLAB">MATLAB</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Decomposition">Decomposition</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=24" title="Edit section: Decomposition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main articles: <a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Matrix decomposition</a>, <a href="/wiki/Matrix_diagonalization" class="mw-redirect" title="Matrix diagonalization">Matrix diagonalization</a>, <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>, and <a href="/wiki/Bareiss_algorithm" title="Bareiss algorithm">Bareiss algorithm</a></div> <p>There are several methods to render matrices into a more easily accessible form. They are generally referred to as <i>matrix decomposition</i> or <i>matrix factorization</i> techniques. The interest of all these techniques is that they preserve certain properties of the matrices in question, such as determinant, rank, or inverse, so that these quantities can be calculated after applying the transformation, or that certain matrix operations are algorithmically easier to carry out for some types of matrices. </p><p>The <a href="/wiki/LU_decomposition" title="LU decomposition">LU decomposition</a> factors matrices as a product of lower (<span class="texhtml"><b>L</b></span>) and an upper <a href="/wiki/Triangular_matrix" title="Triangular matrix">triangular matrices</a> (<span class="texhtml"><b>U</b></span>).<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> Once this decomposition is calculated, linear systems can be solved more efficiently, by a simple technique called <a href="/wiki/Forward_substitution" class="mw-redirect" title="Forward substitution">forward and back substitution</a>. Likewise, inverses of triangular matrices are algorithmically easier to calculate. The <i>Gaussian elimination</i> is a similar algorithm; it transforms any matrix to <a href="/wiki/Row_echelon_form" title="Row echelon form">row echelon form</a>.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> Both methods proceed by multiplying the matrix by suitable <a href="/wiki/Elementary_matrix" title="Elementary matrix">elementary matrices</a>, which correspond to <a href="/wiki/Permutation_matrix" title="Permutation matrix">permuting rows or columns</a> and adding multiples of one row to another row. <a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">Singular value decomposition</a> expresses any matrix <span class="texhtml"><b>A</b></span> as a product <span class="texhtml"><b>UDV</b><sup>∗</sup></span>, where <span class="texhtml"><b>U</b></span> and <span class="texhtml"><b>V</b></span> are <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> and <span class="texhtml"><b>D</b></span> is a diagonal matrix. </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Jordan_blocks.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Jordan_blocks.svg/250px-Jordan_blocks.svg.png" decoding="async" width="250" height="233" class="mw-file-element" data-file-width="180" data-file-height="168"></noscript><span class="lazy-image-placeholder" style="width: 250px;height: 233px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Jordan_blocks.svg/250px-Jordan_blocks.svg.png" data-width="250" data-height="233" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Jordan_blocks.svg/375px-Jordan_blocks.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/Jordan_blocks.svg/500px-Jordan_blocks.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>An example of a matrix in Jordan normal form. The grey blocks are called Jordan blocks.</figcaption></figure> <p>The <a href="/wiki/Eigendecomposition" class="mw-redirect" title="Eigendecomposition">eigendecomposition</a> or <i>diagonalization</i> expresses <span class="texhtml"><b>A</b></span> as a product <span class="texhtml"><b>VDV</b><sup>−1</sup></span>, where <span class="texhtml"><b>D</b></span> is a diagonal matrix and <span class="texhtml"><b>V</b></span> is a suitable invertible matrix.<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> If <span class="texhtml"><b>A</b></span> can be written in this form, it is called <a href="/wiki/Diagonalizable_matrix" title="Diagonalizable matrix">diagonalizable</a>. More generally, and applicable to all matrices, the Jordan decomposition transforms a matrix into <a href="/wiki/Jordan_normal_form" title="Jordan normal form">Jordan normal form</a>, that is to say matrices whose only nonzero entries are the eigenvalues <span class="texhtml"><i>λ</i><sub>1</sub></span> to <span class="texhtml mvar" style="font-style:italic;">λ<sub>n</sub></span> of <span class="texhtml"><b>A</b></span>, placed on the main diagonal and possibly entries equal to one directly above the main diagonal, as shown at the right.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">[</span>53<span class="cite-bracket">]</span></a></sup> Given the eigendecomposition, the <span class="texhtml mvar" style="font-style:italic;">n</span>th power of <span class="texhtml"><b>A</b></span> (that is, <span class="texhtml mvar" style="font-style:italic;">n</span>-fold iterated matrix multiplication) can be calculated via <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {A}}^{n}=({\mathbf {VDV}}^{-1})^{n}={\mathbf {VDV}}^{-1}{\mathbf {VDV}}^{-1}\ldots {\mathbf {VDV}}^{-1}={\mathbf {VD}}^{n}{\mathbf {V}}^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> <mi mathvariant="bold">D</mi> <mi mathvariant="bold">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> <mi mathvariant="bold">D</mi> <mi mathvariant="bold">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> <mi mathvariant="bold">D</mi> <mi mathvariant="bold">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>…<!-- … --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> <mi mathvariant="bold">D</mi> <mi mathvariant="bold">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> <mi mathvariant="bold">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">V</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {A}}^{n}=({\mathbf {VDV}}^{-1})^{n}={\mathbf {VDV}}^{-1}{\mathbf {VDV}}^{-1}\ldots {\mathbf {VDV}}^{-1}={\mathbf {VD}}^{n}{\mathbf {V}}^{-1}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d88bd4917acd685a3648d0769cce69493d5ef4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.384ex; height:3.176ex;" alt="{\displaystyle {\mathbf {A}}^{n}=({\mathbf {VDV}}^{-1})^{n}={\mathbf {VDV}}^{-1}{\mathbf {VDV}}^{-1}\ldots {\mathbf {VDV}}^{-1}={\mathbf {VD}}^{n}{\mathbf {V}}^{-1}}"></noscript><span class="lazy-image-placeholder" style="width: 62.384ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15d88bd4917acd685a3648d0769cce69493d5ef4" data-alt="{\displaystyle {\mathbf {A}}^{n}=({\mathbf {VDV}}^{-1})^{n}={\mathbf {VDV}}^{-1}{\mathbf {VDV}}^{-1}\ldots {\mathbf {VDV}}^{-1}={\mathbf {VD}}^{n}{\mathbf {V}}^{-1}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> and the power of a diagonal matrix can be calculated by taking the corresponding powers of the diagonal entries, which is much easier than doing the exponentiation for <span class="texhtml"><b>A</b></span> instead. This can be used to compute the <a href="/wiki/Matrix_exponential" title="Matrix exponential">matrix exponential</a> <span class="texhtml"><i>e</i><sup><b>A</b></sup></span>, a need frequently arising in solving <a href="/wiki/Linear_differential_equation" title="Linear differential equation">linear differential equations</a>, <a href="/wiki/Matrix_logarithm" class="mw-redirect" title="Matrix logarithm">matrix logarithms</a> and <a href="/wiki/Square_root_of_a_matrix" title="Square root of a matrix">square roots of matrices</a>.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">[</span>54<span class="cite-bracket">]</span></a></sup> To avoid numerically <a href="/wiki/Condition_number" title="Condition number">ill-conditioned</a> situations, further algorithms such as the <a href="/wiki/Schur_decomposition" title="Schur decomposition">Schur decomposition</a> can be employed.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">[</span>55<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Abstract_algebraic_aspects_and_generalizations">Abstract algebraic aspects and generalizations</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=25" title="Edit section: Abstract algebraic aspects and generalizations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <p>Matrices can be generalized in different ways. Abstract algebra uses matrices with entries in more general <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> or even <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a>, while linear algebra codifies properties of matrices in the notion of linear maps. It is possible to consider matrices with infinitely many columns and rows. Another extension is <a href="/wiki/Tensor" title="Tensor">tensors</a>, which can be seen as higher-dimensional arrays of numbers, as opposed to vectors, which can often be realized as sequences of numbers, while matrices are rectangular or two-dimensional arrays of numbers.<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">[</span>56<span class="cite-bracket">]</span></a></sup> Matrices, subject to certain requirements tend to form <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">groups</a> known as matrix groups. Similarly under certain conditions matrices form <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">rings</a> known as <a href="/wiki/Matrix_ring" title="Matrix ring">matrix rings</a>. Though the product of matrices is not in general commutative certain matrices form <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">fields</a> known as <a href="/wiki/Matrix_field" class="mw-redirect" title="Matrix field">matrix fields</a>. In general, matrices and their <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">multiplication</a> also form a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a>, the <a href="/wiki/Category_of_matrices" title="Category of matrices">category of matrices</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Matrices_with_more_general_entries">Matrices with more general entries</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=26" title="Edit section: Matrices with more general entries" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>This article focuses on matrices whose entries are real or complex numbers. <span id="more_general_entries">However, matrices can be considered with much more general types of entries than real or complex numbers.</span> As a first step of generalization, any <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a>, that is, a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> where <a href="/wiki/Addition" title="Addition">addition</a>, <a href="/wiki/Subtraction" title="Subtraction">subtraction</a>, <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and <a href="/wiki/Division_(mathematics)" title="Division (mathematics)">division</a> operations are defined and well-behaved, may be used instead of <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></noscript><span class="lazy-image-placeholder" style="width: 1.678ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" data-alt="{\displaystyle \mathbb {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> or <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ff6a3dc2982018ff20f1d2c927afc74a217be6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {C} ,}"></noscript><span class="lazy-image-placeholder" style="width: 2.325ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ff6a3dc2982018ff20f1d2c927afc74a217be6" data-alt="{\displaystyle \mathbb {C} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> for example <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> or <a href="/wiki/Finite_field" title="Finite field">finite fields</a>. For example, <a href="/wiki/Coding_theory" title="Coding theory">coding theory</a> makes use of matrices over finite fields. Wherever <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> are considered, as these are roots of a polynomial they may exist only in a larger field than that of the entries of the matrix; for instance, they may be complex in the case of a matrix with real entries. The possibility to reinterpret the entries of a matrix as elements of a larger field (for example, to view a real matrix as a complex matrix whose entries happen to be all real) then allows considering each square matrix to possess a full set of eigenvalues. Alternatively one can consider only matrices with entries in an <a href="/wiki/Algebraically_closed_field" title="Algebraically closed field">algebraically closed field</a>, such as <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ff6a3dc2982018ff20f1d2c927afc74a217be6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {C} ,}"></noscript><span class="lazy-image-placeholder" style="width: 2.325ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ff6a3dc2982018ff20f1d2c927afc74a217be6" data-alt="{\displaystyle \mathbb {C} ,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></span> from the outset. </p><p>More generally, matrices with entries in a <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a> <span class="texhtml mvar" style="font-style:italic;">R</span> are widely used in mathematics.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">[</span>57<span class="cite-bracket">]</span></a></sup> Rings are a more general notion than fields in that a division operation need not exist. The very same addition and multiplication operations of matrices extend to this setting, too. The set <span class="texhtml">M(<i>n</i>, <i>R</i>)</span> (also denoted <span class="texhtml">M<sub><i>n</i></sub>(R)</span><sup id="cite_ref-Pop-Furdui_7-1" class="reference"><a href="#cite_note-Pop-Furdui-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup>) of all square <span class="texhtml mvar" style="font-style:italic;">n</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices over <span class="texhtml mvar" style="font-style:italic;">R</span> is a ring called <a href="/wiki/Matrix_ring" title="Matrix ring">matrix ring</a>, isomorphic to the <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> of the left <span class="texhtml mvar" style="font-style:italic;">R</span>-<a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> <span class="texhtml mvar" style="font-style:italic;">R<sup>n</sup></span>.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">[</span>58<span class="cite-bracket">]</span></a></sup> If the ring <span class="texhtml mvar" style="font-style:italic;">R</span> is <a href="/wiki/Commutative_ring" title="Commutative ring">commutative</a>, that is, its multiplication is commutative, then the ring <span class="texhtml">M(<i>n</i>, <i>R</i>)</span> is also an <a href="/wiki/Associative_algebra" title="Associative algebra">associative algebra</a> over <i>R</i>. The <a href="/wiki/Determinant" title="Determinant">determinant</a> of square matrices over a commutative ring <span class="texhtml mvar" style="font-style:italic;">R</span> can still be defined using the <a href="/wiki/Leibniz_formula_(determinant)" class="mw-redirect" title="Leibniz formula (determinant)">Leibniz formula</a>; such a matrix is invertible if and only if its determinant is <a href="/wiki/Invertible" class="mw-redirect" title="Invertible">invertible</a> in <span class="texhtml mvar" style="font-style:italic;">R</span>, generalizing the situation over a field <span class="texhtml mvar" style="font-style:italic;">F</span>, where every nonzero element is invertible.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">[</span>59<span class="cite-bracket">]</span></a></sup> Matrices over <a href="/wiki/Superring" class="mw-redirect" title="Superring">superrings</a> are called <a href="/wiki/Supermatrix" title="Supermatrix">supermatrices</a>.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">[</span>60<span class="cite-bracket">]</span></a></sup> </p><p>Matrices do not always have all their entries in the same ring<span class="nowrap"> </span>– or even in any ring at all. One special but common case is <a href="/wiki/Block_matrix" title="Block matrix">block matrices</a>, which may be considered as matrices whose entries themselves are matrices. The entries need not be square matrices, and thus need not be members of any <a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">ring</a>; but their sizes must fulfill certain compatibility conditions. </p> <div class="mw-heading mw-heading3"><h3 id="Relationship_to_linear_maps">Relationship to linear maps</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=27" title="Edit section: Relationship to linear maps" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Linear maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cccdefd5f0e00fc2fa5fde2d8cbb039cc408a035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.864ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}"></noscript><span class="lazy-image-placeholder" style="width: 9.864ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cccdefd5f0e00fc2fa5fde2d8cbb039cc408a035" data-alt="{\displaystyle \mathbb {R} ^{n}\to \mathbb {R} ^{m}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> are equivalent to <span class="texhtml mvar" style="font-style:italic;">m</span>-by-<span class="texhtml mvar" style="font-style:italic;">n</span> matrices, as described <a href="#linear_maps">above</a>. More generally, any linear map <span class="texhtml"><i>f</i> : <i>V</i> → <i>W</i></span> between finite-<a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">dimensional</a> <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> can be described by a matrix <span class="texhtml"><b>A</b> = (<i>a<sub>ij</sub></i>)</span>, after choosing <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">bases</a> <span class="texhtml"><b>v</b><sub>1</sub>, ..., <b>v</b><sub><i>n</i></sub></span> of <span class="texhtml mvar" style="font-style:italic;">V</span>, and <span class="texhtml"><b>w</b><sub>1</sub>, ..., <b>w</b><sub><i>m</i></sub></span> of <span class="texhtml mvar" style="font-style:italic;">W</span> (so <span class="texhtml mvar" style="font-style:italic;">n</span> is the dimension of <span class="texhtml mvar" style="font-style:italic;">V</span> and <span class="texhtml mvar" style="font-style:italic;">m</span> is the dimension of <span class="texhtml mvar" style="font-style:italic;">W</span>), which is such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(\mathbf {v} _{j})=\sum _{i=1}^{m}a_{i,j}\mathbf {w} _{i}\qquad {\mbox{for}}\ j=1,\ldots ,n.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="2em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>for</mtext> </mstyle> </mrow> <mtext> </mtext> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>n</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(\mathbf {v} _{j})=\sum _{i=1}^{m}a_{i,j}\mathbf {w} _{i}\qquad {\mbox{for}}\ j=1,\ldots ,n.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b8cc99fbe2677739b89586fcc5ff568c8bae2c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.595ex; height:6.843ex;" alt="{\displaystyle f(\mathbf {v} _{j})=\sum _{i=1}^{m}a_{i,j}\mathbf {w} _{i}\qquad {\mbox{for}}\ j=1,\ldots ,n.}"></noscript><span class="lazy-image-placeholder" style="width: 38.595ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b8cc99fbe2677739b89586fcc5ff568c8bae2c8" data-alt="{\displaystyle f(\mathbf {v} _{j})=\sum _{i=1}^{m}a_{i,j}\mathbf {w} _{i}\qquad {\mbox{for}}\ j=1,\ldots ,n.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>In other words, column <span class="texhtml mvar" style="font-style:italic;">j</span> of <span class="texhtml"><b>A</b></span> expresses the image of <span class="texhtml"><b>v</b><sub><i>j</i></sub></span> in terms of the basis vectors <span class="texhtml"><b>w</b><sub><i>I</i></sub></span> of <span class="texhtml mvar" style="font-style:italic;">W</span>; thus this relation uniquely determines the entries of the matrix <span class="texhtml"><b>A</b></span>. The matrix depends on the choice of the bases: different choices of bases give rise to different, but <a href="/wiki/Matrix_equivalence" title="Matrix equivalence">equivalent matrices</a>.<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">[</span>61<span class="cite-bracket">]</span></a></sup> Many of the above concrete notions can be reinterpreted in this light, for example, the transpose matrix <span class="texhtml"><b>A</b><sup>T</sup></span> describes the <a href="/wiki/Transpose_of_a_linear_map" title="Transpose of a linear map">transpose of the linear map</a> given by <span class="texhtml"><b>A</b></span>, concerning the <a href="/wiki/Dual_space" title="Dual space">dual bases</a>.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">[</span>62<span class="cite-bracket">]</span></a></sup> </p><p>These properties can be restated more naturally: the <a href="/wiki/Category_of_matrices" title="Category of matrices">category of matrices</a> with entries in a field <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></noscript><span class="lazy-image-placeholder" style="width: 1.211ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" data-alt="{\displaystyle k}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> with multiplication as composition is <a href="/wiki/Equivalence_of_categories" title="Equivalence of categories">equivalent</a> to the category of finite-dimensional <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> and linear maps over this field.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">[</span>63<span class="cite-bracket">]</span></a></sup> </p><p>More generally, the set of <span class="texhtml"><i>m</i>×<i>n</i></span> matrices can be used to represent the <span class="texhtml mvar" style="font-style:italic;">R</span>-linear maps between the free modules <span class="texhtml mvar" style="font-style:italic;">R<sup>m</sup></span> and <span class="texhtml mvar" style="font-style:italic;">R<sup>n</sup></span> for an arbitrary ring <span class="texhtml mvar" style="font-style:italic;">R</span> with unity. When <span class="texhtml"><i>n</i> = <i>m</i></span> composition of these maps is possible, and this gives rise to the <a href="/wiki/Matrix_ring" title="Matrix ring">matrix ring</a> of <span class="texhtml"><i>n</i>×<i>n</i></span> matrices representing the <a href="/wiki/Endomorphism_ring" title="Endomorphism ring">endomorphism ring</a> of <span class="texhtml mvar" style="font-style:italic;">R<sup>n</sup></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Matrix_groups">Matrix groups</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=28" title="Edit section: Matrix groups" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Matrix_group" class="mw-redirect" title="Matrix group">Matrix group</a></div> <p>A <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> is a mathematical structure consisting of a set of objects together with a <a href="/wiki/Binary_operation" title="Binary operation">binary operation</a>, that is, an operation combining any two objects to a third, subject to certain requirements.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">[</span>64<span class="cite-bracket">]</span></a></sup> A group in which the objects are matrices and the group operation is matrix multiplication is called a <i>matrix group</i>.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">[</span>65<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">[</span>66<span class="cite-bracket">]</span></a></sup> Since a group of every element must be invertible, the most general matrix groups are the groups of all invertible matrices of a given size, called the <a href="/wiki/General_linear_group" title="General linear group">general linear groups</a>. </p><p>Any property of matrices that is preserved under matrix products and inverses can be used to define further matrix groups. For example, matrices with a given size and with a determinant of 1 form a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of (that is, a smaller group contained in) their general linear group, called a <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a>.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">[</span>67<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal matrices</a>, determined by the condition <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {M}}^{\rm {T}}{\mathbf {M}}={\mathbf {I}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">M</mi> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">I</mi> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {M}}^{\rm {T}}{\mathbf {M}}={\mathbf {I}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b577e4937fe3414e4fba9fc3830728eb75accb22" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.253ex; height:3.009ex;" alt="{\displaystyle {\mathbf {M}}^{\rm {T}}{\mathbf {M}}={\mathbf {I}},}"></noscript><span class="lazy-image-placeholder" style="width: 11.253ex;height: 3.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b577e4937fe3414e4fba9fc3830728eb75accb22" data-alt="{\displaystyle {\mathbf {M}}^{\rm {T}}{\mathbf {M}}={\mathbf {I}},}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> form the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a>.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">[</span>68<span class="cite-bracket">]</span></a></sup> Every orthogonal matrix has <a href="/wiki/Determinant" title="Determinant">determinant</a> 1 or −1. Orthogonal matrices with determinant 1 form a subgroup called <i>special orthogonal group</i>. </p><p>Every <a href="/wiki/Finite_group" title="Finite group">finite group</a> is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to a matrix group, as one can see by considering the <a href="/wiki/Regular_representation" title="Regular representation">regular representation</a> of the <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a>.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">[</span>69<span class="cite-bracket">]</span></a></sup> General groups can be studied using matrix groups, which are comparatively well understood, using <a href="/wiki/Representation_theory" title="Representation theory">representation theory</a>.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">[</span>70<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Infinite_matrices">Infinite matrices</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=29" title="Edit section: Infinite matrices" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>It is also possible to consider matrices with infinitely many rows and/or columns<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">[</span>71<span class="cite-bracket">]</span></a></sup> even though, being infinite objects, one cannot write down such matrices explicitly. All that matters is that for every element in the set indexing rows, and every element in the set indexing columns, there is a well-defined entry (these index sets need not even be subsets of the natural numbers). The basic operations of addition, subtraction, scalar multiplication, and transposition can still be defined without problem; however, matrix multiplication may involve infinite summations to define the resulting entries, and these are not defined in general. </p><p>If <span class="texhtml mvar" style="font-style:italic;">R</span> is any ring with unity, then the ring of endomorphisms of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\bigoplus _{i\in I}R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <munder> <mo>⨁<!-- ⨁ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\bigoplus _{i\in I}R}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef1aea5d82c1ca687f3345d0108e147c4584f84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:11.202ex; height:5.676ex;" alt="{\displaystyle M=\bigoplus _{i\in I}R}"></noscript><span class="lazy-image-placeholder" style="width: 11.202ex;height: 5.676ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef1aea5d82c1ca687f3345d0108e147c4584f84" data-alt="{\displaystyle M=\bigoplus _{i\in I}R}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> as a right <span class="texhtml mvar" style="font-style:italic;">R</span> module is isomorphic to the ring of <b> column finite matrices</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {CFM} _{I}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">F</mi> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {CFM} _{I}(R)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec68d14ab79cbfeda559749a7b81beeb45010649" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.961ex; height:2.843ex;" alt="{\displaystyle \mathrm {CFM} _{I}(R)}"></noscript><span class="lazy-image-placeholder" style="width: 9.961ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec68d14ab79cbfeda559749a7b81beeb45010649" data-alt="{\displaystyle \mathrm {CFM} _{I}(R)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> whose entries are indexed by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I\times I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>×<!-- × --></mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I\times I}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e290ebbc366ef6f8dd83eb6c3d5063f983f1783d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.184ex; height:2.176ex;" alt="{\displaystyle I\times I}"></noscript><span class="lazy-image-placeholder" style="width: 5.184ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e290ebbc366ef6f8dd83eb6c3d5063f983f1783d" data-alt="{\displaystyle I\times I}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, and whose columns each contain only finitely many nonzero entries. The endomorphisms of <span class="texhtml mvar" style="font-style:italic;">M</span> considered as a left <span class="texhtml mvar" style="font-style:italic;">R</span> module result in an analogous object, the <b>row finite matrices</b> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {RFM} _{I}(R)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">F</mi> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {RFM} _{I}(R)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d4bf6c26af864a93bbe7f1be107e400074783b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.993ex; height:2.843ex;" alt="{\displaystyle \mathrm {RFM} _{I}(R)}"></noscript><span class="lazy-image-placeholder" style="width: 9.993ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d4bf6c26af864a93bbe7f1be107e400074783b8" data-alt="{\displaystyle \mathrm {RFM} _{I}(R)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> whose rows each only have finitely many nonzero entries. </p><p>If infinite matrices are used to describe linear maps, then only those matrices can be used all of whose columns have but a finite number of nonzero entries, for the following reason. For a matrix <span class="texhtml"><b>A</b></span> to describe a linear map <span class="texhtml"><i>f</i> : <i>V</i> → <i>W</i></span>, bases for both spaces must have been chosen; recall that by definition this means that every vector in the space can be written uniquely as a (finite) linear combination of basis vectors, so that written as a (column) vector<span class="nowrap"> </span><span class="texhtml mvar" style="font-style:italic;">ve</span> of <a href="/wiki/Coefficient" title="Coefficient">coefficients</a>, only finitely many entries <span class="texhtml mvar" style="font-style:italic;">v<sub>I</sub></span> are nonzero. Now the columns of <span class="texhtml"><b>A</b></span> describe the images by <span class="texhtml mvar" style="font-style:italic;">f</span> of individual basis vectors of <span class="texhtml mvar" style="font-style:italic;">V</span> in the basis of <span class="texhtml mvar" style="font-style:italic;">W</span>, which is only meaningful if these columns have only finitely many nonzero entries. There is no restriction on the rows of <span class="texhtml"><b>A</b></span> however: in the product <span class="texhtml"><b>A</b> · <i>v</i></span> there are only finitely many nonzero coefficients of <span class="texhtml mvar" style="font-style:italic;">v</span> involved, so every one of its entries, even if it is given as an infinite sum of products, involves only finitely many nonzero terms and is therefore well defined. Moreover, this amounts to forming a linear combination of the columns of <span class="texhtml"><b>A</b></span> that effectively involves only finitely many of them, whence the result has only finitely many nonzero entries because each of those columns does. Products of two matrices of the given type are well defined (provided that the column-index and row-index sets match), are of the same type, and correspond to the composition of linear maps. </p><p>If <span class="texhtml mvar" style="font-style:italic;">R</span> is a <a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">normed</a> ring, then the condition of row or column finiteness can be relaxed. With the norm in place, <a href="/wiki/Absolutely_convergent_series" class="mw-redirect" title="Absolutely convergent series">absolutely convergent series</a> can be used instead of finite sums. For example, the matrices whose column sums are convergent sequences form a ring. Analogously, the matrices whose row sums are convergent series also form a ring. </p><p>Infinite matrices can also be used to describe <a href="/wiki/Hilbert_space#Operators_on_Hilbert_spaces" title="Hilbert space">operators on Hilbert spaces</a>, where convergence and <a href="/wiki/Continuous_function" title="Continuous function">continuity</a> questions arise, which again results in certain constraints that must be imposed. However, the explicit point of view of matrices tends to obfuscate the matter,<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">[</span>72<span class="cite-bracket">]</span></a></sup> and the abstract and more powerful tools of <a href="/wiki/Functional_analysis" title="Functional analysis">functional analysis</a> can be used instead. </p> <div class="mw-heading mw-heading3"><h3 id="Empty_matrix">Empty matrix</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=30" title="Edit section: Empty matrix" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>An <i>empty matrix</i> is a matrix in which the number of rows or columns (or both) is zero.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">[</span>73<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">[</span>74<span class="cite-bracket">]</span></a></sup> Empty matrices help to deal with maps involving the <a href="/wiki/Zero_vector_space" class="mw-redirect" title="Zero vector space">zero vector space</a>. For example, if <span class="texhtml"><b>A</b></span> is a 3-by-0 matrix and <span class="texhtml"><b>B</b></span> is a 0-by-3 matrix, then <span class="texhtml"><b>AB</b></span> is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space <span class="texhtml mvar" style="font-style:italic;">V</span> to itself, while <span class="texhtml"><b>BA</b></span> is a 0-by-0 matrix. There is no common notation for empty matrices, but most <a href="/wiki/Computer_algebra_system" title="Computer algebra system">computer algebra systems</a> allow creating and computing with them. The determinant of the 0-by-0 matrix is 1 as follows regarding the <a href="/wiki/Empty_product" title="Empty product">empty product</a> occurring in the Leibniz formula for the determinant as 1. This value is also consistent with the fact that the identity map from any finite-dimensional space to itself has determinant<span class="nowrap"> </span>1, a fact that is often used as a part of the characterization of determinants. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Applications">Applications</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=31" title="Edit section: Applications" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-10 collapsible-block" id="mf-section-10"> <p>There are numerous applications of matrices, both in mathematics and other sciences. Some of them merely take advantage of the compact representation of a set of numbers in a matrix. For example, in <a href="/wiki/Game_theory" title="Game theory">game theory</a> and <a href="/wiki/Economics" title="Economics">economics</a>, the <a href="/wiki/Payoff_matrix" class="mw-redirect" title="Payoff matrix">payoff matrix</a> encodes the payoff for two players, depending on which out of a given (finite) set of strategies the players choose.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">[</span>75<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Text_mining" title="Text mining">Text mining</a> and automated <a href="/wiki/Thesaurus" title="Thesaurus">thesaurus</a> compilation makes use of <a href="/wiki/Document-term_matrix" title="Document-term matrix">document-term matrices</a> such as <a href="/wiki/Tf-idf" class="mw-redirect" title="Tf-idf">tf-idf</a> to track frequencies of certain words in several documents.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">[</span>76<span class="cite-bracket">]</span></a></sup> </p><p>Complex numbers can be represented by particular real 2-by-2 matrices via </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+ib\leftrightarrow {\begin{bmatrix}a&-b\\b&a\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>i</mi> <mi>b</mi> <mo stretchy="false">↔<!-- ↔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>−<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+ib\leftrightarrow {\begin{bmatrix}a&-b\\b&a\end{bmatrix}},}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a953f9863f7860c1a4d31a6db5ab251b96050670" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.696ex; height:6.176ex;" alt="{\displaystyle a+ib\leftrightarrow {\begin{bmatrix}a&-b\\b&a\end{bmatrix}},}"></noscript><span class="lazy-image-placeholder" style="width: 19.696ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a953f9863f7860c1a4d31a6db5ab251b96050670" data-alt="{\displaystyle a+ib\leftrightarrow {\begin{bmatrix}a&-b\\b&a\end{bmatrix}},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>under which addition and multiplication of complex numbers and matrices correspond to each other. For example, 2-by-2 rotation matrices represent the multiplication with some complex number of <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> 1, as <a href="#rotation_matrix">above</a>. A similar interpretation is possible for <a href="/wiki/Quaternion" title="Quaternion">quaternions</a><sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">[</span>77<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebras</a> in general. </p><p>Early <a href="/wiki/Encryption" title="Encryption">encryption</a> techniques such as the <a href="/wiki/Hill_cipher" title="Hill cipher">Hill cipher</a> also used matrices. However, due to the linear nature of matrices, these codes are comparatively easy to break.<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">[</span>78<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Computer_graphics" title="Computer graphics">Computer graphics</a> uses matrices to represent objects; to calculate transformations of objects using affine <a href="/wiki/Rotation_matrix" title="Rotation matrix">rotation matrices</a> to accomplish tasks such as projecting a three-dimensional object onto a two-dimensional screen, corresponding to a theoretical camera observation; and to apply image convolutions such as sharpening, blurring, edge detection, and more.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">[</span>79<span class="cite-bracket">]</span></a></sup> Matrices over a <a href="/wiki/Polynomial_ring" title="Polynomial ring">polynomial ring</a> are important in the study of <a href="/wiki/Control_theory" title="Control theory">control theory</a>. </p><p><a href="/wiki/Chemistry" title="Chemistry">Chemistry</a> makes use of matrices in various ways, particularly since the use of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum theory</a> to discuss <a href="/wiki/Chemical_bond" title="Chemical bond">molecular bonding</a> and <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a>. Examples are the <a href="/wiki/Overlap_matrix" class="mw-redirect" title="Overlap matrix">overlap matrix</a> and the <a href="/wiki/Fock_matrix" title="Fock matrix">Fock matrix</a> used in solving the <a href="/wiki/Roothaan_equations" title="Roothaan equations">Roothaan equations</a> to obtain the <a href="/wiki/Molecular_orbital" title="Molecular orbital">molecular orbitals</a> of the <a href="/wiki/Hartree%E2%80%93Fock_method" title="Hartree–Fock method">Hartree–Fock method</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Graph_theory">Graph theory</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=32" title="Edit section: Graph theory" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Labelled_undirected_graph.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Labelled_undirected_graph.svg/150px-Labelled_undirected_graph.svg.png" decoding="async" width="150" height="137" class="mw-file-element" data-file-width="209" data-file-height="191"></noscript><span class="lazy-image-placeholder" style="width: 150px;height: 137px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Labelled_undirected_graph.svg/150px-Labelled_undirected_graph.svg.png" data-width="150" data-height="137" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Labelled_undirected_graph.svg/225px-Labelled_undirected_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Labelled_undirected_graph.svg/300px-Labelled_undirected_graph.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>An undirected graph with adjacency matrix: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&1&0\\1&0&1\\0&1&0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&1&0\\1&0&1\\0&1&0\end{bmatrix}}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51425c53fc279038a1da01e1cece5958d13149b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:12.632ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}1&1&0\\1&0&1\\0&1&0\end{bmatrix}}.}"></noscript><span class="lazy-image-placeholder" style="width: 12.632ex;height: 9.176ex;vertical-align: -4.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51425c53fc279038a1da01e1cece5958d13149b" data-alt="{\displaystyle {\begin{bmatrix}1&1&0\\1&0&1\\0&1&0\end{bmatrix}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></figcaption></figure> <p>The <a href="/wiki/Adjacency_matrix" title="Adjacency matrix">adjacency matrix</a> of a <a href="/wiki/Finite_graph" class="mw-redirect" title="Finite graph">finite graph</a> is a basic notion of <a href="/wiki/Graph_theory" title="Graph theory">graph theory</a>.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">[</span>80<span class="cite-bracket">]</span></a></sup> It records which vertices of the graph are connected by an edge. Matrices containing just two different values (1 and 0 meaning for example "yes" and "no", respectively) are called <a href="/wiki/Logical_matrix" title="Logical matrix">logical matrices</a>. The <a href="/wiki/Distance_matrix" title="Distance matrix">distance (or cost) matrix</a> contains information about the distances of the edges.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">[</span>81<span class="cite-bracket">]</span></a></sup> These concepts can be applied to <a href="/wiki/Website" title="Website">websites</a> connected by <a href="/wiki/Hyperlink" title="Hyperlink">hyperlinks</a> or cities connected by roads etc., in which case (unless the connection network is extremely dense) the matrices tend to be <a href="/wiki/Sparse_matrix" title="Sparse matrix">sparse</a>, that is, contain few nonzero entries. Therefore, specifically tailored matrix algorithms can be used in <a href="/wiki/Network_theory" title="Network theory">network theory</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Analysis_and_geometry">Analysis and geometry</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=33" title="Edit section: Analysis and geometry" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The <a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a> of a <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306c097f43c91dce633d12cde024948d39e73752" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.404ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }"></noscript><span class="lazy-image-placeholder" style="width: 11.404ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/306c097f43c91dce633d12cde024948d39e73752" data-alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> consists of the <a href="/wiki/Second_derivative" title="Second derivative">second derivatives</a> of <span class="texhtml mvar" style="font-style:italic;">ƒ</span> concerning the several coordinate directions, that is,<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">[</span>82<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(f)=\left[{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(f)=\left[{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}\right].}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf91a060a82dd7a47c305e9a4c2865378fcf35f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:19.967ex; height:6.509ex;" alt="{\displaystyle H(f)=\left[{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}\right].}"></noscript><span class="lazy-image-placeholder" style="width: 19.967ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cf91a060a82dd7a47c305e9a4c2865378fcf35f" data-alt="{\displaystyle H(f)=\left[{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}\right].}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Saddle_Point_SVG.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Saddle_Point_SVG.svg/220px-Saddle_Point_SVG.svg.png" decoding="async" width="220" height="165" class="mw-file-element" data-file-width="720" data-file-height="540"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 165px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Saddle_Point_SVG.svg/220px-Saddle_Point_SVG.svg.png" data-width="220" data-height="165" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Saddle_Point_SVG.svg/330px-Saddle_Point_SVG.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Saddle_Point_SVG.svg/440px-Saddle_Point_SVG.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>At the <a href="/wiki/Saddle_point" title="Saddle point">saddle point</a> <span class="texhtml">(<i>x</i> = 0, <i>y</i> = 0)</span> (red) of the function <span class="texhtml"><i>f</i> (<i>x</i>,−<i>y</i>) = <i>x</i><sup>2</sup> − <i>y</i><sup>2</sup></span>, the Hessian matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}2&0\\0&-2\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>−<!-- − --></mo> <mn>2</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}2&0\\0&-2\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd987cfcc4338b2c3319323e7a73182e09215d09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.662ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}2&0\\0&-2\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.662ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd987cfcc4338b2c3319323e7a73182e09215d09" data-alt="{\displaystyle {\begin{bmatrix}2&0\\0&-2\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is <a href="/wiki/Indefinite_matrix" class="mw-redirect" title="Indefinite matrix">indefinite</a>.</figcaption></figure><p>It encodes information about the local growth behavior of the function: given a <a href="/wiki/Critical_point_(mathematics)" title="Critical point (mathematics)">critical point</a> <span class="texhtml"><b>x</b> = (<i>x</i><sub>1</sub>, ..., <i>x<sub>n</sub></i>)</span>, that is, a point where the first <a href="/wiki/Partial_derivative" title="Partial derivative">partial derivatives</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial f/\partial x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial f/\partial x_{i}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c4abc6fa2414772b9c4e03b6c6e5d0516eaf4f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\displaystyle \partial f/\partial x_{i}}"></noscript><span class="lazy-image-placeholder" style="width: 7.207ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c4abc6fa2414772b9c4e03b6c6e5d0516eaf4f3" data-alt="{\displaystyle \partial f/\partial x_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> of <span class="texhtml mvar" style="font-style:italic;">ƒ</span> vanish, the function has a <a href="/wiki/Local_minimum" class="mw-redirect" title="Local minimum">local minimum</a> if the Hessian matrix is <a href="/wiki/Definiteness_of_a_matrix" class="mw-redirect" title="Definiteness of a matrix">positive definite</a>. <a href="/wiki/Quadratic_programming" title="Quadratic programming">Quadratic programming</a> can be used to find global minima or maxima of quadratic functions closely related to the ones attached to matrices (see <a href="#quadratic_forms">above</a>).<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">[</span>83<span class="cite-bracket">]</span></a></sup> </p><p>Another matrix frequently used in geometrical situations is the <span id="Jacobi_matrix"><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobi matrix</a></span> of a differentiable map <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54c4ef1546f1443461c62dd06b366da67076e473" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.726ex; height:2.676ex;" alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}.}"></noscript><span class="lazy-image-placeholder" style="width: 13.726ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54c4ef1546f1443461c62dd06b366da67076e473" data-alt="{\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} ^{m}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> If <span class="texhtml"><i>f</i><sub>1</sub>, ..., <i>f<sub>m</sub></i></span> denote the components of <span class="texhtml mvar" style="font-style:italic;">f</span>, then the Jacobi matrix is defined as<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">[</span>84<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J(f)=\left[{\frac {\partial f_{i}}{\partial x_{j}}}\right]_{1\leq i\leq m,1\leq j\leq n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo>≤<!-- ≤ --></mo> <mi>m</mi> <mo>,</mo> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J(f)=\left[{\frac {\partial f_{i}}{\partial x_{j}}}\right]_{1\leq i\leq m,1\leq j\leq n}.}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdbd42114b895c82930ea1e229b566f71fd6b07d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.275ex; height:6.676ex;" alt="{\displaystyle J(f)=\left[{\frac {\partial f_{i}}{\partial x_{j}}}\right]_{1\leq i\leq m,1\leq j\leq n}.}"></noscript><span class="lazy-image-placeholder" style="width: 26.275ex;height: 6.676ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdbd42114b895c82930ea1e229b566f71fd6b07d" data-alt="{\displaystyle J(f)=\left[{\frac {\partial f_{i}}{\partial x_{j}}}\right]_{1\leq i\leq m,1\leq j\leq n}.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>If <span class="texhtml"><i>n</i> > <i>m</i></span>, and if the rank of the Jacobi matrix attains its maximal value <span class="texhtml mvar" style="font-style:italic;">m</span>, <span class="texhtml mvar" style="font-style:italic;">f</span> is locally invertible at that point, by the <a href="/wiki/Implicit_function_theorem" title="Implicit function theorem">implicit function theorem</a>.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">[</span>85<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equations</a> can be classified by considering the matrix of coefficients of the highest-order differential operators of the equation. For <a href="/wiki/Elliptic_partial_differential_equation" title="Elliptic partial differential equation">elliptic partial differential equations</a> this matrix is positive definite, which has a decisive influence on the set of possible solutions of the equation in question.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">[</span>86<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Finite_element_method" title="Finite element method">finite element method</a> is an important numerical method to solve partial differential equations, widely applied in simulating complex physical systems. It attempts to approximate the solution to some equation by piecewise linear functions, where the pieces are chosen concerning a sufficiently fine grid, which in turn can be recast as a matrix equation.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">[</span>87<span class="cite-bracket">]</span></a></sup> </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Probability_theory_and_statistics">Probability theory and statistics</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=34" title="Edit section: Probability theory and statistics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Markov_chain_SVG.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Markov_chain_SVG.svg/280px-Markov_chain_SVG.svg.png" decoding="async" width="280" height="210" class="mw-file-element" data-file-width="720" data-file-height="540"></noscript><span class="lazy-image-placeholder" style="width: 280px;height: 210px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Markov_chain_SVG.svg/280px-Markov_chain_SVG.svg.png" data-width="280" data-height="210" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/29/Markov_chain_SVG.svg/420px-Markov_chain_SVG.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/29/Markov_chain_SVG.svg/560px-Markov_chain_SVG.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>Two different Markov chains. The chart depicts the number of particles (of a total of 1000) in state "2". Both limiting values can be determined from the transition matrices, which are given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0.7&0\\0.3&1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0.7</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.3</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0.7&0\\0.3&1\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d87c47f86479fafe692608300195e0e63631924" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:9.663ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0.7&0\\0.3&1\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 9.663ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d87c47f86479fafe692608300195e0e63631924" data-alt="{\displaystyle {\begin{bmatrix}0.7&0\\0.3&1\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (red) and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}0.7&0.2\\0.3&0.8\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0.7</mn> </mtd> <mtd> <mn>0.2</mn> </mtd> </mtr> <mtr> <mtd> <mn>0.3</mn> </mtd> <mtd> <mn>0.8</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}0.7&0.2\\0.3&0.8\end{bmatrix}}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be354953b6cc18f0f2fd70030147f719aade96f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:11.473ex; height:6.176ex;" alt="{\displaystyle {\begin{bmatrix}0.7&0.2\\0.3&0.8\end{bmatrix}}}"></noscript><span class="lazy-image-placeholder" style="width: 11.473ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be354953b6cc18f0f2fd70030147f719aade96f9" data-alt="{\displaystyle {\begin{bmatrix}0.7&0.2\\0.3&0.8\end{bmatrix}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (black).</figcaption></figure> <p><a href="/wiki/Stochastic_matrix" title="Stochastic matrix">Stochastic matrices</a> are square matrices whose rows are <a href="/wiki/Probability_vector" title="Probability vector">probability vectors</a>, that is, whose entries are non-negative and sum up to one. Stochastic matrices are used to define <a href="/wiki/Markov_chain" title="Markov chain">Markov chains</a> with finitely many states.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">[</span>88<span class="cite-bracket">]</span></a></sup> A row of the stochastic matrix gives the probability distribution for the next position of some particle currently in the state that corresponds to the row. Properties of the Markov chain-like <a href="/wiki/Absorbing_state" class="mw-redirect" title="Absorbing state">absorbing states</a>, that is, states that any particle attains eventually, can be read off the eigenvectors of the transition matrices.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">[</span>89<span class="cite-bracket">]</span></a></sup> </p><p>Statistics also makes use of matrices in many different forms.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">[</span>90<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Descriptive_statistics" title="Descriptive statistics">Descriptive statistics</a> is concerned with describing data sets, which can often be represented as <a href="/wiki/Data_matrix_(multivariate_statistics)" class="mw-redirect" title="Data matrix (multivariate statistics)">data matrices</a>, which may then be subjected to <a href="/wiki/Dimensionality_reduction" title="Dimensionality reduction">dimensionality reduction</a> techniques. The <a href="/wiki/Covariance_matrix" title="Covariance matrix">covariance matrix</a> encodes the mutual <a href="/wiki/Variance" title="Variance">variance</a> of several <a href="/wiki/Random_variable" title="Random variable">random variables</a>.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">[</span>91<span class="cite-bracket">]</span></a></sup> Another technique using matrices are <a href="/wiki/Linear_least_squares" title="Linear least squares">linear least squares</a>, a method that approximates a finite set of pairs <span class="texhtml">(<i>x</i><sub>1</sub>, <i>y</i><sub>1</sub>), (<i>x</i><sub>2</sub>, <i>y</i><sub>2</sub>), ..., (<i>x</i><sub><i>N</i></sub>, <i>y</i><sub><i>N</i></sub>)</span>, by a linear function <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{i}\approx ax_{i}+b,\quad i=1,\ldots ,N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>≈<!-- ≈ --></mo> <mi>a</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mspace width="1em"></mspace> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{i}\approx ax_{i}+b,\quad i=1,\ldots ,N}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4950af44677bf96255e8d2e3fd53b6d5d065a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:27.896ex; height:2.509ex;" alt="{\displaystyle y_{i}\approx ax_{i}+b,\quad i=1,\ldots ,N}"></noscript><span class="lazy-image-placeholder" style="width: 27.896ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e4950af44677bf96255e8d2e3fd53b6d5d065a8" data-alt="{\displaystyle y_{i}\approx ax_{i}+b,\quad i=1,\ldots ,N}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p>which can be formulated in terms of matrices, related to the <a href="/wiki/Singular_value_decomposition" title="Singular value decomposition">singular value decomposition</a> of matrices.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">[</span>92<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Random_matrix" title="Random matrix">Random matrices</a> are matrices whose entries are random numbers, subject to suitable <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a>, such as <a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">matrix normal distribution</a>. Beyond probability theory, they are applied in domains ranging from <a href="/wiki/Number_theory" title="Number theory">number theory</a> to <a href="/wiki/Physics" title="Physics">physics</a>.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">[</span>93<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">[</span>94<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Symmetries_and_transformations_in_physics">Symmetries and transformations in physics</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=35" title="Edit section: Symmetries and transformations in physics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Symmetry_in_physics" class="mw-redirect" title="Symmetry in physics">Symmetry in physics</a></div> <p>Linear transformations and the associated <a href="/wiki/Symmetry" title="Symmetry">symmetries</a> play a key role in modern physics. For example, <a href="/wiki/Elementary_particle" title="Elementary particle">elementary particles</a> in <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a> are classified as representations of the <a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a> of special relativity and, more specifically, by their behavior under the <a href="/wiki/Spin_group" title="Spin group">spin group</a>. Concrete representations involving the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> and more general <a href="/wiki/Gamma_matrices" title="Gamma matrices">gamma matrices</a> are an integral part of the physical description of <a href="/wiki/Fermion" title="Fermion">fermions</a>, which behave as <a href="/wiki/Spinor" title="Spinor">spinors</a>.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">[</span>95<span class="cite-bracket">]</span></a></sup> For the three lightest <a href="/wiki/Quark" title="Quark">quarks</a>, there is a group-theoretical representation involving the <a href="/wiki/Special_unitary_group" title="Special unitary group">special unitary group</a> SU(3); for their calculations, physicists use a convenient matrix representation known as the <a href="/wiki/Gell-Mann_matrices" title="Gell-Mann matrices">Gell-Mann matrices</a>, which are also used for the SU(3) <a href="/wiki/Gauge_group" class="mw-redirect" title="Gauge group">gauge group</a> that forms the basis of the modern description of strong nuclear interactions, <a href="/wiki/Quantum_chromodynamics" title="Quantum chromodynamics">quantum chromodynamics</a>. The <a href="/wiki/Cabibbo%E2%80%93Kobayashi%E2%80%93Maskawa_matrix" title="Cabibbo–Kobayashi–Maskawa matrix">Cabibbo–Kobayashi–Maskawa matrix</a>, in turn, expresses the fact that the basic quark states that are important for <a href="/wiki/Weak_interaction" title="Weak interaction">weak interactions</a> are not the same as, but linearly related to the basic quark states that define particles with specific and distinct <a href="/wiki/Mass" title="Mass">masses</a>.<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">[</span>96<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Linear_combinations_of_quantum_states">Linear combinations of quantum states</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=36" title="Edit section: Linear combinations of quantum states" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The first model of <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a> (<a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a>, 1925) represented the theory's operators by infinite-dimensional matrices acting on quantum states.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">[</span>97<span class="cite-bracket">]</span></a></sup> This is also referred to as <a href="/wiki/Matrix_mechanics" title="Matrix mechanics">matrix mechanics</a>. One particular example is the <a href="/wiki/Density_matrix" title="Density matrix">density matrix</a> that characterizes the "mixed" state of a quantum system as a linear combination of elementary, "pure" <a href="/wiki/Eigenstates" class="mw-redirect" title="Eigenstates">eigenstates</a>.<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">[</span>98<span class="cite-bracket">]</span></a></sup> </p><p>Another matrix serves as a key tool for describing the scattering experiments that form the cornerstone of experimental particle physics: Collision reactions such as occur in <a href="/wiki/Particle_accelerator" title="Particle accelerator">particle accelerators</a>, where non-interacting particles head towards each other and collide in a small interaction zone, with a new set of non-interacting particles as the result, can be described as the scalar product of outgoing particle states and a linear combination of ingoing particle states. The linear combination is given by a matrix known as the <a href="/wiki/S-matrix" title="S-matrix">S-matrix</a>, which encodes all information about the possible interactions between particles.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">[</span>99<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Normal_modes">Normal modes</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=37" title="Edit section: Normal modes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A general application of matrices in physics is the description of linearly coupled harmonic systems. The <a href="/wiki/Equations_of_motion" title="Equations of motion">equations of motion</a> of such systems can be described in matrix form, with a mass matrix multiplying a generalized velocity to give the kinetic term, and a <a href="/wiki/Force" title="Force">force</a> matrix multiplying a displacement vector to characterize the interactions. The best way to obtain solutions is to determine the system's <a href="/wiki/Eigenvector" class="mw-redirect" title="Eigenvector">eigenvectors</a>, its <a href="/wiki/Normal_mode" title="Normal mode">normal modes</a>, by diagonalizing the matrix equation. Techniques like this are crucial when it comes to the internal dynamics of <a href="/wiki/Molecules" class="mw-redirect" title="Molecules">molecules</a>: the internal vibrations of systems consisting of mutually bound component atoms.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">[</span>100<span class="cite-bracket">]</span></a></sup> They are also needed for describing mechanical vibrations, and oscillations in electrical circuits.<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">[</span>101<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Geometrical_optics">Geometrical optics</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=38" title="Edit section: Geometrical optics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p><a href="/wiki/Geometrical_optics" title="Geometrical optics">Geometrical optics</a> provides further matrix applications. In this approximative theory, the <a href="/wiki/Light_wave" class="mw-redirect" title="Light wave">wave nature</a> of light is neglected. The result is a model in which <a href="/wiki/Ray_(optics)" title="Ray (optics)">light rays</a> are indeed <a href="/wiki/Ray_(geometry)" class="mw-redirect" title="Ray (geometry)">geometrical rays</a>. If the deflection of light rays by optical elements is small, the action of a <a href="/wiki/Lens_(optics)" class="mw-redirect" title="Lens (optics)">lens</a> or reflective element on a given light ray can be expressed as multiplication of a two-component vector with a two-by-two matrix called <a href="/wiki/Ray_transfer_matrix_analysis" title="Ray transfer matrix analysis">ray transfer matrix analysis</a>: the vector's components are the light ray's slope and its distance from the optical axis, while the matrix encodes the properties of the optical element. There are two kinds of matrices, viz. a <i>refraction matrix</i> describing the refraction at a lens surface, and a <i>translation matrix</i>, describing the translation of the plane of reference to the next refracting surface, where another refraction matrix applies. The optical system, consisting of a combination of lenses and/or reflective elements, is simply described by the matrix resulting from the product of the components' matrices.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">[</span>102<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electronics">Electronics</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=39" title="Edit section: Electronics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Traditional <a href="/wiki/Mesh_analysis" title="Mesh analysis">mesh analysis</a> and <a href="/wiki/Nodal_analysis" title="Nodal analysis">nodal analysis</a> in electronics lead to a system of linear equations that can be described with a matrix. </p><p>The behavior of many <a href="/wiki/Electronic_component" title="Electronic component">electronic components</a> can be described using matrices. Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a 2-dimensional vector with the component's input voltage <span class="texhtml"><i>v</i><sub>1</sub></span> and input current <span class="texhtml"><i>I</i><sub>1</sub></span> as its elements, and let <span class="texhtml mvar" style="font-style:italic;">B</span> be a 2-dimensional vector with the component's output voltage <span class="texhtml"><i>v</i><sub>2</sub></span> and output current <span class="texhtml"><i>I</i><sub>2</sub></span> as its elements. Then the behavior of the electronic component can be described by <span class="texhtml"><i>B</i> = <i>H</i> · <i>A</i></span>, where <span class="texhtml mvar" style="font-style:italic;">H</span> is a 2 x 2 matrix containing one <a href="/wiki/Electrical_impedance" title="Electrical impedance">impedance</a> element (<span class="texhtml mvar" style="font-style:italic;"><i>h</i><sub>12</sub></span>), one <a href="/wiki/Admittance" title="Admittance">admittance</a> element (<span class="texhtml mvar" style="font-style:italic;"><i>h</i><sub>21</sub></span>), and two <a href="/wiki/Dimensionless_quantity" title="Dimensionless quantity">dimensionless</a> elements (<span class="texhtml"><i>h</i><sub>11</sub></span> and <span class="texhtml"><i>h</i><sub>22</sub></span>). Calculating a circuit now reduces to multiplying matrices. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="History">History</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=40" title="Edit section: History" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-11 collapsible-block" id="mf-section-11"> <p>Matrices have a long history of application in solving <a href="/wiki/Linear_equation" title="Linear equation">linear equations</a> but they were known as arrays until the 1800s. The <a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese text</a> <i><a href="/wiki/The_Nine_Chapters_on_the_Mathematical_Art" title="The Nine Chapters on the Mathematical Art">The Nine Chapters on the Mathematical Art</a></i> written in the 10th–2nd century BCE is the first example of the use of array methods to solve <a href="/wiki/System_of_linear_equations" title="System of linear equations">simultaneous equations</a>,<sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">[</span>103<span class="cite-bracket">]</span></a></sup> including the concept of <a href="/wiki/Determinant" title="Determinant">determinants</a>. In 1545 Italian mathematician <a href="/wiki/Gerolamo_Cardano" title="Gerolamo Cardano">Gerolamo Cardano</a> introduced the method to Europe when he published <i>Ars Magna</i>.<sup id="cite_ref-:1_104-0" class="reference"><a href="#cite_note-:1-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> The <a href="/wiki/Japanese_mathematics" title="Japanese mathematics">Japanese mathematician</a> <a href="/wiki/Seki_Kowa" class="mw-redirect" title="Seki Kowa">Seki</a> used the same array methods to solve simultaneous equations in 1683.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">[</span>105<span class="cite-bracket">]</span></a></sup> The Dutch mathematician<i> </i><a href="/wiki/Jan_de_Witt" class="mw-redirect" title="Jan de Witt">Jan de Witt</a> represented transformations using arrays in his 1659 book <i>Elements of Curves</i> (1659).<sup id="cite_ref-:0_106-0" class="reference"><a href="#cite_note-:0-106"><span class="cite-bracket">[</span>106<span class="cite-bracket">]</span></a></sup> Between 1700 and 1710 <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a> publicized the use of arrays for recording information or solutions and experimented with over 50 different systems of arrays.<sup id="cite_ref-:1_104-1" class="reference"><a href="#cite_note-:1-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Gabriel_Cramer" title="Gabriel Cramer">Cramer</a> presented <a href="/wiki/Cramer%27s_rule" title="Cramer's rule">his rule</a> in 1750. </p><p>The term "matrix" (Latin for "womb", "dam" (non-human female animal kept for breeding), "source", "origin", "list", and "register", are derived from <i><a href="https://en.wiktionary.org/wiki/mater#Latin" class="extiw" title="wikt:mater">mater</a></i>—mother<sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">[</span>107<span class="cite-bracket">]</span></a></sup>) was coined by <a href="/wiki/James_Joseph_Sylvester" title="James Joseph Sylvester">James Joseph Sylvester</a> in 1850,<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">[</span>108<span class="cite-bracket">]</span></a></sup> who understood a matrix as an object giving rise to several determinants today called <a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">minors</a>, that is to say, determinants of smaller matrices that derive from the original one by removing columns and rows. In an 1851 paper, Sylvester explains:<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">[</span>109<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>I have in previous papers defined a "Matrix" as a rectangular array of terms, out of which different systems of determinants may be engendered from the womb of a common parent.</p></blockquote> <p><a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Arthur Cayley</a> published a treatise on geometric transformations using matrices that were not rotated versions of the coefficients being investigated as had previously been done. Instead, he defined operations such as addition, subtraction, multiplication, and division as transformations of those matrices and showed the associative and distributive properties held. Cayley investigated and demonstrated the non-commutative property of matrix multiplication as well as the commutative property of matrix addition.<sup id="cite_ref-:1_104-2" class="reference"><a href="#cite_note-:1-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> Early matrix theory had limited the use of arrays almost exclusively to determinants and Arthur Cayley's abstract matrix operations were revolutionary. He was instrumental in proposing a matrix concept independent of equation systems. In 1858 <a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Cayley</a> published his <i>A memoir on the theory of matrices</i><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">[</span>110<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">[</span>111<span class="cite-bracket">]</span></a></sup> in which he proposed and demonstrated the <a href="/wiki/Cayley%E2%80%93Hamilton_theorem" title="Cayley–Hamilton theorem">Cayley–Hamilton theorem</a>.<sup id="cite_ref-:1_104-3" class="reference"><a href="#cite_note-:1-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> </p><p>The English mathematician <a href="/wiki/Cuthbert_Edmund_Cullis" title="Cuthbert Edmund Cullis">Cuthbert Edmund Cullis</a> was the first to use modern bracket notation for matrices in 1913 and he simultaneously demonstrated the first significant use of the notation <span class="texhtml"><b>A</b> = [<i>a<sub>i,j</sub></i>]</span> to represent a matrix where <span class="texhtml mvar" style="font-style:italic;">a<sub>i,j</sub></span> refers to the <span class="texhtml mvar" style="font-style:italic;">i</span>th row and the <span class="texhtml mvar" style="font-style:italic;">j</span>th column.<sup id="cite_ref-:1_104-4" class="reference"><a href="#cite_note-:1-104"><span class="cite-bracket">[</span>104<span class="cite-bracket">]</span></a></sup> </p><p>The modern study of determinants sprang from several sources.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">[</span>112<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Number_theory" title="Number theory">Number-theoretical</a> problems led <a href="/wiki/Gauss" class="mw-redirect" title="Gauss">Gauss</a> to relate coefficients of <a href="/wiki/Quadratic_form" title="Quadratic form">quadratic forms</a>, that is, expressions such as <span class="texhtml"><i>x</i><sup>2</sup> + <i>xy</i> − 2<i>y</i><sup>2</sup>,</span> and <a href="/wiki/Linear_map" title="Linear map">linear maps</a> in three dimensions to matrices. <a href="/wiki/Gotthold_Eisenstein" title="Gotthold Eisenstein">Eisenstein</a> further developed these notions, including the remark that, in modern parlance, <a href="/wiki/Matrix_product" class="mw-redirect" title="Matrix product">matrix products</a> are <a href="/wiki/Non-commutative" class="mw-redirect" title="Non-commutative">non-commutative</a>. <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Cauchy</a> was the first to prove general statements about determinants, using as the definition of the determinant of a matrix <span class="texhtml"><b>A</b> = [<i>a<sub>i, j</sub></i>]</span> the following: replace the powers <span class="texhtml mvar" style="font-style:italic;">a<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">k</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">j</sub></span></span></span> by <span class="texhtml mvar" style="font-style:italic;">a<sub>jk</sub></span> in the <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}a_{2}\cdots a_{n}\prod _{i<j}(a_{j}-a_{i})\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋯<!-- ⋯ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <munder> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo><</mo> <mi>j</mi> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thickmathspace"></mspace> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}a_{2}\cdots a_{n}\prod _{i<j}(a_{j}-a_{i})\;}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/900f5b2c276b570b623498e7fc64bb845418401c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:23.334ex; height:5.843ex;" alt="{\displaystyle a_{1}a_{2}\cdots a_{n}\prod _{i<j}(a_{j}-a_{i})\;}"></noscript><span class="lazy-image-placeholder" style="width: 23.334ex;height: 5.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/900f5b2c276b570b623498e7fc64bb845418401c" data-alt="{\displaystyle a_{1}a_{2}\cdots a_{n}\prod _{i<j}(a_{j}-a_{i})\;}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,</dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \prod }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∏<!-- ∏ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \prod }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423a3226e80f549c55e3873aecbf57af9296e0fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.194ex; height:2.843ex;" alt="{\displaystyle \textstyle \prod }"></noscript><span class="lazy-image-placeholder" style="width: 2.194ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423a3226e80f549c55e3873aecbf57af9296e0fd" data-alt="{\displaystyle \textstyle \prod }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> denotes the <a href="/wiki/Multiplication" title="Multiplication">product</a> of the indicated terms. He also showed, in 1829, that the <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of symmetric matrices are real.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">[</span>113<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Jacobi</a> studied "functional determinants"—later called <a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobi determinants</a> by Sylvester—which can be used to describe geometric transformations at a local (or <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a>) level, see <a href="#Jacobi_matrix">above</a>. <a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Kronecker</a>'s <i>Vorlesungen über die Theorie der Determinanten</i><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">[</span>114<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Weierstrass'</a> <i>Zur Determinantentheorie</i>,<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">[</span>115<span class="cite-bracket">]</span></a></sup> both published in 1903, first treated determinants <a href="/wiki/Axiom" title="Axiom">axiomatically</a>, as opposed to previous more concrete approaches such as the mentioned formula of Cauchy. At that point, determinants were firmly established. </p><p>Many theorems were first established for small matrices only, for example, the <a href="/wiki/Cayley%E2%80%93Hamilton_theorem" title="Cayley–Hamilton theorem">Cayley–Hamilton theorem</a> was proved for 2×2 matrices by Cayley in the aforementioned memoir, and by <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a> for 4×4 matrices. <a href="/wiki/Georg_Frobenius" class="mw-redirect" title="Georg Frobenius">Frobenius</a>, working on <a href="/wiki/Bilinear_form" title="Bilinear form">bilinear forms</a>, generalized the theorem to all dimensions (1898). Also at the end of the 19th century, the <a href="/wiki/Gauss%E2%80%93Jordan_elimination" class="mw-redirect" title="Gauss–Jordan elimination">Gauss–Jordan elimination</a> (generalizing a special case now known as <a href="/wiki/Gauss_elimination" class="mw-redirect" title="Gauss elimination">Gauss elimination</a>) was established by <a href="/wiki/Wilhelm_Jordan_(geodesist)" title="Wilhelm Jordan (geodesist)">Wilhelm Jordan</a>. In the early 20th century, matrices attained a central role in linear algebra,<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">[</span>116<span class="cite-bracket">]</span></a></sup> partially due to their use in the classification of the <a href="/wiki/Hypercomplex_number" title="Hypercomplex number">hypercomplex number</a> systems of the previous century. </p><p>The inception of <a href="/wiki/Matrix_mechanics" title="Matrix mechanics">matrix mechanics</a> by <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Heisenberg</a>, <a href="/wiki/Max_Born" title="Max Born">Born</a> and <a href="/wiki/Pascual_Jordan" title="Pascual Jordan">Jordan</a> led to studying matrices with infinitely many rows and columns.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">[</span>117<span class="cite-bracket">]</span></a></sup> Later, <a href="/wiki/John_von_Neumann" title="John von Neumann">von Neumann</a> carried out the <a href="/wiki/Mathematical_formulation_of_quantum_mechanics" title="Mathematical formulation of quantum mechanics">mathematical formulation of quantum mechanics</a>, by further developing <a href="/wiki/Functional_analysis" title="Functional analysis">functional analytic</a> notions such as <a href="/wiki/Linear_operator" class="mw-redirect" title="Linear operator">linear operators</a> on <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a>, which, very roughly speaking, correspond to <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, but with an infinity of <a href="/wiki/Hamel_dimension" class="mw-redirect" title="Hamel dimension">independent directions</a>. </p> <div class="mw-heading mw-heading3"><h3 id='Other_historical_usages_of_the_word_"matrix"_in_mathematics'><span id="Other_historical_usages_of_the_word_.22matrix.22_in_mathematics"></span>Other historical usages of the word "matrix" in mathematics</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=41" title='Edit section: Other historical usages of the word "matrix" in mathematics' class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The word has been used in unusual ways by at least two authors of historical importance. </p><p><a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Bertrand Russell</a> and <a href="/wiki/Alfred_North_Whitehead" title="Alfred North Whitehead">Alfred North Whitehead</a> in their <i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i> (1910–1913) use the word "matrix" in the context of their <a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">axiom of reducibility</a>. They proposed this axiom as a means to reduce any function to one of lower type, successively, so that at the "bottom" (0 order) the function is identical to its <a href="/wiki/Extension_(predicate_logic)" title="Extension (predicate logic)">extension</a>:<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">[</span>118<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1244412712"><blockquote class="templatequote"><p>Let us give the name of <i>matrix</i> to any function, of however many variables, that does not involve any <a href="/wiki/Apparent_variable" class="mw-redirect" title="Apparent variable">apparent variables</a>. Then, any possible function other than a matrix derives from a matrix using generalization, that is, by considering the proposition that the function in question is true with all possible values or with some value of one of the arguments, the other argument or arguments remaining undetermined.</p></blockquote> <p>For example, a function <span class="texhtml">Φ(<i>x, y</i>)</span> of two variables <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">y</span> can be reduced to a <i>collection</i> of functions of a single variable, for example, <span class="texhtml mvar" style="font-style:italic;">y</span>, by "considering" the function for all possible values of "individuals" <span class="texhtml mvar" style="font-style:italic;">a<sub>i</sub></span> substituted in place of a variable <span class="texhtml mvar" style="font-style:italic;">x</span>. And then the resulting collection of functions of the single variable <span class="texhtml mvar" style="font-style:italic;">y</span>, that is, <span class="texhtml">∀<i>a<sub>i</sub></i>: Φ(<i>a<sub>i</sub>, y</i>)</span>, can be reduced to a "matrix" of values by "considering" the function for all possible values of "individuals" <span class="texhtml mvar" style="font-style:italic;">b<sub>i</sub></span> substituted in place of variable <span class="texhtml mvar" style="font-style:italic;">y</span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \forall b_{j}\forall a_{i}:\phi (a_{i},b_{j}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi mathvariant="normal">∀<!-- ∀ --></mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \forall b_{j}\forall a_{i}:\phi (a_{i},b_{j}).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21a192144aae927542bc2a3804dba168d3d89dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:17.271ex; height:3.009ex;" alt="{\displaystyle \forall b_{j}\forall a_{i}:\phi (a_{i},b_{j}).}"></noscript><span class="lazy-image-placeholder" style="width: 17.271ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f21a192144aae927542bc2a3804dba168d3d89dd" data-alt="{\displaystyle \forall b_{j}\forall a_{i}:\phi (a_{i},b_{j}).}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> </p><p><a href="/wiki/Alfred_Tarski" title="Alfred Tarski">Alfred Tarski</a> in his 1946 <i>Introduction to Logic</i> used the word "matrix" synonymously with the notion of <a href="/wiki/Truth_table" title="Truth table">truth table</a> as used in mathematical logic.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">[</span>119<span class="cite-bracket">]</span></a></sup> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(12)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=42" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-12 collapsible-block" id="mf-section-12"> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><noscript><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" data-file-width="128" data-file-height="128"></noscript><span class="lazy-image-placeholder" style="width: 28px;height: 28px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" data-alt="icon" data-width="28" data-height="28" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-class="mw-file-element"> </span></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 30em;"> <ul><li><a href="/wiki/List_of_named_matrices" title="List of named matrices">List of named matrices</a></li> <li><a href="/wiki/Algebraic_multiplicity" class="mw-redirect" title="Algebraic multiplicity">Algebraic multiplicity</a> – Multiplicity of an eigenvalue as a root of the characteristic polynomial</li> <li><a href="/wiki/Geometric_multiplicity" class="mw-redirect" title="Geometric multiplicity">Geometric multiplicity</a> – Dimension of the eigenspace associated with an eigenvalue</li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a> – Orthonormalization of a set of vectors</li> <li><a href="/wiki/Irregular_matrix" title="Irregular matrix">Irregular matrix</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a> – Specialized notation for multivariable calculus</li> <li><a href="/wiki/Matrix_function" class="mw-redirect" title="Matrix function">Matrix function</a> – Function that maps matrices to matrices<span style="display:none" class="category-annotation-with-redirected-description">Pages displaying short descriptions of redirect targets</span></li> <li><a href="/wiki/Matrix_multiplication_algorithm" title="Matrix multiplication algorithm">Matrix multiplication algorithm</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a> — A generalization of matrices with any number of indices</li> <li><a href="/wiki/Bohemian_matrices" title="Bohemian matrices">Bohemian matrices</a> – Set of matrices</li> <li><a href="/wiki/Category_of_matrices" title="Category of matrices">Category of matrices</a> — The algebraic structure formed by matrices and their multiplication</li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(13)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notes">Notes</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=43" title="Edit section: Notes" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-13 collapsible-block" id="mf-section-13"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">However, in the case of adjacency matrices, <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a> or a variant of it allows the simultaneous computation of the number of paths between any two vertices, and of the shortest length of a path between two vertices.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang2002">2002</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFFraleigh1976">Fraleigh (1976</a>, p. 209)</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFNering1970">Nering (1970</a>, p. 37)</span> </li> <li id="cite_note-:4-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Matrix.html">"Matrix"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Matrix&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FMatrix.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Oualline <a href="#CITEREFOualline2003">2003</a>, Ch. 5</span> </li> <li id="cite_note-Pop-Furdui-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Pop-Furdui_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Pop-Furdui_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPopFurdui2017" class="citation book cs1">Pop; Furdui (2017). <i>Square Matrices of Order 2</i>. Springer International Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-319-54938-5" title="Special:BookSources/978-3-319-54938-5"><bdi>978-3-319-54938-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Square+Matrices+of+Order+2&rft.pub=Springer+International+Publishing&rft.date=2017&rft.isbn=978-3-319-54938-5&rft.au=Pop&rft.au=Furdui&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition I.2.1 (addition), Definition I.2.4 (scalar multiplication), and Definition I.2.33 (transpose)</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Theorem I.2.6</span> </li> <li id="cite_note-:5-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-:5_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:5_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathsisfun.com/algebra/matrix-multiplying.html">"How to Multiply Matrices"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=How+to+Multiply+Matrices&rft_id=https%3A%2F%2Fmathsisfun.com%2Falgebra%2Fmatrix-multiplying.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition I.2.20</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Theorem I.2.24</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Ch. 4 and 5</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><a href="#CITEREFBronson1970">Bronson (1970</a>, p. 16)</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1972">Kreyszig (1972</a>, p. 220)</span> </li> <li id="cite_note-Protter_1970_869-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-Protter_1970_869_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Protter_1970_869_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFProtterMorrey1970">Protter & Morrey (1970</a>, p. 869)</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFKreyszig1972">Kreyszig (1972</a>, pp. 241, 244)</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchneiderBarker2012" class="citation cs2">Schneider, Hans; Barker, George Phillip (2012), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9vjBAgAAQBAJ&pg=PA251"><i>Matrices and Linear Algebra</i></a>, Dover Books on Mathematics, Courier Dover Corporation, p. 251, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-13930-2" title="Special:BookSources/978-0-486-13930-2"><bdi>978-0-486-13930-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrices+and+Linear+Algebra&rft.series=Dover+Books+on+Mathematics&rft.pages=251&rft.pub=Courier+Dover+Corporation&rft.date=2012&rft.isbn=978-0-486-13930-2&rft.aulast=Schneider&rft.aufirst=Hans&rft.au=Barker%2C+George+Phillip&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9vjBAgAAQBAJ%26pg%3DPA251&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>.</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerlis1991" class="citation cs2">Perlis, Sam (1991), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5_sxtcnvLhoC&pg=PA103"><i>Theory of Matrices</i></a>, Dover books on advanced mathematics, Courier Dover Corporation, p. 103, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-66810-9" title="Special:BookSources/978-0-486-66810-9"><bdi>978-0-486-66810-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+Matrices&rft.series=Dover+books+on+advanced+mathematics&rft.pages=103&rft.pub=Courier+Dover+Corporation&rft.date=1991&rft.isbn=978-0-486-66810-9&rft.aulast=Perlis&rft.aufirst=Sam&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5_sxtcnvLhoC%26pg%3DPA103&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>.</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnton2010" class="citation cs2">Anton, Howard (2010), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=YmcQJoFyZ5gC&pg=PA414"><i>Elementary Linear Algebra</i></a> (10th ed.), John Wiley & Sons, p. 414, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-470-45821-1" title="Special:BookSources/978-0-470-45821-1"><bdi>978-0-470-45821-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Linear+Algebra&rft.pages=414&rft.edition=10th&rft.pub=John+Wiley+%26+Sons&rft.date=2010&rft.isbn=978-0-470-45821-1&rft.aulast=Anton&rft.aufirst=Howard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYmcQJoFyZ5gC%26pg%3DPA414&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>.</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornJohnson2012" class="citation cs2">Horn, Roger A.; Johnson, Charles R. (2012), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5I5AYeeh0JUC&pg=PA17"><i>Matrix Analysis</i></a> (2nd ed.), Cambridge University Press, p. 17, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-83940-2" title="Special:BookSources/978-0-521-83940-2"><bdi>978-0-521-83940-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Analysis&rft.pages=17&rft.edition=2nd&rft.pub=Cambridge+University+Press&rft.date=2012&rft.isbn=978-0-521-83940-2&rft.aulast=Horn&rft.aufirst=Roger+A.&rft.au=Johnson%2C+Charles+R.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D5I5AYeeh0JUC%26pg%3DPA17&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, I.2.21 and 22</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Greub <a href="#CITEREFGreub1975">1975</a>, Section III.2</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition II.3.3</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">Greub <a href="#CITEREFGreub1975">1975</a>, Section III.1</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Theorem II.3.22</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Theorem 2.5.6</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition I.2.28</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition I.5.13</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Chapter 7</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Theorem 7.2.1</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Example 4.0.6, p. 169</span> </li> <li id="cite_note-:3-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-:3_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://britannica.com/science/matrix-mathematics">"Matrix | mathematics"</a>. <i>Encyclopedia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+Britannica&rft.atitle=Matrix+%7C+mathematics&rft_id=https%3A%2F%2Fbritannica.com%2Fscience%2Fmatrix-mathematics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition III.2.1</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Theorem III.2.12</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Corollary III.2.16</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text">Mirsky <a href="#CITEREFMirsky1990">1990</a>, Theorem 1.4.1</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Theorem III.3.18</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><i>Eigen</i> means "own" in <a href="/wiki/German_language" title="German language">German</a> and in <a href="/wiki/Dutch_language" title="Dutch language">Dutch</a>.</span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition III.4.1</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Definition III.4.9</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text">Brown <a href="#CITEREFBrown1991">1991</a>, Corollary III.4.10</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">Householder <a href="#CITEREFHouseholder1975">1975</a>, Ch. 7</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">Bau III & Trefethen <a href="#CITEREFBau_IIITrefethen1997">1997</a></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Golub & Van Loan <a href="#CITEREFGolubVan_Loan1996">1996</a>, Algorithm 1.3.1</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Golub & Van Loan <a href="#CITEREFGolubVan_Loan1996">1996</a>, Chapters 9 and 10, esp. section 10.2</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">Golub & Van Loan <a href="#CITEREFGolubVan_Loan1996">1996</a>, Chapter 2.3</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrcar2011" class="citation journal cs1">Grcar, Joseph F. (2011-01-01). <a rel="nofollow" class="external text" href="https://epubs.siam.org/doi/10.1137/080734716">"John von Neumann's Analysis of Gaussian Elimination and the Origins of Modern Numerical Analysis"</a>. <i>SIAM Review</i>. <b>53</b> (4): 607–682. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F080734716">10.1137/080734716</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0036-1445">0036-1445</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Review&rft.atitle=John+von+Neumann%27s+Analysis+of+Gaussian+Elimination+and+the+Origins+of+Modern+Numerical+Analysis&rft.volume=53&rft.issue=4&rft.pages=607-682&rft.date=2011-01-01&rft_id=info%3Adoi%2F10.1137%2F080734716&rft.issn=0036-1445&rft.aulast=Grcar&rft.aufirst=Joseph+F.&rft_id=https%3A%2F%2Fepubs.siam.org%2Fdoi%2F10.1137%2F080734716&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">For example, <a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a>, see Wolfram <a href="#CITEREFWolfram2003">2003</a>, Ch. 3.7</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">Press, Flannery & Teukolsky et al. <a href="#CITEREFPressFlanneryTeukolskyVetterling1992">1992</a></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">Stoer & Bulirsch <a href="#CITEREFStoerBulirsch2002">2002</a>, Section 4.1</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Theorem 2.5.4</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text">Horn & Johnson <a href="#CITEREFHornJohnson1985">1985</a>, Ch. 3.1, 3.2</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text">Arnold & Cooke <a href="#CITEREFArnoldCooke1992">1992</a>, Sections 14.5, 7, 8</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text">Bronson <a href="#CITEREFBronson1989">1989</a>, Ch. 15</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-56">^</a></b></span> <span class="reference-text">Coburn <a href="#CITEREFCoburn1955">1955</a>, Ch. V</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang2002">2002</a>, Chapter XIII</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang2002">2002</a>, XVII.1, p. 643</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang2002">2002</a>, Proposition XIII.4.16</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">Reichl <a href="#CITEREFReichl2004">2004</a>, Section L.2</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">Greub <a href="#CITEREFGreub1975">1975</a>, Section III.3</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Greub <a href="#CITEREFGreub1975">1975</a>, Section III.3.13</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a href="#CITEREFPerrone2024">Perrone (2024)</a>, pp. 99–100</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">See any standard reference in a group.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text">Additionally, the group must be <a href="/wiki/Closed_subset" class="mw-redirect" title="Closed subset">closed</a> in the general linear group.</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text">Baker <a href="#CITEREFBaker2003">2003</a>, Def. 1.30</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text">Baker <a href="#CITEREFBaker2003">2003</a>, Theorem 1.2</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text">Artin <a href="#CITEREFArtin1991">1991</a>, Chapter 4.5</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">Rowen <a href="#CITEREFRowen2008">2008</a>, Example 19.2, p. 198</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">See any reference in representation theory or <a href="/wiki/Group_representation" title="Group representation">group representation</a>.</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">See the item "Matrix" in Itõ, ed. <a href="#CITEREFIt%C3%B51987">1987</a></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">"Not much of matrix theory carries over to infinite-dimensional spaces, and what does is not so useful, but it sometimes helps." Halmos <a href="#CITEREFHalmos1982">1982</a>, p. 23, Chapter 5</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">"Empty Matrix: A matrix is empty if either its row or column dimension is zero", <a rel="nofollow" class="external text" href="https://omatrix.com/manual/glossary.htm">Glossary</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090429015728/http://www.omatrix.com/manual/glossary.htm">Archived</a> 2009-04-29 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, O-Matrix v6 User Guide</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text">"A matrix having at least one dimension equal to zero is called an empty matrix", <a rel="nofollow" class="external text" href="https://system.nada.kth.se/unix/software/matlab/Release_14.1/techdoc/matlab_prog/ch_dat29.html">MATLAB Data Structures</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20091228102653/http://www.system.nada.kth.se/unix/software/matlab/Release_14.1/techdoc/matlab_prog/ch_dat29.html">Archived</a> 2009-12-28 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text">Fudenberg & Tirole <a href="#CITEREFFudenbergTirole1983">1983</a>, Section 1.1.1</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Manning <a href="#CITEREFManning1999">1999</a>, Section 15.3.4</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">Ward <a href="#CITEREFWard1997">1997</a>, Ch. 2.8</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text">Stinson <a href="#CITEREFStinson2005">2005</a>, Ch. 1.1.5 and 1.2.4</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text">Association for Computing Machinery <a href="#CITEREFAssociation_for_Computing_Machinery1979">1979</a>, Ch. 7</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text">Godsil & Royle <a href="#CITEREFGodsilRoyle2004">2004</a>, Ch. 8.1</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text">Punnen <a href="#CITEREFPunnen2002">2002</a></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang1987a">1987a</a>, Ch. XVI.6</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">Nocedal <a href="#CITEREFNocedal2006">2006</a>, Ch. 16</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang1987a">1987a</a>, Ch. XVI.1</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Lang <a href="#CITEREFLang1987a">1987a</a>, Ch. XVI.5. For a more advanced, and more general statement see Lang <a href="#CITEREFLang1969">1969</a>, Ch. VI.2</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text">Gilbarg & Trudinger <a href="#CITEREFGilbargTrudinger2001">2001</a></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text">Šolin <a href="#CITEREF%C5%A0olin2005">2005</a>, Ch. 2.5. See also <a href="/wiki/Stiffness_method" class="mw-redirect" title="Stiffness method">stiffness method</a>.</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text">Latouche & Ramaswami <a href="#CITEREFLatoucheRamaswami1999">1999</a></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">Mehata & Srinivasan <a href="#CITEREFMehataSrinivasan1978">1978</a>, Ch. 2.8</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHealy1986" class="citation cs2"><a href="/wiki/Michael_Healy_(statistician)" title="Michael Healy (statistician)">Healy, Michael</a> (1986), <i>Matrices for Statistics</i>, <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-850702-4" title="Special:BookSources/978-0-19-850702-4"><bdi>978-0-19-850702-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrices+for+Statistics&rft.pub=Oxford+University+Press&rft.date=1986&rft.isbn=978-0-19-850702-4&rft.aulast=Healy&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">Krzanowski <a href="#CITEREFKrzanowski1988">1988</a>, Ch. 2.2., p. 60</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text">Krzanowski <a href="#CITEREFKrzanowski1988">1988</a>, Ch. 4.1</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><a href="/wiki/Brian_Conrey" title="Brian Conrey">Conrey</a> <a href="#CITEREFConrey2007">2007</a></span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text">Zabrodin, Brezin & Kazakov et al. <a href="#CITEREFZabrodinBrezinKazakovSerban2006">2006</a></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">Itzykson & Zuber <a href="#CITEREFItzyksonZuber1980">1980</a>, Ch. 2</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text">see Burgess & Moore <a href="#CITEREFBurgessMoore2007">2007</a>, section 1.6.3. (SU(3)), section 2.4.3.2. (Kobayashi–Maskawa matrix)</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">Schiff <a href="#CITEREFSchiff1968">1968</a>, Ch. 6</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Bohm <a href="#CITEREFBohm2001">2001</a>, sections II.4 and II.8</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text">Weinberg <a href="#CITEREFWeinberg1995">1995</a>, Ch. 3</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text">Wherrett <a href="#CITEREFWherrett1987">1987</a>, part II</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text">Riley, Hobson & Bence <a href="#CITEREFRileyHobsonBence1997">1997</a>, 7.17</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text">Guenther <a href="#CITEREFGuenther1990">1990</a>, Ch. 5</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text">Shen, Crossley & Lun <a href="#CITEREFShenCrossleyLun1999">1999</a> cited by Bretscher <a href="#CITEREFBretscher2005">2005</a>, p. 1</span> </li> <li id="cite_note-:1-104"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_104-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_104-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_104-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_104-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-:1_104-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><i> Discrete Mathematics</i> 4th Ed. Dossey, Otto, Spense, Vanden Eynden, Published by Addison Wesley, October 10, 2001 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-07912-1" title="Special:BookSources/978-0-321-07912-1">978-0-321-07912-1</a>, p. 564-565</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeedhamWang_Ling1959" class="citation book cs1"><a href="/wiki/Joseph_Needham" title="Joseph Needham">Needham, Joseph</a>; <a href="/wiki/Wang_Ling_(historian)" title="Wang Ling (historian)">Wang Ling</a> (1959). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jfQ9E0u4pLAC&pg=PA117"><i>Science and Civilisation in China</i></a>. Vol. III. Cambridge: Cambridge University Press. p. 117. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-05801-8" title="Special:BookSources/978-0-521-05801-8"><bdi>978-0-521-05801-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Science+and+Civilisation+in+China&rft.place=Cambridge&rft.pages=117&rft.pub=Cambridge+University+Press&rft.date=1959&rft.isbn=978-0-521-05801-8&rft.aulast=Needham&rft.aufirst=Joseph&rft.au=Wang+Ling&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjfQ9E0u4pLAC%26pg%3DPA117&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-:0-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_106-0">^</a></b></span> <span class="reference-text"><i>Discrete Mathematics</i> 4th Ed. Dossey, Otto, Spense, Vanden Eynden, Published by Addison Wesley, October 10, 2001 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-321-07912-1" title="Special:BookSources/978-0-321-07912-1">978-0-321-07912-1</a>, p. 564</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://merriam-webster.com/dictionary/matrix"><i>Merriam-Webster dictionary</i></a>, Merriam-Webster<span class="reference-accessdate">, retrieved <span class="nowrap">April 20,</span> 2009</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Merriam-Webster+dictionary&rft.pub=Merriam-Webster&rft_id=https%3A%2F%2Fmerriam-webster.com%2Fdictionary%2Fmatrix&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text">Although many sources state that J. J. Sylvester coined the mathematical term "matrix" in 1848, Sylvester published nothing in 1848. (For proof that Sylvester published nothing in 1848, see J. J. Sylvester with H. F. Baker, ed., <i>The Collected Mathematical Papers of James Joseph Sylvester</i> (Cambridge, England: Cambridge University Press, 1904), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=r-kZAQAAIAAJ&pg=PR6">vol. 1.</a>) His earliest use of the term "matrix" occurs in 1850 in J. J. Sylvester (1850) "Additions to the articles in the September number of this journal, "On a new class of theorems," and on Pascal's theorem," <i>The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science</i>, <b>37</b>: 363-370. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CBhDAQAAIAAJ&pg=PA369">From page 369</a>: "For this purpose, we must commence, not with a square, but with an oblong arrangement of terms consisting, suppose, of m lines and n columns. This does not in itself represent a determinant, but is, as it were, a Matrix out of which we may form various systems of determinants ... "</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text">The Collected Mathematical Papers of James Joseph Sylvester: 1837–1853, <a rel="nofollow" class="external text" href="https://books.google.com/books?id=5GQPlxWrDiEC&pg=PA247">Paper 37</a>, p. 247</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><i>Phil.Trans.</i> 1858, vol.148, pp.17-37 <i>Math. Papers II</i> 475-496</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">Dieudonné, ed. <a href="#CITEREFDieudonn%C3%A91978">1978</a>, Vol. 1, Ch. III, p. 96</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text">Knobloch <a href="#CITEREFKnobloch1994">1994</a></span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text">Hawkins <a href="#CITEREFHawkins1975">1975</a></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text">Kronecker <a href="#CITEREFKronecker1897">1897</a></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text">Weierstrass <a href="#CITEREFWeierstrass1915">1915</a>, pp. 271–286</span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text">Bôcher <a href="#CITEREFB%C3%B4cher2004">2004</a></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text">Mehra & Rechenberg <a href="#CITEREFMehraRechenberg1987">1987</a></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text">Whitehead, Alfred North; and Russell, Bertrand (1913) <i>Principia Mathematica to *56</i>, Cambridge at the University Press, Cambridge UK (republished 1962) cf page 162ff.</span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text">Tarski, Alfred; (1946) <i>Introduction to Logic and the Methodology of Deductive Sciences</i>, Dover Publications, Inc, New York NY, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-28462-X" title="Special:BookSources/0-486-28462-X">0-486-28462-X</a>.</span> </li> </ol></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width reflist-columns-3"> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(14)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=44" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-14 collapsible-block" id="mf-section-14"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAnton1987" class="citation cs2">Anton, Howard (1987), <i>Elementary Linear Algebra</i> (5th ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">Wiley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-84819-0" title="Special:BookSources/0-471-84819-0"><bdi>0-471-84819-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elementary+Linear+Algebra&rft.place=New+York&rft.edition=5th&rft.pub=Wiley&rft.date=1987&rft.isbn=0-471-84819-0&rft.aulast=Anton&rft.aufirst=Howard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArnoldCooke1992" class="citation cs2"><a href="/wiki/Vladimir_Arnold" title="Vladimir Arnold">Arnold, Vladimir I.</a>; <a href="/w/index.php?title=Roger_Cooke_(mathematician)&action=edit&redlink=1" class="new" title="Roger Cooke (mathematician) (page does not exist)">Cooke, Roger</a> (1992), <i>Ordinary differential equations</i>, Berlin, DE; New York, NY: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-54813-3" title="Special:BookSources/978-3-540-54813-3"><bdi>978-3-540-54813-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ordinary+differential+equations&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=1992&rft.isbn=978-3-540-54813-3&rft.aulast=Arnold&rft.aufirst=Vladimir+I.&rft.au=Cooke%2C+Roger&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArtin1991" class="citation cs2"><a href="/wiki/Michael_Artin" title="Michael Artin">Artin, Michael</a> (1991), <i>Algebra</i>, <a href="/wiki/Prentice_Hall" title="Prentice Hall">Prentice Hall</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-510-1" title="Special:BookSources/978-0-89871-510-1"><bdi>978-0-89871-510-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.pub=Prentice+Hall&rft.date=1991&rft.isbn=978-0-89871-510-1&rft.aulast=Artin&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAssociation_for_Computing_Machinery1979" class="citation cs2">Association for Computing Machinery (1979), <i>Computer Graphics</i>, Tata McGraw–Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-059376-3" title="Special:BookSources/978-0-07-059376-3"><bdi>978-0-07-059376-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Computer+Graphics&rft.pub=Tata+McGraw%E2%80%93Hill&rft.date=1979&rft.isbn=978-0-07-059376-3&rft.au=Association+for+Computing+Machinery&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBaker2003" class="citation cs2">Baker, Andrew J. (2003), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/matrixgroupsintr0000bake"><i>Matrix Groups: An Introduction to Lie Group Theory</i></a></span>, Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-85233-470-3" title="Special:BookSources/978-1-85233-470-3"><bdi>978-1-85233-470-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Groups%3A+An+Introduction+to+Lie+Group+Theory&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=2003&rft.isbn=978-1-85233-470-3&rft.aulast=Baker&rft.aufirst=Andrew+J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmatrixgroupsintr0000bake&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBau_IIITrefethen1997" class="citation cs2">Bau III, David; <a href="/wiki/Lloyd_N._Trefethen" class="mw-redirect" title="Lloyd N. Trefethen">Trefethen, Lloyd N.</a> (1997), <i>Numerical linear algebra</i>, Philadelphia, PA: Society for Industrial and Applied Mathematics, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-361-9" title="Special:BookSources/978-0-89871-361-9"><bdi>978-0-89871-361-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+linear+algebra&rft.place=Philadelphia%2C+PA&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1997&rft.isbn=978-0-89871-361-9&rft.aulast=Bau+III&rft.aufirst=David&rft.au=Trefethen%2C+Lloyd+N.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeauregardFraleigh1973" class="citation cs2">Beauregard, Raymond A.; Fraleigh, John B. (1973), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/firstcourseinlin0000beau"><i>A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields</i></a></span>, Boston: <a href="/wiki/Houghton_Mifflin_Co." class="mw-redirect" title="Houghton Mifflin Co.">Houghton Mifflin Co.</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-395-14017-X" title="Special:BookSources/0-395-14017-X"><bdi>0-395-14017-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+First+Course+In+Linear+Algebra%3A+with+Optional+Introduction+to+Groups%2C+Rings%2C+and+Fields&rft.place=Boston&rft.pub=Houghton+Mifflin+Co.&rft.date=1973&rft.isbn=0-395-14017-X&rft.aulast=Beauregard&rft.aufirst=Raymond+A.&rft.au=Fraleigh%2C+John+B.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ffirstcourseinlin0000beau&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBretscher2005" class="citation cs2">Bretscher, Otto (2005), <i>Linear Algebra with Applications</i> (3rd ed.), Prentice Hall</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+with+Applications&rft.edition=3rd&rft.pub=Prentice+Hall&rft.date=2005&rft.aulast=Bretscher&rft.aufirst=Otto&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBronson1970" class="citation cs2">Bronson, Richard (1970), <i>Matrix Methods: An Introduction</i>, New York: <a href="/wiki/Academic_Press" title="Academic Press">Academic Press</a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/70097490">70097490</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Methods%3A+An+Introduction&rft.place=New+York&rft.pub=Academic+Press&rft.date=1970&rft_id=info%3Alccn%2F70097490&rft.aulast=Bronson&rft.aufirst=Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBronson1989" class="citation cs2">Bronson, Richard (1989), <i>Schaum's outline of theory and problems of matrix operations</i>, New York: <a href="/wiki/McGraw%E2%80%93Hill" class="mw-redirect" title="McGraw–Hill">McGraw–Hill</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-007978-6" title="Special:BookSources/978-0-07-007978-6"><bdi>978-0-07-007978-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Schaum%27s+outline+of+theory+and+problems+of+matrix+operations&rft.place=New+York&rft.pub=McGraw%E2%80%93Hill&rft.date=1989&rft.isbn=978-0-07-007978-6&rft.aulast=Bronson&rft.aufirst=Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrown1991" class="citation cs2">Brown, William C. (1991), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/matricesvectorsp0000brow"><i>Matrices and vector spaces</i></a></span>, New York, NY: <a href="/wiki/Marcel_Dekker" title="Marcel Dekker">Marcel Dekker</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8247-8419-5" title="Special:BookSources/978-0-8247-8419-5"><bdi>978-0-8247-8419-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrices+and+vector+spaces&rft.place=New+York%2C+NY&rft.pub=Marcel+Dekker&rft.date=1991&rft.isbn=978-0-8247-8419-5&rft.aulast=Brown&rft.aufirst=William+C.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmatricesvectorsp0000brow&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoburn1955" class="citation cs2">Coburn, Nathaniel (1955), <i>Vector and tensor analysis</i>, New York, NY: Macmillan, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/1029828">1029828</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vector+and+tensor+analysis&rft.place=New+York%2C+NY&rft.pub=Macmillan&rft.date=1955&rft_id=info%3Aoclcnum%2F1029828&rft.aulast=Coburn&rft.aufirst=Nathaniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConrey2007" class="citation cs2">Conrey, J. Brian (2007), <i>Ranks of elliptic curves and random matrix theory</i>, <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-69964-8" title="Special:BookSources/978-0-521-69964-8"><bdi>978-0-521-69964-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ranks+of+elliptic+curves+and+random+matrix+theory&rft.pub=Cambridge+University+Press&rft.date=2007&rft.isbn=978-0-521-69964-8&rft.aulast=Conrey&rft.aufirst=J.+Brian&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFraleigh1976" class="citation cs2">Fraleigh, John B. (1976), <i>A First Course In Abstract Algebra</i> (2nd ed.), Reading: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-01984-1" title="Special:BookSources/0-201-01984-1"><bdi>0-201-01984-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+First+Course+In+Abstract+Algebra&rft.place=Reading&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1976&rft.isbn=0-201-01984-1&rft.aulast=Fraleigh&rft.aufirst=John+B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFudenbergTirole1983" class="citation cs2">Fudenberg, Drew; <a href="/wiki/Jean_Tirole" title="Jean Tirole">Tirole, Jean</a> (1983), <i>Game Theory</i>, <a href="/wiki/MIT_Press" title="MIT Press">MIT Press</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Game+Theory&rft.pub=MIT+Press&rft.date=1983&rft.aulast=Fudenberg&rft.aufirst=Drew&rft.au=Tirole%2C+Jean&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGilbargTrudinger2001" class="citation cs2">Gilbarg, David; <a href="/wiki/Neil_Trudinger" title="Neil Trudinger">Trudinger, Neil S.</a> (2001), <i>Elliptic partial differential equations of second order</i> (2nd ed.), Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-41160-4" title="Special:BookSources/978-3-540-41160-4"><bdi>978-3-540-41160-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Elliptic+partial+differential+equations+of+second+order&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=2001&rft.isbn=978-3-540-41160-4&rft.aulast=Gilbarg&rft.aufirst=David&rft.au=Trudinger%2C+Neil+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodsilRoyle2004" class="citation cs2"><a href="/wiki/Chris_Godsil" title="Chris Godsil">Godsil, Chris</a>; <a href="/wiki/Gordon_Royle" title="Gordon Royle">Royle, Gordon</a> (2004), <i>Algebraic Graph Theory</i>, Graduate Texts in Mathematics, vol. 207, Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95220-8" title="Special:BookSources/978-0-387-95220-8"><bdi>978-0-387-95220-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Graph+Theory&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer-Verlag&rft.date=2004&rft.isbn=978-0-387-95220-8&rft.aulast=Godsil&rft.aufirst=Chris&rft.au=Royle%2C+Gordon&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGolubVan_Loan1996" class="citation cs2"><a href="/wiki/Gene_H._Golub" title="Gene H. Golub">Golub, Gene H.</a>; <a href="/wiki/Charles_F._Van_Loan" title="Charles F. Van Loan">Van Loan, Charles F.</a> (1996), <i>Matrix Computations</i> (3rd ed.), Johns Hopkins, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8018-5414-9" title="Special:BookSources/978-0-8018-5414-9"><bdi>978-0-8018-5414-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Computations&rft.edition=3rd&rft.pub=Johns+Hopkins&rft.date=1996&rft.isbn=978-0-8018-5414-9&rft.aulast=Golub&rft.aufirst=Gene+H.&rft.au=Van+Loan%2C+Charles+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreub1975" class="citation cs2">Greub, Werner Hildbert (1975), <i>Linear algebra</i>, Graduate Texts in Mathematics, Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-90110-7" title="Special:BookSources/978-0-387-90110-7"><bdi>978-0-387-90110-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+algebra&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer-Verlag&rft.date=1975&rft.isbn=978-0-387-90110-7&rft.aulast=Greub&rft.aufirst=Werner+Hildbert&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1982" class="citation cs2"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul Richard</a> (1982), <i>A Hilbert space problem book</i>, Graduate Texts in Mathematics, vol. 19 (2nd ed.), Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-90685-0" title="Special:BookSources/978-0-387-90685-0"><bdi>978-0-387-90685-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0675952">0675952</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Hilbert+space+problem+book&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.series=Graduate+Texts+in+Mathematics&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1982&rft.isbn=978-0-387-90685-0&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D675952%23id-name%3DMR&rft.aulast=Halmos&rft.aufirst=Paul+Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHornJohnson1985" class="citation cs2"><a href="/wiki/Roger_Horn" title="Roger Horn">Horn, Roger A.</a>; <a href="/wiki/Charles_Royal_Johnson" title="Charles Royal Johnson">Johnson, Charles R.</a> (1985), <i>Matrix Analysis</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-38632-6" title="Special:BookSources/978-0-521-38632-6"><bdi>978-0-521-38632-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Matrix+Analysis&rft.pub=Cambridge+University+Press&rft.date=1985&rft.isbn=978-0-521-38632-6&rft.aulast=Horn&rft.aufirst=Roger+A.&rft.au=Johnson%2C+Charles+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHouseholder1975" class="citation cs2">Householder, Alston S. (1975), <i>The theory of matrices in numerical analysis</i>, New York, NY: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0378371">0378371</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+theory+of+matrices+in+numerical+analysis&rft.place=New+York%2C+NY&rft.pub=Dover+Publications&rft.date=1975&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0378371%23id-name%3DMR&rft.aulast=Householder&rft.aufirst=Alston+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKreyszig1972" class="citation cs2">Kreyszig, Erwin (1972), <a rel="nofollow" class="external text" href="https://archive.org/details/advancedengineer00krey"><i>Advanced Engineering Mathematics</i></a> (3rd ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">Wiley</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-50728-8" title="Special:BookSources/0-471-50728-8"><bdi>0-471-50728-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Advanced+Engineering+Mathematics&rft.place=New+York&rft.edition=3rd&rft.pub=Wiley&rft.date=1972&rft.isbn=0-471-50728-8&rft.aulast=Kreyszig&rft.aufirst=Erwin&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fadvancedengineer00krey&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKrzanowski1988" class="citation cs2">Krzanowski, Wojtek J. (1988), <i>Principles of multivariate analysis</i>, Oxford Statistical Science Series, vol. 3, The Clarendon Press Oxford University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-852211-9" title="Special:BookSources/978-0-19-852211-9"><bdi>978-0-19-852211-9</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0969370">0969370</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Principles+of+multivariate+analysis&rft.series=Oxford+Statistical+Science+Series&rft.pub=The+Clarendon+Press+Oxford+University+Press&rft.date=1988&rft.isbn=978-0-19-852211-9&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D969370%23id-name%3DMR&rft.aulast=Krzanowski&rft.aufirst=Wojtek+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFItô1987" class="citation cs2">Itô, Kiyosi, ed. (1987), <i>Encyclopedic dictionary of mathematics. Vol. I-IV</i> (2nd ed.), MIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-09026-1" title="Special:BookSources/978-0-262-09026-1"><bdi>978-0-262-09026-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0901762">0901762</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedic+dictionary+of+mathematics.+Vol.+I-IV&rft.edition=2nd&rft.pub=MIT+Press&rft.date=1987&rft.isbn=978-0-262-09026-1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D901762%23id-name%3DMR&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1969" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1969), <i>Analysis II</i>, <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analysis+II&rft.pub=Addison-Wesley&rft.date=1969&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1987a" class="citation cs2">Lang, Serge (1987a), <a rel="nofollow" class="external text" href="https://archive.org/details/calculusofsevera0000lang"><i>Calculus of several variables</i></a> (3rd ed.), Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-96405-8" title="Special:BookSources/978-0-387-96405-8"><bdi>978-0-387-96405-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus+of+several+variables&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.edition=3rd&rft.pub=Springer-Verlag&rft.date=1987&rft.isbn=978-0-387-96405-8&rft.aulast=Lang&rft.aufirst=Serge&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculusofsevera0000lang&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1987b" class="citation cs2">Lang, Serge (1987b), <i>Linear algebra</i>, Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-96412-6" title="Special:BookSources/978-0-387-96412-6"><bdi>978-0-387-96412-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+algebra&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=1987&rft.isbn=978-0-387-96412-6&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang2002" class="citation cs2"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (2002), <i>Algebra</i>, <a href="/wiki/Graduate_Texts_in_Mathematics" title="Graduate Texts in Mathematics">Graduate Texts in Mathematics</a>, vol. 211 (Revised third ed.), New York: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95385-4" title="Special:BookSources/978-0-387-95385-4"><bdi>978-0-387-95385-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1878556">1878556</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebra&rft.place=New+York&rft.series=Graduate+Texts+in+Mathematics&rft.edition=Revised+third&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=978-0-387-95385-4&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1878556%23id-name%3DMR&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLatoucheRamaswami1999" class="citation cs2">Latouche, Guy; Ramaswami, Vaidyanathan (1999), <i>Introduction to matrix analytic methods in stochastic modeling</i> (1st ed.), Philadelphia, PA: Society for Industrial and Applied Mathematics, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-89871-425-8" title="Special:BookSources/978-0-89871-425-8"><bdi>978-0-89871-425-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+matrix+analytic+methods+in+stochastic+modeling&rft.place=Philadelphia%2C+PA&rft.edition=1st&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.date=1999&rft.isbn=978-0-89871-425-8&rft.aulast=Latouche&rft.aufirst=Guy&rft.au=Ramaswami%2C+Vaidyanathan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManningSchütze1999" class="citation cs2">Manning, Christopher D.; Schütze, Hinrich (1999), <i>Foundations of statistical natural language processing</i>, MIT Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-13360-9" title="Special:BookSources/978-0-262-13360-9"><bdi>978-0-262-13360-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Foundations+of+statistical+natural+language+processing&rft.pub=MIT+Press&rft.date=1999&rft.isbn=978-0-262-13360-9&rft.aulast=Manning&rft.aufirst=Christopher+D.&rft.au=Sch%C3%BCtze%2C+Hinrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMehataSrinivasan1978" class="citation cs2">Mehata, K. M.; Srinivasan, S. K. (1978), <i>Stochastic processes</i>, New York, NY: McGraw–Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-096612-3" title="Special:BookSources/978-0-07-096612-3"><bdi>978-0-07-096612-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Stochastic+processes&rft.place=New+York%2C+NY&rft.pub=McGraw%E2%80%93Hill&rft.date=1978&rft.isbn=978-0-07-096612-3&rft.aulast=Mehata&rft.aufirst=K.+M.&rft.au=Srinivasan%2C+S.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMirsky1990" class="citation cs2"><a href="/wiki/Leon_Mirsky" title="Leon Mirsky">Mirsky, Leonid</a> (1990), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ULMmheb26ZcC&q=linear+algebra+determinant&pg=PA1"><i>An Introduction to Linear Algebra</i></a>, Courier Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-66434-7" title="Special:BookSources/978-0-486-66434-7"><bdi>978-0-486-66434-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Linear+Algebra&rft.pub=Courier+Dover+Publications&rft.date=1990&rft.isbn=978-0-486-66434-7&rft.aulast=Mirsky&rft.aufirst=Leonid&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DULMmheb26ZcC%26q%3Dlinear%2Balgebra%2Bdeterminant%26pg%3DPA1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNering1970" class="citation cs2">Nering, Evar D. (1970), <i>Linear Algebra and Matrix Theory</i> (2nd ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">Wiley</a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/76-91646">76-91646</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Linear+Algebra+and+Matrix+Theory&rft.place=New+York&rft.edition=2nd&rft.pub=Wiley&rft.date=1970&rft_id=info%3Alccn%2F76-91646&rft.aulast=Nering&rft.aufirst=Evar+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNocedalWright2006" class="citation cs2">Nocedal, Jorge; Wright, Stephen J. (2006), <i>Numerical Optimization</i> (2nd ed.), Berlin, DE; New York, NY: Springer-Verlag, p. 449, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-30303-1" title="Special:BookSources/978-0-387-30303-1"><bdi>978-0-387-30303-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Numerical+Optimization&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pages=449&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=2006&rft.isbn=978-0-387-30303-1&rft.aulast=Nocedal&rft.aufirst=Jorge&rft.au=Wright%2C+Stephen+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOualline2003" class="citation cs2">Oualline, Steve (2003), <i>Practical C++ programming</i>, <a href="/wiki/O%27Reilly_Media" title="O'Reilly Media">O'Reilly</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-596-00419-4" title="Special:BookSources/978-0-596-00419-4"><bdi>978-0-596-00419-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Practical+C%2B%2B+programming&rft.pub=O%27Reilly&rft.date=2003&rft.isbn=978-0-596-00419-4&rft.aulast=Oualline&rft.aufirst=Steve&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerrone2024" class="citation cs2">Perrone, Paolo (2024), <a rel="nofollow" class="external text" href="https://www.worldscientific.com/worldscibooks/10.1142/13670"><i>Starting Category Theory</i></a>, World Scientific, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789811286018_0005">10.1142/9789811286018_0005</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-12-8600-1" title="Special:BookSources/978-981-12-8600-1"><bdi>978-981-12-8600-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Starting+Category+Theory&rft.pub=World+Scientific&rft.date=2024&rft_id=info%3Adoi%2F10.1142%2F9789811286018_0005&rft.isbn=978-981-12-8600-1&rft.aulast=Perrone&rft.aufirst=Paolo&rft_id=https%3A%2F%2Fwww.worldscientific.com%2Fworldscibooks%2F10.1142%2F13670&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPressFlanneryTeukolskyVetterling1992" class="citation cs2">Press, William H.; Flannery, Brian P.; <a href="/wiki/Saul_Teukolsky" title="Saul Teukolsky">Teukolsky, Saul A.</a>; Vetterling, William T. (1992), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090906113144/http://www.mpi-hd.mpg.de/astrophysik/HEA/internal/Numerical_Recipes/f2-3.pdf">"LU Decomposition and Its Applications"</a> <span class="cs1-format">(PDF)</span>, <i>Numerical Recipes in FORTRAN: The Art of Scientific Computing</i> (2nd ed.), Cambridge University Press, pp. 34–42, archived from the original on 2009-09-06</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=LU+Decomposition+and+Its+Applications&rft.btitle=Numerical+Recipes+in+FORTRAN%3A+The+Art+of+Scientific+Computing&rft.pages=34-42&rft.edition=2nd&rft.pub=Cambridge+University+Press&rft.date=1992&rft.aulast=Press&rft.aufirst=William+H.&rft.au=Flannery%2C+Brian+P.&rft.au=Teukolsky%2C+Saul+A.&rft.au=Vetterling%2C+William+T.&rft_id=https%3A%2F%2Fmpi-hd.mpg.de%2Fastrophysik%2FHEA%2Finternal%2FNumerical_Recipes%2Ff2-3.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Citation" title="Template:Citation">citation</a>}}</code>: CS1 maint: unfit URL (<a href="/wiki/Category:CS1_maint:_unfit_URL" title="Category:CS1 maint: unfit URL">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProtterMorrey1970" class="citation cs2">Protter, Murray H.; Morrey, Charles B. Jr. (1970), <i>College Calculus with Analytic Geometry</i> (2nd ed.), Reading: <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>, <a href="/wiki/LCCN_(identifier)" class="mw-redirect" title="LCCN (identifier)">LCCN</a> <a rel="nofollow" class="external text" href="https://lccn.loc.gov/76087042">76087042</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=College+Calculus+with+Analytic+Geometry&rft.place=Reading&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1970&rft_id=info%3Alccn%2F76087042&rft.aulast=Protter&rft.aufirst=Murray+H.&rft.au=Morrey%2C+Charles+B.+Jr.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPunnenGutin2002" class="citation cs2">Punnen, Abraham P.; Gutin, Gregory (2002), <i>The traveling salesman problem and its variations</i>, Boston, MA: Kluwer Academic Publishers, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-0664-7" title="Special:BookSources/978-1-4020-0664-7"><bdi>978-1-4020-0664-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+traveling+salesman+problem+and+its+variations&rft.place=Boston%2C+MA&rft.pub=Kluwer+Academic+Publishers&rft.date=2002&rft.isbn=978-1-4020-0664-7&rft.aulast=Punnen&rft.aufirst=Abraham+P.&rft.au=Gutin%2C+Gregory&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichl2004" class="citation cs2"><a href="/wiki/Linda_Reichl" title="Linda Reichl">Reichl, Linda E.</a> (2004), <i>The transition to chaos: conservative classical systems and quantum manifestations</i>, Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-98788-0" title="Special:BookSources/978-0-387-98788-0"><bdi>978-0-387-98788-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+transition+to+chaos%3A+conservative+classical+systems+and+quantum+manifestations&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=2004&rft.isbn=978-0-387-98788-0&rft.aulast=Reichl&rft.aufirst=Linda+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRowen2008" class="citation cs2">Rowen, Louis Halle (2008), <i>Graduate Algebra: noncommutative view</i>, Providence, RI: <a href="/wiki/American_Mathematical_Society" title="American Mathematical Society">American Mathematical Society</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4153-2" title="Special:BookSources/978-0-8218-4153-2"><bdi>978-0-8218-4153-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Graduate+Algebra%3A+noncommutative+view&rft.place=Providence%2C+RI&rft.pub=American+Mathematical+Society&rft.date=2008&rft.isbn=978-0-8218-4153-2&rft.aulast=Rowen&rft.aufirst=Louis+Halle&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFŠolin2005" class="citation cs2">Šolin, Pavel (2005), <i>Partial Differential Equations and the Finite Element Method</i>, <a href="/wiki/Wiley-Interscience" class="mw-redirect" title="Wiley-Interscience">Wiley-Interscience</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-76409-0" title="Special:BookSources/978-0-471-76409-0"><bdi>978-0-471-76409-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Partial+Differential+Equations+and+the+Finite+Element+Method&rft.pub=Wiley-Interscience&rft.date=2005&rft.isbn=978-0-471-76409-0&rft.aulast=%C5%A0olin&rft.aufirst=Pavel&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStinson2005" class="citation cs2">Stinson, Douglas R. (2005), <i>Cryptography</i>, Discrete Mathematics and its Applications, Chapman & Hall/CRC, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-58488-508-5" title="Special:BookSources/978-1-58488-508-5"><bdi>978-1-58488-508-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Cryptography&rft.series=Discrete+Mathematics+and+its+Applications&rft.pub=Chapman+%26+Hall%2FCRC&rft.date=2005&rft.isbn=978-1-58488-508-5&rft.aulast=Stinson&rft.aufirst=Douglas+R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoerBulirsch2002" class="citation cs2">Stoer, Josef; Bulirsch, Roland (2002), <i>Introduction to Numerical Analysis</i> (3rd ed.), Berlin, DE; New York, NY: Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-95452-3" title="Special:BookSources/978-0-387-95452-3"><bdi>978-0-387-95452-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Numerical+Analysis&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.edition=3rd&rft.pub=Springer-Verlag&rft.date=2002&rft.isbn=978-0-387-95452-3&rft.aulast=Stoer&rft.aufirst=Josef&rft.au=Bulirsch%2C+Roland&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWard1997" class="citation cs2">Ward, J. P. (1997), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/quaternionscayle0000ward"><i>Quaternions and Cayley numbers</i></a></span>, Mathematics and its Applications, vol. 403, Dordrecht, NL: Kluwer Academic Publishers Group, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-011-5768-1">10.1007/978-94-011-5768-1</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7923-4513-8" title="Special:BookSources/978-0-7923-4513-8"><bdi>978-0-7923-4513-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1458894">1458894</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quaternions+and+Cayley+numbers&rft.place=Dordrecht%2C+NL&rft.series=Mathematics+and+its+Applications&rft.pub=Kluwer+Academic+Publishers+Group&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1458894%23id-name%3DMR&rft_id=info%3Adoi%2F10.1007%2F978-94-011-5768-1&rft.isbn=978-0-7923-4513-8&rft.aulast=Ward&rft.aufirst=J.+P.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquaternionscayle0000ward&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWolfram2003" class="citation cs2"><a href="/wiki/Stephen_Wolfram" title="Stephen Wolfram">Wolfram, Stephen</a> (2003), <i>The Mathematica Book</i> (5th ed.), Champaign, IL: Wolfram Media, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-57955-022-6" title="Special:BookSources/978-1-57955-022-6"><bdi>978-1-57955-022-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematica+Book&rft.place=Champaign%2C+IL&rft.edition=5th&rft.pub=Wolfram+Media&rft.date=2003&rft.isbn=978-1-57955-022-6&rft.aulast=Wolfram&rft.aufirst=Stephen&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Physics_references">Physics references</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=45" title="Edit section: Physics references" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBohm2001" class="citation cs2">Bohm, Arno (2001), <i>Quantum Mechanics: Foundations and Applications</i>, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-95330-2" title="Special:BookSources/0-387-95330-2"><bdi>0-387-95330-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Mechanics%3A+Foundations+and+Applications&rft.pub=Springer&rft.date=2001&rft.isbn=0-387-95330-2&rft.aulast=Bohm&rft.aufirst=Arno&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurgessMoore2007" class="citation cs2">Burgess, Cliff; Moore, Guy (2007), <i>The Standard Model. A Primer</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-86036-9" title="Special:BookSources/978-0-521-86036-9"><bdi>978-0-521-86036-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Standard+Model.+A+Primer&rft.pub=Cambridge+University+Press&rft.date=2007&rft.isbn=978-0-521-86036-9&rft.aulast=Burgess&rft.aufirst=Cliff&rft.au=Moore%2C+Guy&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuenther1990" class="citation cs2">Guenther, Robert D. (1990), <i>Modern Optics</i>, John Wiley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-60538-7" title="Special:BookSources/0-471-60538-7"><bdi>0-471-60538-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Modern+Optics&rft.pub=John+Wiley&rft.date=1990&rft.isbn=0-471-60538-7&rft.aulast=Guenther&rft.aufirst=Robert+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFItzyksonZuber1980" class="citation cs2">Itzykson, Claude; Zuber, Jean-Bernard (1980), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/quantumfieldtheo0000itzy"><i>Quantum Field Theory</i></a></span>, McGraw–Hill, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-07-032071-3" title="Special:BookSources/0-07-032071-3"><bdi>0-07-032071-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Field+Theory&rft.pub=McGraw%E2%80%93Hill&rft.date=1980&rft.isbn=0-07-032071-3&rft.aulast=Itzykson&rft.aufirst=Claude&rft.au=Zuber%2C+Jean-Bernard&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquantumfieldtheo0000itzy&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRileyHobsonBence1997" class="citation cs2">Riley, Kenneth F.; Hobson, Michael P.; Bence, Stephen J. (1997), <i>Mathematical methods for physics and engineering</i>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-55506-X" title="Special:BookSources/0-521-55506-X"><bdi>0-521-55506-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+methods+for+physics+and+engineering&rft.pub=Cambridge+University+Press&rft.date=1997&rft.isbn=0-521-55506-X&rft.aulast=Riley&rft.aufirst=Kenneth+F.&rft.au=Hobson%2C+Michael+P.&rft.au=Bence%2C+Stephen+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchiff1968" class="citation cs2">Schiff, Leonard I. (1968), <i>Quantum Mechanics</i> (3rd ed.), McGraw–Hill</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantum+Mechanics&rft.edition=3rd&rft.pub=McGraw%E2%80%93Hill&rft.date=1968&rft.aulast=Schiff&rft.aufirst=Leonard+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeinberg1995" class="citation cs2">Weinberg, Steven (1995), <a rel="nofollow" class="external text" href="https://archive.org/details/quantumtheoryoff00stev"><i>The Quantum Theory of Fields. Volume I: Foundations</i></a>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-521-55001-7" title="Special:BookSources/0-521-55001-7"><bdi>0-521-55001-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Quantum+Theory+of+Fields.+Volume+I%3A+Foundations&rft.pub=Cambridge+University+Press&rft.date=1995&rft.isbn=0-521-55001-7&rft.aulast=Weinberg&rft.aufirst=Steven&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fquantumtheoryoff00stev&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWherrett1987" class="citation cs2">Wherrett, Brian S. (1987), <i>Group Theory for Atoms, Molecules and Solids</i>, Prentice–Hall International, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-365461-3" title="Special:BookSources/0-13-365461-3"><bdi>0-13-365461-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Group+Theory+for+Atoms%2C+Molecules+and+Solids&rft.pub=Prentice%E2%80%93Hall+International&rft.date=1987&rft.isbn=0-13-365461-3&rft.aulast=Wherrett&rft.aufirst=Brian+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZabrodinBrezinKazakovSerban2006" class="citation cs2">Zabrodin, Anton; Brezin, Édouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul (2006), <i>Applications of Random Matrices in Physics (NATO Science Series II: Mathematics, Physics and Chemistry)</i>, Berlin, DE; New York, NY: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4020-4530-1" title="Special:BookSources/978-1-4020-4530-1"><bdi>978-1-4020-4530-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applications+of+Random+Matrices+in+Physics+%28NATO+Science+Series+II%3A+Mathematics%2C+Physics+and+Chemistry%29&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.pub=Springer-Verlag&rft.date=2006&rft.isbn=978-1-4020-4530-1&rft.aulast=Zabrodin&rft.aufirst=Anton&rft.au=Brezin%2C+%C3%89douard&rft.au=Kazakov%2C+Vladimir&rft.au=Serban%2C+Didina&rft.au=Wiegmann%2C+Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Historical_references">Historical references</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=46" title="Edit section: Historical references" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <ul><li>A. Cayley <i>A memoir on the theory of matrices</i>. Phil. Trans. 148 1858 17–37; Math. Papers II 475–496</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBôcher2004" class="citation cs2"><a href="/wiki/Maxime_B%C3%B4cher" title="Maxime Bôcher">Bôcher, Maxime</a> (2004), <i>Introduction to higher algebra</i>, New York, NY: <a href="/wiki/Dover_Publications" title="Dover Publications">Dover Publications</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-49570-5" title="Special:BookSources/978-0-486-49570-5"><bdi>978-0-486-49570-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+higher+algebra&rft.place=New+York%2C+NY&rft.pub=Dover+Publications&rft.date=2004&rft.isbn=978-0-486-49570-5&rft.aulast=B%C3%B4cher&rft.aufirst=Maxime&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span>, reprint of the 1907 original edition</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCayley1889" class="citation cs2 cs1-prop-long-vol"><a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Cayley, Arthur</a> (1889), <a rel="nofollow" class="external text" href="https://quod.lib.umich.edu/cgi/t/text/pageviewer-idx?c=umhistmath;cc=umhistmath;rgn=full%20text;idno=ABS3153.0001.001;didno=ABS3153.0001.001;view=image;seq=00000140"><i>The collected mathematical papers of Arthur Cayley</i></a>, vol. I (1841–1853), <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>, pp. 123–126</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+collected+mathematical+papers+of+Arthur+Cayley&rft.pages=123-126&rft.pub=Cambridge+University+Press&rft.date=1889&rft.aulast=Cayley&rft.aufirst=Arthur&rft_id=https%3A%2F%2Fquod.lib.umich.edu%2Fcgi%2Ft%2Ftext%2Fpageviewer-idx%3Fc%3Dumhistmath%3Bcc%3Dumhistmath%3Brgn%3Dfull%2520text%3Bidno%3DABS3153.0001.001%3Bdidno%3DABS3153.0001.001%3Bview%3Dimage%3Bseq%3D00000140&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDieudonné1978" class="citation cs2"><a href="/wiki/Jean_Dieudonn%C3%A9" title="Jean Dieudonné">Dieudonné, Jean</a>, ed. (1978), <i>Abrégé d'histoire des mathématiques 1700-1900</i>, Paris, FR: Hermann</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Abr%C3%A9g%C3%A9+d%27histoire+des+math%C3%A9matiques+1700-1900&rft.place=Paris%2C+FR&rft.pub=Hermann&rft.date=1978&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHawkins1975" class="citation cs2">Hawkins, Thomas (1975), "Cauchy and the spectral theory of matrices", <i><a href="/wiki/Historia_Mathematica" title="Historia Mathematica">Historia Mathematica</a></i>, <b>2</b>: 1–29, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0315-0860%2875%2990032-4">10.1016/0315-0860(75)90032-4</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0315-0860">0315-0860</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0469635">0469635</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Mathematica&rft.atitle=Cauchy+and+the+spectral+theory+of+matrices&rft.volume=2&rft.pages=1-29&rft.date=1975&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0469635%23id-name%3DMR&rft.issn=0315-0860&rft_id=info%3Adoi%2F10.1016%2F0315-0860%2875%2990032-4&rft.aulast=Hawkins&rft.aufirst=Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnobloch1994" class="citation cs2"><a href="/wiki/Eberhard_Knobloch" title="Eberhard Knobloch">Knobloch, Eberhard</a> (1994), "From Gauss to Weierstrass: determinant theory and its historical evaluations", <i>The intersection of history and mathematics</i>, Science Networks Historical Studies, vol. 15, Basel, Boston, Berlin: Birkhäuser, pp. 51–66, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1308079">1308079</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=From+Gauss+to+Weierstrass%3A+determinant+theory+and+its+historical+evaluations&rft.btitle=The+intersection+of+history+and+mathematics&rft.place=Basel%2C+Boston%2C+Berlin&rft.series=Science+Networks+Historical+Studies&rft.pages=51-66&rft.pub=Birkh%C3%A4user&rft.date=1994&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1308079%23id-name%3DMR&rft.aulast=Knobloch&rft.aufirst=Eberhard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKronecker1897" class="citation cs2"><a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Kronecker, Leopold</a> (1897), <a href="/wiki/Kurt_Hensel" title="Kurt Hensel">Hensel, Kurt</a> (ed.), <a rel="nofollow" class="external text" href="https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAS8260.0002.001"><i>Leopold Kronecker's Werke</i></a>, Teubner</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Leopold+Kronecker%27s+Werke&rft.pub=Teubner&rft.date=1897&rft.aulast=Kronecker&rft.aufirst=Leopold&rft_id=https%3A%2F%2Fquod.lib.umich.edu%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Dumhistmath%3Bidno%3DAAS8260.0002.001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMehraRechenberg1987" class="citation cs2"><a href="/wiki/Jagdish_Mehra" title="Jagdish Mehra">Mehra, Jagdish</a>; <a href="/wiki/Helmut_Rechenberg" title="Helmut Rechenberg">Rechenberg, Helmut</a> (1987), <i>The Historical Development of Quantum Theory</i> (1st ed.), Berlin, DE; New York, NY: <a href="/wiki/Springer-Verlag" class="mw-redirect" title="Springer-Verlag">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-387-96284-9" title="Special:BookSources/978-0-387-96284-9"><bdi>978-0-387-96284-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Historical+Development+of+Quantum+Theory&rft.place=Berlin%2C+DE%3B+New+York%2C+NY&rft.edition=1st&rft.pub=Springer-Verlag&rft.date=1987&rft.isbn=978-0-387-96284-9&rft.aulast=Mehra&rft.aufirst=Jagdish&rft.au=Rechenberg%2C+Helmut&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShenCrossleyLun1999" class="citation cs2">Shen, Kangshen; Crossley, John N.; Lun, Anthony Wah-Cheung (1999), <i>Nine Chapters of the Mathematical Art, Companion and Commentary</i> (2nd ed.), <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-19-853936-0" title="Special:BookSources/978-0-19-853936-0"><bdi>978-0-19-853936-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Nine+Chapters+of+the+Mathematical+Art%2C+Companion+and+Commentary&rft.edition=2nd&rft.pub=Oxford+University+Press&rft.date=1999&rft.isbn=978-0-19-853936-0&rft.aulast=Shen&rft.aufirst=Kangshen&rft.au=Crossley%2C+John+N.&rft.au=Lun%2C+Anthony+Wah-Cheung&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeierstrass1915" class="citation cs2"><a href="/wiki/Karl_Weierstrass" title="Karl Weierstrass">Weierstrass, Karl</a> (1915), <a rel="nofollow" class="external text" href="https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=AAN8481.0003.001"><i>Collected works</i></a>, vol. 3</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Collected+works&rft.date=1915&rft.aulast=Weierstrass&rft.aufirst=Karl&rft_id=https%3A%2F%2Fquod.lib.umich.edu%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Dumhistmath%3Bidno%3DAAN8481.0003.001&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(15)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=47" title="Edit section: Further reading" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-15 collapsible-block" id="mf-section-15"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Matrix">"Matrix"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Matrix&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DMatrix&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf"><i>The Matrix Cookbook</i></a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">, retrieved <span class="nowrap">24 March</span> 2014</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Matrix+Cookbook&rft_id=https%3A%2F%2Fmath.uwaterloo.ca%2F~hwolkowi%2F%2Fmatrixcookbook.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrookes2005" class="citation cs2">Brookes, Mike (2005), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20081216124433/http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html"><i>The Matrix Reference Manual</i></a>, London: <a href="/wiki/Imperial_College" class="mw-redirect" title="Imperial College">Imperial College</a>, archived from <a rel="nofollow" class="external text" href="https://ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html">the original</a> on 16 December 2008<span class="reference-accessdate">, retrieved <span class="nowrap">10 Dec</span> 2008</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Matrix+Reference+Manual&rft.place=London&rft.pub=Imperial+College&rft.date=2005&rft.aulast=Brookes&rft.aufirst=Mike&rft_id=https%3A%2F%2Fee.ic.ac.uk%2Fhp%2Fstaff%2Fdmb%2Fmatrix%2Fintro.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AMatrix+%28mathematics%29" class="Z3988"></span></li></ul> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(16)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Matrix_(mathematics)&action=edit&section=48" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-16 collapsible-block" id="mf-section-16"> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1250146164">.mw-parser-output .sister-box .side-box-abovebelow{padding:0.75em 0;text-align:center}.mw-parser-output .sister-box .side-box-abovebelow>b{display:block}.mw-parser-output .sister-box .side-box-text>ul{border-top:1px solid #aaa;padding:0.75em 0;width:217px;margin:0 auto}.mw-parser-output .sister-box .side-box-text>ul>li{min-height:31px}.mw-parser-output .sister-logo{display:inline-block;width:31px;line-height:31px;vertical-align:middle;text-align:center}.mw-parser-output .sister-link{display:inline-block;margin-left:4px;width:182px;vertical-align:middle}@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-v2.svg"]{background-color:white}}</style><div role="navigation" aria-labelledby="sister-projects" class="side-box metadata side-box-right sister-box sistersitebox plainlinks"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-abovebelow"> <b>Matrix (mathematics)</b> at Wikipedia's <a href="/wiki/Wikipedia:Wikimedia_sister_projects" title="Wikipedia:Wikimedia sister projects"><span id="sister-projects">sister projects</span></a></div> <div class="side-box-flex"> <div class="side-box-text plainlist"><ul><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/27px-Wiktionary-logo-v2.svg.png" decoding="async" width="27" height="27" class="mw-file-element" data-file-width="391" data-file-height="391"></noscript><span class="lazy-image-placeholder" style="width: 27px;height: 27px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/27px-Wiktionary-logo-v2.svg.png" data-alt="" data-width="27" data-height="27" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/41px-Wiktionary-logo-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/06/Wiktionary-logo-v2.svg/54px-Wiktionary-logo-v2.svg.png 2x" data-class="mw-file-element"> </span></span></span></span><span class="sister-link"><a href="https://en.wiktionary.org/wiki/matrix" class="extiw" title="wikt:matrix">Definitions</a> from Wiktionary</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" decoding="async" width="20" height="27" class="mw-file-element" data-file-width="1024" data-file-height="1376"></noscript><span class="lazy-image-placeholder" style="width: 20px;height: 27px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/20px-Commons-logo.svg.png" data-alt="" data-width="20" data-height="27" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/40px-Commons-logo.svg.png 2x" data-class="mw-file-element"> </span></span></span></span><span class="sister-link"><a href="https://commons.wikimedia.org/wiki/Category:matrix" class="extiw" title="c:Category:matrix">Media</a> from Commons</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" decoding="async" width="27" height="27" class="mw-file-element" data-file-width="300" data-file-height="300"></noscript><span class="lazy-image-placeholder" style="width: 27px;height: 27px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/27px-Wikibooks-logo.svg.png" data-alt="" data-width="27" data-height="27" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/41px-Wikibooks-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikibooks-logo.svg/54px-Wikibooks-logo.svg.png 2x" data-class="mw-file-element"> </span></span></span></span><span class="sister-link"><a href="https://en.wikibooks.org/wiki/Linear_Algebra" class="extiw" title="b:Linear Algebra">Textbooks</a> from Wikibooks</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" decoding="async" width="27" height="22" class="mw-file-element" data-file-width="626" data-file-height="512"></noscript><span class="lazy-image-placeholder" style="width: 27px;height: 22px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/27px-Wikiversity_logo_2017.svg.png" data-alt="" data-width="27" data-height="22" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/41px-Wikiversity_logo_2017.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/54px-Wikiversity_logo_2017.svg.png 2x" data-class="mw-file-element"> </span></span></span></span><span class="sister-link"><a href="https://en.wikiversity.org/wiki/Linear_algebra#Matrices" class="extiw" title="v:Linear algebra">Resources</a> from Wikiversity</span></li><li><span class="sister-logo"><span class="mw-valign-middle" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/27px-Wikidata-logo.svg.png" decoding="async" width="27" height="15" class="mw-file-element" data-file-width="1050" data-file-height="590"></noscript><span class="lazy-image-placeholder" style="width: 27px;height: 15px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/27px-Wikidata-logo.svg.png" data-alt="" data-width="27" data-height="15" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/41px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/54px-Wikidata-logo.svg.png 2x" data-class="mw-file-element"> </span></span></span></span><span class="sister-link"><a href="https://www.wikidata.org/wiki/Q44337" class="extiw" title="d:Q44337">Data</a> from Wikidata</span></li></ul></div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Matrices_and_determinants/">MacTutor: Matrices and determinants</a></li> <li><a rel="nofollow" class="external text" href="https://economics.soton.ac.uk/staff/aldrich/matrices.htm">Matrices and Linear Algebra on the Earliest Uses Pages</a></li> <li><a rel="nofollow" class="external text" href="https://jeff560.tripod.com/matrices.html">Earliest Uses of Symbols for Matrices and Vectors</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1038841319"></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐57488d5c7d‐69hkd Cached time: 20241128020619 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.289 seconds Real time usage: 2.746 seconds Preprocessor visited node count: 37045/1000000 Post‐expand include size: 258961/2097152 bytes Template argument size: 30255/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 22/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 280544/5000000 bytes Lua time usage: 1.129/10.000 seconds Lua memory usage: 21503985/52428800 bytes Lua Profile: ? 240 ms 20.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 120 ms 10.3% recursiveClone <mwInit.lua:45> 120 ms 10.3% dataWrapper <mw.lua:672> 80 ms 6.9% <mw.title.lua:50> 60 ms 5.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 60 ms 5.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 60 ms 5.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 60 ms 5.2% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 40 ms 3.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::anchorEncode 40 ms 3.4% [others] 280 ms 24.1% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2049.768 1 -total 24.61% 504.454 2 Template:Reflist 20.70% 424.382 73 Template:Citation 12.37% 253.560 221 Template:Math 8.30% 170.048 6 Template:Annotated_link 7.13% 146.084 1 Template:Short_description 7.01% 143.620 3 Template:Cite_web 6.25% 128.034 88 Template:Harvard_citations 5.70% 116.867 2 Template:Pagetype 5.61% 115.058 88 Template:Harvard_citations/core --> <!-- Saved in parser cache with key enwiki:pcache:20556859:|#|:idhash:canonical and timestamp 20241128020619 and revision id 1257361949. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.086 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Matrix_(mathematics)&oldid=1257361949">https://en.wikipedia.org/w/index.php?title=Matrix_(mathematics)&oldid=1257361949</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Matrix_(mathematics)&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Entranced98" data-user-gender="female" data-timestamp="1731595719"> <span>Last edited on 14 November 2024, at 14:48</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Matriks" title="Matriks – Afrikaans" lang="af" hreflang="af" data-title="Matriks" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%88%9B%E1%89%B5%E1%88%AA%E1%8A%AD%E1%88%B5" title="ማትሪክስ – Amharic" lang="am" hreflang="am" data-title="ማትሪክስ" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B5%D9%81%D9%88%D9%81%D8%A9_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="مصفوفة (رياضيات) – Arabic" lang="ar" hreflang="ar" data-title="مصفوفة (رياضيات)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Matris" title="Matris – Azerbaijani" lang="az" hreflang="az" data-title="Matris" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AE%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%9F%E0%A7%8D%E0%A6%B0%E0%A6%BF%E0%A6%95%E0%A7%8D%E0%A6%B8" title="ম্যাট্রিক্স – Bangla" lang="bn" hreflang="bn" data-title="ম্যাট্রিক্স" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/H%C3%A2ng-lia%CC%8Dt" title="Hâng-lia̍t – Minnan" lang="nan" hreflang="nan" data-title="Hâng-lia̍t" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D1%8B%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Матрыца (матэматыка) – Belarusian" lang="be" hreflang="be" data-title="Матрыца (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D1%8B%D1%86%D0%B0" title="Матрыца – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Матрыца" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Bulgarian" lang="bg" hreflang="bg" data-title="Матрица (математика)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – Bosnian" lang="bs" hreflang="bs" data-title="Matrica (matematika)" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Matriu_(matem%C3%A0tiques)" title="Matriu (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Matriu (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Chuvash" lang="cv" hreflang="cv" data-title="Матрица (математика)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Matice" title="Matice – Czech" lang="cs" hreflang="cs" data-title="Matice" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Matrics" title="Matrics – Welsh" lang="cy" hreflang="cy" data-title="Matrics" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Matrix" title="Matrix – Danish" lang="da" hreflang="da" data-title="Matrix" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-ary mw-list-item"><a href="https://ary.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%D9%8A%D8%B3" title="ماتريس – Moroccan Arabic" lang="ary" hreflang="ary" data-title="ماتريس" data-language-autonym="الدارجة" data-language-local-name="Moroccan Arabic" class="interlanguage-link-target"><span>الدارجة</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Matrix_(Mathematik)" title="Matrix (Mathematik) – German" lang="de" hreflang="de" data-title="Matrix (Mathematik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Maatriks" title="Maatriks – Estonian" lang="et" hreflang="et" data-title="Maatriks" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%AF%CE%BD%CE%B1%CE%BA%CE%B1%CF%82_(%CE%BC%CE%B1%CE%B8%CE%B7%CE%BC%CE%B1%CF%84%CE%B9%CE%BA%CE%AC)" title="Πίνακας (μαθηματικά) – Greek" lang="el" hreflang="el" data-title="Πίνακας (μαθηματικά)" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Matriz_(matem%C3%A1tica)" title="Matriz (matemática) – Spanish" lang="es" hreflang="es" data-title="Matriz (matemática)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Matrico" title="Matrico – Esperanto" lang="eo" hreflang="eo" data-title="Matrico" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Matrize" title="Matrize – Basque" lang="eu" hreflang="eu" data-title="Matrize" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%D8%B3" title="ماتریس – Persian" lang="fa" hreflang="fa" data-title="ماتریس" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Matrice_(math%C3%A9matiques)" title="Matrice (mathématiques) – French" lang="fr" hreflang="fr" data-title="Matrice (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Maitr%C3%ADs" title="Maitrís – Irish" lang="ga" hreflang="ga" data-title="Maitrís" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Matriz_(matem%C3%A1ticas)" title="Matriz (matemáticas) – Galician" lang="gl" hreflang="gl" data-title="Matriz (matemáticas)" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gan mw-list-item"><a href="https://gan.wikipedia.org/wiki/%E8%A1%8C%E5%88%97" title="行列 – Gan" lang="gan" hreflang="gan" data-title="行列" data-language-autonym="贛語" data-language-local-name="Gan" class="interlanguage-link-target"><span>贛語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%96%89%EB%A0%AC" title="행렬 – Korean" lang="ko" hreflang="ko" data-title="행렬" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%84%D5%A1%D5%BF%D6%80%D5%AB%D6%81" title="Մատրից – Armenian" lang="hy" hreflang="hy" data-title="Մատրից" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%B5%E0%A5%8D%E0%A4%AF%E0%A5%82%E0%A4%B9" title="आव्यूह – Hindi" lang="hi" hreflang="hi" data-title="आव्यूह" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – Croatian" lang="hr" hreflang="hr" data-title="Matrica (matematika)" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Matriks_(matematika)" title="Matriks (matematika) – Indonesian" lang="id" hreflang="id" data-title="Matriks (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Matrice_(mathematica)" title="Matrice (mathematica) – Interlingua" lang="ia" hreflang="ia" data-title="Matrice (mathematica)" data-language-autonym="Interlingua" data-language-local-name="Interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Fylki_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Fylki (stærðfræði) – Icelandic" lang="is" hreflang="is" data-title="Fylki (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Matrice" title="Matrice – Italian" lang="it" hreflang="it" data-title="Matrice" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%98%D7%A8%D7%99%D7%A6%D7%94" title="מטריצה – Hebrew" lang="he" hreflang="he" data-title="מטריצה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%AE%E0%B2%BE%E0%B2%A4%E0%B3%83%E0%B2%95%E0%B3%86%E0%B2%97%E0%B2%B3%E0%B3%81" title="ಮಾತೃಕೆಗಳು – Kannada" lang="kn" hreflang="kn" data-title="ಮಾತೃಕೆಗಳು" data-language-autonym="ಕನ್ನಡ" data-language-local-name="Kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%90%E1%83%A2%E1%83%A0%E1%83%98%E1%83%AA%E1%83%90_(%E1%83%9B%E1%83%90%E1%83%97%E1%83%94%E1%83%9B%E1%83%90%E1%83%A2%E1%83%98%E1%83%99%E1%83%90)" title="მატრიცა (მათემატიკა) – Georgian" lang="ka" hreflang="ka" data-title="მატრიცა (მათემატიკა)" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Kazakh" lang="kk" hreflang="kk" data-title="Матрица (математика)" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/Matris_(mat%C3%A9matik)" title="Matris (matématik) – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Matris (matématik)" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-lo mw-list-item"><a href="https://lo.wikipedia.org/wiki/%E0%BA%A1%E0%BA%B2%E0%BA%95%E0%BA%A3%E0%BA%B4%E0%BA%81" title="ມາຕຣິກ – Lao" lang="lo" hreflang="lo" data-title="ມາຕຣິກ" data-language-autonym="ລາວ" data-language-local-name="Lao" class="interlanguage-link-target"><span>ລາວ</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Matrix_(mathematica)" title="Matrix (mathematica) – Latin" lang="la" hreflang="la" data-title="Matrix (mathematica)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Matrica" title="Matrica – Latvian" lang="lv" hreflang="lv" data-title="Matrica" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – Lithuanian" lang="lt" hreflang="lt" data-title="Matrica (matematika)" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Matris" title="Matris – Lombard" lang="lmo" hreflang="lmo" data-title="Matris" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/M%C3%A1trix_(matematika)" title="Mátrix (matematika) – Hungarian" lang="hu" hreflang="hu" data-title="Mátrix (matematika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Macedonian" lang="mk" hreflang="mk" data-title="Матрица (математика)" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AE%E0%B4%BE%E0%B4%9F%E0%B5%8D%E0%B4%B0%E0%B4%BF%E0%B4%95%E0%B5%8D%E0%B4%B8%E0%B5%8D" title="മാട്രിക്സ് – Malayalam" lang="ml" hreflang="ml" data-title="മാട്രിക്സ്" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Matriks_(matematik)" title="Matriks (matematik) – Malay" lang="ms" hreflang="ms" data-title="Matriks (matematik)" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%80%E1%80%AD%E1%80%94%E1%80%BA%E1%80%B8%E1%80%A1%E1%80%AF%E1%80%B6" title="ကိန်းအုံ – Burmese" lang="my" hreflang="my" data-title="ကိန်းအုံ" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="Burmese" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Matrix_(wiskunde)" title="Matrix (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Matrix (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%AE%E0%A5%87%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%8D%E0%A4%B8" title="मेट्रिक्स – Nepali" lang="ne" hreflang="ne" data-title="मेट्रिक्स" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97" title="行列 – Japanese" lang="ja" hreflang="ja" data-title="行列" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Maatriks" title="Maatriks – Northern Frisian" lang="frr" hreflang="frr" data-title="Maatriks" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Matrise" title="Matrise – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Matrise" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Matrise" title="Matrise – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Matrise" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B5" title="Матрице – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Матрице" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%AE%E0%AC%BE%E0%AC%9F%E0%AD%8D%E0%AC%B0%E0%AC%BF%E0%AC%95%E0%AD%8D%E0%AC%B8" title="ମାଟ୍ରିକ୍ସ – Odia" lang="or" hreflang="or" data-title="ମାଟ୍ରିକ୍ସ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="Odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Tareentaa_(Maatiriksii)" title="Tareentaa (Maatiriksii) – Oromo" lang="om" hreflang="om" data-title="Tareentaa (Maatiriksii)" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Matritsa_matematikada" title="Matritsa matematikada – Uzbek" lang="uz" hreflang="uz" data-title="Matritsa matematikada" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%AE%E0%A9%88%E0%A8%9F%E0%A9%8D%E0%A8%B0%E0%A8%BF%E0%A8%95%E0%A8%B8_(%E0%A8%97%E0%A8%A3%E0%A8%BF%E0%A8%A4)" title="ਮੈਟ੍ਰਿਕਸ (ਗਣਿਤ) – Punjabi" lang="pa" hreflang="pa" data-title="ਮੈਟ੍ਰਿਕਸ (ਗਣਿਤ)" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D9%85%D8%A7%D9%B9%D8%B1%DA%A9%D8%B3_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C%D8%A7%D8%AA)" title="ماٹرکس (ریاضیات) – Western Punjabi" lang="pnb" hreflang="pnb" data-title="ماٹرکس (ریاضیات)" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Matris" title="Matris – Piedmontese" lang="pms" hreflang="pms" data-title="Matris" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Macierz" title="Macierz – Polish" lang="pl" hreflang="pl" data-title="Macierz" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Matriz_(matem%C3%A1tica)" title="Matriz (matemática) – Portuguese" lang="pt" hreflang="pt" data-title="Matriz (matemática)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Matrice" title="Matrice – Romanian" lang="ro" hreflang="ro" data-title="Matrice" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Russian" lang="ru" hreflang="ru" data-title="Матрица (математика)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Yakut" lang="sah" hreflang="sah" data-title="Матрица (математика)" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Matrix_(mathematics)" title="Matrix (mathematics) – Scots" lang="sco" hreflang="sco" data-title="Matrix (mathematics)" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Matrica" title="Matrica – Albanian" lang="sq" hreflang="sq" data-title="Matrica" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Matrici_(matim%C3%A0tica)" title="Matrici (matimàtica) – Sicilian" lang="scn" hreflang="scn" data-title="Matrici (matimàtica)" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://si.wikipedia.org/wiki/%E0%B6%B1%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B7%83_(%E0%B6%9C%E0%B6%AB%E0%B7%92%E0%B6%AD%E0%B6%BA)" title="න්යාස (ගණිතය) – Sinhala" lang="si" hreflang="si" data-title="න්යාස (ගණිතය)" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Matrix_(mathematics)" title="Matrix (mathematics) – Simple English" lang="en-simple" hreflang="en-simple" data-title="Matrix (mathematics)" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Matica_(matematika)" title="Matica (matematika) – Slovak" lang="sk" hreflang="sk" data-title="Matica (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Matrika" title="Matrika – Slovenian" lang="sl" hreflang="sl" data-title="Matrika" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Taxane" title="Taxane – Somali" lang="so" hreflang="so" data-title="Taxane" data-language-autonym="Soomaaliga" data-language-local-name="Somali" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%85%D8%A7%D8%AA%D8%B1%DB%8C%DA%A9%D8%B3" title="ماتریکس – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ماتریکس" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D0%B0_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матрица (математика) – Serbian" lang="sr" hreflang="sr" data-title="Матрица (математика)" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Matrica_(matematika)" title="Matrica (matematika) – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Matrica (matematika)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Matriisi" title="Matriisi – Finnish" lang="fi" hreflang="fi" data-title="Matriisi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Matris" title="Matris – Swedish" lang="sv" hreflang="sv" data-title="Matris" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Matris_(matematika)" title="Matris (matematika) – Tagalog" lang="tl" hreflang="tl" data-title="Matris (matematika)" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%85%E0%AE%A3%E0%AE%BF_(%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D)" title="அணி (கணிதம்) – Tamil" lang="ta" hreflang="ta" data-title="அணி (கணிதம்)" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A1%E0%B8%97%E0%B8%A3%E0%B8%B4%E0%B8%81%E0%B8%8B%E0%B9%8C_(%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C)" title="เมทริกซ์ (คณิตศาสตร์) – Thai" lang="th" hreflang="th" data-title="เมทริกซ์ (คณิตศาสตร์)" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Matris_(matematik)" title="Matris (matematik) – Turkish" lang="tr" hreflang="tr" data-title="Matris (matematik)" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%86%D1%8F_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0)" title="Матриця (математика) – Ukrainian" lang="uk" hreflang="uk" data-title="Матриця (математика)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%DB%8C%D9%B9%D8%B1%DA%A9%D8%B3_(%D8%B1%DB%8C%D8%A7%D8%B6%DB%8C)" title="میٹرکس (ریاضی) – Urdu" lang="ur" hreflang="ur" data-title="میٹرکس (ریاضی)" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ma_tr%E1%BA%ADn_(to%C3%A1n_h%E1%BB%8Dc)" title="Ma trận (toán học) – Vietnamese" lang="vi" hreflang="vi" data-title="Ma trận (toán học)" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%9F%A9%E9%99%A3" title="矩陣 – Literary Chinese" lang="lzh" hreflang="lzh" data-title="矩陣" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5" title="矩阵 – Wu" lang="wuu" hreflang="wuu" data-title="矩阵" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%9F%A9%E9%99%A3" title="矩陣 – Cantonese" lang="yue" hreflang="yue" data-title="矩陣" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://zh.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5" title="矩阵 – Chinese" lang="zh" hreflang="zh" data-title="矩阵" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 14 November 2024, at 14:48<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Matrix_(mathematics)&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-vlb4w","wgBackendResponseTime":289,"wgPageParseReport":{"limitreport":{"cputime":"2.289","walltime":"2.746","ppvisitednodes":{"value":37045,"limit":1000000},"postexpandincludesize":{"value":258961,"limit":2097152},"templateargumentsize":{"value":30255,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":22,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":280544,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2049.768 1 -total"," 24.61% 504.454 2 Template:Reflist"," 20.70% 424.382 73 Template:Citation"," 12.37% 253.560 221 Template:Math"," 8.30% 170.048 6 Template:Annotated_link"," 7.13% 146.084 1 Template:Short_description"," 7.01% 143.620 3 Template:Cite_web"," 6.25% 128.034 88 Template:Harvard_citations"," 5.70% 116.867 2 Template:Pagetype"," 5.61% 115.058 88 Template:Harvard_citations/core"]},"scribunto":{"limitreport-timeusage":{"value":"1.129","limit":"10.000"},"limitreport-memusage":{"value":21503985,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAnton1987\"] = 1,\n [\"CITEREFAnton2010\"] = 1,\n [\"CITEREFArnoldCooke1992\"] = 1,\n [\"CITEREFArtin1991\"] = 1,\n [\"CITEREFAssociation_for_Computing_Machinery1979\"] = 1,\n [\"CITEREFBaker2003\"] = 1,\n [\"CITEREFBau_IIITrefethen1997\"] = 1,\n [\"CITEREFBeauregardFraleigh1973\"] = 1,\n [\"CITEREFBohm2001\"] = 1,\n [\"CITEREFBretscher2005\"] = 1,\n [\"CITEREFBronson1970\"] = 1,\n [\"CITEREFBronson1989\"] = 1,\n [\"CITEREFBrookes2005\"] = 1,\n [\"CITEREFBrown1991\"] = 1,\n [\"CITEREFBurgessMoore2007\"] = 1,\n [\"CITEREFBôcher2004\"] = 1,\n [\"CITEREFCayley1889\"] = 1,\n [\"CITEREFCoburn1955\"] = 1,\n [\"CITEREFConrey2007\"] = 1,\n [\"CITEREFDieudonné1978\"] = 1,\n [\"CITEREFFraleigh1976\"] = 1,\n [\"CITEREFFudenbergTirole1983\"] = 1,\n [\"CITEREFGilbargTrudinger2001\"] = 1,\n [\"CITEREFGodsilRoyle2004\"] = 1,\n [\"CITEREFGolubVan_Loan1996\"] = 1,\n [\"CITEREFGrcar2011\"] = 1,\n [\"CITEREFGreub1975\"] = 1,\n [\"CITEREFGuenther1990\"] = 1,\n [\"CITEREFHalmos1982\"] = 1,\n [\"CITEREFHawkins1975\"] = 1,\n [\"CITEREFHealy1986\"] = 1,\n [\"CITEREFHornJohnson1985\"] = 1,\n [\"CITEREFHornJohnson2012\"] = 1,\n [\"CITEREFHouseholder1975\"] = 1,\n [\"CITEREFItzyksonZuber1980\"] = 1,\n [\"CITEREFItô1987\"] = 1,\n [\"CITEREFKnobloch1994\"] = 1,\n [\"CITEREFKreyszig1972\"] = 1,\n [\"CITEREFKronecker1897\"] = 1,\n [\"CITEREFKrzanowski1988\"] = 1,\n [\"CITEREFLang1969\"] = 1,\n [\"CITEREFLang1987a\"] = 1,\n [\"CITEREFLang1987b\"] = 1,\n [\"CITEREFLatoucheRamaswami1999\"] = 1,\n [\"CITEREFManningSchütze1999\"] = 1,\n [\"CITEREFMehataSrinivasan1978\"] = 1,\n [\"CITEREFMehraRechenberg1987\"] = 1,\n [\"CITEREFMirsky1990\"] = 1,\n [\"CITEREFNeedhamWang_Ling1959\"] = 1,\n [\"CITEREFNering1970\"] = 1,\n [\"CITEREFNocedalWright2006\"] = 1,\n [\"CITEREFOualline2003\"] = 1,\n [\"CITEREFPerlis1991\"] = 1,\n [\"CITEREFPerrone2024\"] = 1,\n [\"CITEREFPopFurdui2017\"] = 1,\n [\"CITEREFPressFlanneryTeukolskyVetterling1992\"] = 1,\n [\"CITEREFProtterMorrey1970\"] = 1,\n [\"CITEREFPunnenGutin2002\"] = 1,\n [\"CITEREFReichl2004\"] = 1,\n [\"CITEREFRileyHobsonBence1997\"] = 1,\n [\"CITEREFRowen2008\"] = 1,\n [\"CITEREFSchiff1968\"] = 1,\n [\"CITEREFSchneiderBarker2012\"] = 1,\n [\"CITEREFShenCrossleyLun1999\"] = 1,\n [\"CITEREFStinson2005\"] = 1,\n [\"CITEREFStoerBulirsch2002\"] = 1,\n [\"CITEREFWard1997\"] = 1,\n [\"CITEREFWeierstrass1915\"] = 1,\n [\"CITEREFWeinberg1995\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"CITEREFWherrett1987\"] = 1,\n [\"CITEREFWolfram2003\"] = 1,\n [\"CITEREFZabrodinBrezinKazakovSerban2006\"] = 1,\n [\"CITEREFŠolin2005\"] = 1,\n [\"Submatrix\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 2,\n [\"Abs\"] = 1,\n [\"Anchor\"] = 1,\n [\"Annotated link\"] = 6,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 2,\n [\"Citation\"] = 72,\n [\"Cite book\"] = 2,\n [\"Cite journal\"] = 1,\n [\"Cite web\"] = 3,\n [\"Clear\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Font color\"] = 2,\n [\"Further\"] = 1,\n [\"Good article\"] = 1,\n [\"Harvard citations\"] = 88,\n [\"Harvp\"] = 1,\n [\"Harvtxt\"] = 6,\n [\"Hatnote group\"] = 1,\n [\"ISBN\"] = 3,\n [\"Lang Algebra\"] = 1,\n [\"Linear algebra\"] = 1,\n [\"Main\"] = 11,\n [\"Math\"] = 221,\n [\"Mvar\"] = 99,\n [\"Nbsp\"] = 11,\n [\"Nowrap\"] = 1,\n [\"Other uses of\"] = 1,\n [\"Pi\"] = 1,\n [\"Plural form\"] = 1,\n [\"Portal\"] = 1,\n [\"Redirect\"] = 1,\n [\"Reflist\"] = 2,\n [\"Short description\"] = 1,\n [\"Sister project links\"] = 1,\n [\"SpringerEOM\"] = 1,\n [\"Su\"] = 1,\n [\"Sub\"] = 52,\n [\"Sup\"] = 35,\n [\"Tensors\"] = 1,\n [\"Tmath\"] = 10,\n [\"Webarchive\"] = 2,\n [\"\\\\mathbf{A\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","240","20.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","120","10.3"],["recursiveClone \u003CmwInit.lua:45\u003E","120","10.3"],["dataWrapper \u003Cmw.lua:672\u003E","80","6.9"],["\u003Cmw.title.lua:50\u003E","60","5.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","60","5.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","60","5.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","60","5.2"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","40","3.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::anchorEncode","40","3.4"],["[others]","280","24.1"]]},"cachereport":{"origin":"mw-web.codfw.main-57488d5c7d-69hkd","timestamp":"20241128020619","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Matrix (mathematics)","url":"https:\/\/en.wikipedia.org\/wiki\/Matrix_(mathematics)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44337","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44337","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-22T10:06:23Z","dateModified":"2024-11-14T14:48:39Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/d\/d4\/MatrixLabelled.svg","headline":"rectangular array of numbers, symbols, or expressions, arranged in rows and columns"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>