CINXE.COM
Search results for: biosurfactant
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biosurfactant</title> <meta name="description" content="Search results for: biosurfactant"> <meta name="keywords" content="biosurfactant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biosurfactant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biosurfactant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biosurfactant</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Bioremediation of Sewage Sludge Contaminated with Fluorene Using a Lipopeptide Biosurfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Vecino">X. Vecino</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moldes"> A. Moldes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disposal and the treatment of sewage sludge is an expensive and environmentally complex problem. In this work, a lipopeptide biosurfactant extracted from corn steep liquor was used as ecofriendly and cost-competitive alternative for the mobilization and bioremediation of fluorene in sewage sludge. Results have demonstrated that this biosurfactant has the capability to mobilize fluorene to the aqueous phase, reducing the amount of fluorene in the sewage sludge from 484.4 mg/Kg up to 413.7 mg/Kg and 196.0 mg/Kg after 1 and 27 days respectively. Furthemore, once the fluorene was extracted the lipopeptide biosurfactant contained in the aqueous phase allowed the bio-degradation, up to 40.5 % of the initial concentration of this polycyclic aromatic hydrocarbon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorene" title="fluorene">fluorene</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide%20biosurfactant" title=" lipopeptide biosurfactant"> lipopeptide biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilization" title=" mobilization"> mobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/27391/bioremediation-of-sewage-sludge-contaminated-with-fluorene-using-a-lipopeptide-biosurfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi">Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry"> S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Elshafie"> A. E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bemani"> A. S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Al-Bahri"> A. K. Al-Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title="oil contamination">oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20spp" title=" Bacillus spp"> Bacillus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/3731/screening-of-minimal-salt-media-for-biosurfactant-production-by-bacillus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Hamidi"> Youcef Hamidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20luteola" title=" pseudomonas luteola"> pseudomonas luteola</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=antiscorpionic%20serum" title=" antiscorpionic serum"> antiscorpionic serum</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20oil" title=" gas oil"> gas oil</a> </p> <a href="https://publications.waset.org/abstracts/159333/production-of-biosurfactant-by-pseudomonas-luteola-on-a-reject-from-the-production-of-anti-scorpion-serum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Hidayati">Nurul Hidayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20of%20heavy%20metals" title=" removal of heavy metals"> removal of heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20waste" title=" sludge waste"> sludge waste</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20industries" title=" paper industries"> paper industries</a> </p> <a href="https://publications.waset.org/abstracts/15107/removal-of-heavy-metals-pb-zn-and-cu-from-sludge-waste-of-paper-industries-using-biosurfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthick%20Gopalan">Karthick Gopalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Selvamohan%20Thankiah"> Selvamohan Thankiah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isolation%20and%20identification" title="isolation and identification">isolation and identification</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganism" title=" microorganism"> microorganism</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaugmentation" title=" bioaugmentation"> bioaugmentation</a> </p> <a href="https://publications.waset.org/abstracts/8222/isolation-and-identification-of-biosurfactant-producing-microorganism-for-bioaugmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natcha%20Ruamyat">Natcha Ruamyat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nichakorn%20Khondee"> Nichakorn Khondee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaliphilic%20bacteria" title="alkaliphilic bacteria">alkaliphilic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%2Fagro-industrial%20wastes" title=" agricultural/agro-industrial wastes"> agricultural/agro-industrial wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20alkaline-hydrothermal%20pretreatment" title=" combined alkaline-hydrothermal pretreatment"> combined alkaline-hydrothermal pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/131089/repeated-batch-production-of-biosurfactant-from-pseudomonas-mendocina-nk41-using-agricultural-and-agro-industrial-wastes-as-substate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20Eswari%20Jujjavarapu">Satya Eswari Jujjavarapu</a>, <a href="https://publications.waset.org/abstracts/search?q=Swasti%20Dhagat"> Swasti Dhagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lata%20%20Upadhyay"> Lata Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Reecha%20Sahu"> Reecha Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title=" Bacillus subtilis"> Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nano%20particle" title=" silver nano particle"> silver nano particle</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide" title=" lipopeptide"> lipopeptide</a> </p> <a href="https://publications.waset.org/abstracts/65052/biosurfactant-mediated-nanoparticle-synthesis-by-bacillus-subtilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Biosurfactant: A Greener Approach for Enhanced Concrete Rheology and Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Anak%20Rayeg">Olivia Anak Rayeg</a>, <a href="https://publications.waset.org/abstracts/search?q=Clotilda%20Binti%20Petrus"> Clotilda Binti Petrus</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnel%20Reanturco%20Ascotia"> Arnel Reanturco Ascotia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%20Chung%20Huap"> Ang Chung Huap</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Marajan"> Caroline Marajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Tawie%20Joseph%20Sipi"> Rudy Tawie Joseph Sipi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is essential for global infrastructure, yet enhancing its rheology and strength in an environmentally sustainable manner remains a significant challenge. Conventional chemical admixtures often pose environmental and health risks. This study explores the use of a phospholipid biosurfactant, derived from Rhizopus oryzae, as an environmentally friendly admixture in concrete. Various concentrations of the biosurfactant were integrated into fresh concrete, partially replacing the water content. The inclusion of the biosurfactant markedly enhanced the workability of the concrete, as demonstrated by Vertical Slump, Slump Flow, and T50 tests. After a 28-day curing period, the concrete's mechanical properties were assessed through compressive strength and bonding tests. Results revealed that substituting up to 10% of the water with the biosurfactant not only improved workability but also significantly increased both compressive and flexural strength. These findings highlight the potential of phospholipid biosurfactant as a biodegradable and non-toxic alternative to traditional admixtures, enhancing both structural integrity and sustainability in concrete. This approach reduces environmental impact and production costs, marking a significant advancement in sustainable construction technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20rheology" title="concrete rheology">concrete rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20admixture" title=" green admixture"> green admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20biosurfactant" title=" fungal biosurfactant"> fungal biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipids" title=" phospholipids"> phospholipids</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizopus%20oryzae" title=" rhizopus oryzae"> rhizopus oryzae</a> </p> <a href="https://publications.waset.org/abstracts/186458/biosurfactant-a-greener-approach-for-enhanced-concrete-rheology-and-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanyarat%20Sikhao">Kanyarat Sikhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Nichakorn%20Khondee"> Nichakorn Khondee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=microemulsion" title=" microemulsion"> microemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-adjuvant" title=" bio-adjuvant"> bio-adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=antagonistic%20microorganisms" title=" antagonistic microorganisms"> antagonistic microorganisms</a> </p> <a href="https://publications.waset.org/abstracts/131086/development-of-biosurfactant-based-adjuvant-for-enhancing-biocontrol-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title="petroleum hydrocarbons">petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon%20Marchika" title=" lagoon Marchika"> lagoon Marchika</a> </p> <a href="https://publications.waset.org/abstracts/46762/evaluation-of-biosurfactant-production-by-a-new-strain-isolated-from-the-lagoon-of-mar-chica-degrading-gasoline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Degradation of Hydrocarbons by Surfactants and Biosurfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ferhat">Samira Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20Alouaoui"> Redha Alouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Trifi"> Leila Trifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Badis"> Abdelmalek Badis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is the use of natural surfactant (biosurfactant) and synthetic (sodium dodecyl sulfate and tween 80) for environmental application. In fact the solubility of the polycyclic hydrocarbon (naphthalene) and the desorption of the heavy metals in the presence of surfactants. The microorganisms selected in this work are bacterial strain (Bacillus licheniformis) for the production of biosurfactant for use in this study. In the first part of this study, we evaluated the effectiveness of surfactants solubilization certain hydrocarbons few soluble in water such as polyaromatic (case naphthalene). Tests have shown that from the critical micelle concentration, decontamination is performed. The second part presents the results on the desorption of heavy metals (for copper) by the three surfactants, using concentrations above the critical micelle concentration. The comparison between the desorption of copper by the three surfactants, it is shown that the biosurfactant is more effective than tween 80 and sodium dodecyl sulfate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactants" title="surfactants">surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/40181/degradation-of-hydrocarbons-by-surfactants-and-biosurfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asif%20Jamal">Asif Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Sakindar"> Samia Sakindar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramla%20Rehman"> Ramla Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20aeruginosa" title="P. aeruginosa">P. aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/68874/deciphering-suitability-of-rhamnolipids-as-emulsifying-agent-for-hydrophobic-pollutants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Controlling Olive Anthracnose with Antifungal Metabolites from Bacillus Species: A Biological Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Husnain%20Nawaz">Hafiz Husnain Nawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anthracnose disease in olive, caused by the fungal pathogen Colletotrichum acutatum, is considered one of the most critical issues in olive orchards in Pakistan. This disease poses a significant threat as it results in infections that can lead to the complete damage of olive plants, affecting leaves, stems, and fruits in the field. Controlling this disease is particularly challenging due to the absence of an effective fungicide that does not pose risks to farmer health and the environment. To address this challenge, our study aimed to evaluate the antagonistic activity of a biosurfactant produced by the Bacillus subtilis PE-07 strain against the anthracnose-causing agent in olive plants. This strain was selected after screening sixty rhizobacteria strains. Additionally, we assessed the heat stability, pH range, and toxicity of the biosurfactant produced by strain PE-07. Our results revealed that the biosurfactant exhibited maximum antifungal activity against C. acutatum. In vitro studies indicated that the biosurfactant could reduce fungal activity by inhibiting the spore germination of C. acutatum. Furthermore, the biosurfactant demonstrated a wide pH and temperature range, displaying antifungal activity at pH levels ranging from 5 to 10 and a temperature range from room temperature to 110°C. To evaluate the biosurfactant's safety, we conducted toxicity tests on zebra fish (Danio rerio). The results showed that the biosurfactant had minimal harmful effects, even at maximum concentrations. In conclusion, our study confirmed that the biosurfactant produced by B. subtilis exhibited high pH and heat stability with minimal harmful effects. Therefore, it presents a promising alternative to chemical pesticides for effectively controlling olive anthracnose in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20control" title="biological control">biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stability%20and%20PH%20range" title=" heat stability and PH range"> heat stability and PH range</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Danio%20rerio" title=" Danio rerio"> Danio rerio</a> </p> <a href="https://publications.waset.org/abstracts/182351/controlling-olive-anthracnose-with-antifungal-metabolites-from-bacillus-species-a-biological-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saif%20N.%20Al-Bahry">Saif N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20M.%20Al-Wahaibi"> Yahya M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20E.%20Elshafie"> Abdulkadir E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20S.%20Al-Bemani"> Ali S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanket%20J.%20Joshi"> Sanket J. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20pollution" title=" hydrocarbon pollution"> hydrocarbon pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=spore-forming%20bacteria" title=" spore-forming bacteria"> spore-forming bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-surfactant" title=" bio-surfactant"> bio-surfactant</a> </p> <a href="https://publications.waset.org/abstracts/3715/isolation-of-biosurfactant-producing-spore-forming-bacteria-from-oman-potential-applications-in-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Adsorption Kinetics and Equilibria at an Air-Liquid Interface of Biosurfactant and Synthetic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagheer%20A.%20Onaizi">Sagheer A. Onaizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of anionic biosurfactant (surfactin) and anionic synthetic surfactant (sodium dodecylbenzenesulphonate, abbreviated as SDOBS) from phosphate buffer containing high concentrations of co- and counter-ions to the air-buffer interface has been investigated. The self-assembly of the two surfactants at the interface has been monitored through dynamic surface tension measurements. The equilibrium surface pressure-surfactant concentration data in the premicellar region were regressed using Gibbs adsorption equation. The predicted surface saturations for SDOBS and surfactin are and, respectively. The occupied area per an SDOBS molecule at the interface saturation condition is while that occupied by a surfactin molecule is. The surface saturations reported in this work for both surfactants are in a very good agreement with those obtained using expensive techniques such as neutron reflectometry, suggesting that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=air-liquid%20interface" title=" air-liquid interface"> air-liquid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a> </p> <a href="https://publications.waset.org/abstracts/17087/adsorption-kinetics-and-equilibria-at-an-air-liquid-interface-of-biosurfactant-and-synthetic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Invasion of Epithelial Cells Is Correlated with Secretion of Biosurfactant via the Type 3 Secretion System (T3SS) of Shigella flexneri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duchel%20Jeanedvi%20Kinouani%20Kinavouidi">Duchel Jeanedvi Kinouani Kinavouidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Aim%C3%A9%20Kayath"> Christian Aimé Kayath</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Nguimbi"> Etienne Nguimbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are amphipathic molecules produced by many microorganisms, usually bacteria, fungi, and yeasts. +ey possesses the property of reducing the tension of the membrane interfaces. No studies have been conducted on Shigella species showing the role of biosurfactant-like molecules (BLM) in pathogenicity. +e aim of this study is to assess the ability of Shigella environmental and clinical strains to produce BLM and investigate the involvement of biosurfactants in pathogenicity. Our study has shown that BLM is secreted in the extracellular medium with EI24 ranging from 80% to 100%. +e secretion depends on the type III secretion system (T3SS). Moreover, our results have shown that S. flexneri, S. boydii, and S. sonnei are able to interact with hydrophobic areas with 17.64%, 21.42%, and 22.22% hydrophobicity, respectively. BLM secretion is totally prevented due to the inhibition of T3SS by 100 mM benzoic and 1.5 mg/ml salicylic acids. P. aeruginosa harboring T3SS is able to produce 100% of BLM in the presence or in the absence of both T3SS inhibitors. +e secreted BLM are extractable with an organic solvent such as chloroform, and this could entirely be considered a lipopeptide or polypeptide compound. Secretion of BLM allows some Shigella strains to induce multicellular phenomena like ‘swarming.’ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shigella%20flexneri" title="shigella flexneri">shigella flexneri</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=T3SS" title=" T3SS"> T3SS</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipopeptide" title=" Lipopeptide"> Lipopeptide</a> </p> <a href="https://publications.waset.org/abstracts/194868/invasion-of-epithelial-cells-is-correlated-with-secretion-of-biosurfactant-via-the-type-3-secretion-system-t3ss-of-shigella-flexneri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry">S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi"> Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Elshafie"> E. A. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bimani"> A. S. Al-Bimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=crude-oil-pollution" title=" crude-oil-pollution"> crude-oil-pollution</a> </p> <a href="https://publications.waset.org/abstracts/23753/potential-use-of-spore-forming-biosurfactant-producing-bacteria-in-oil-pollution-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Study of Petroleum Hydrocarbons Biodegradation and the Role of Biosurfactants Produced by Bacteria Isolated from the Lagoon of Mar Chica in This Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum hydrocarbons are serious problems and global pollutants in the environment due to their toxicity, carcinogenicity and persistent organic pollutant properties. One of the approaches to enhance biodegradation of petroleum hydrocarbons is to use biosurfactant. Biosurfactants are amphiphilic biomolecules produced as metabolic by-products from microorganisms they received considerable attention in the field of environmental remediation processes such as bioremediation. Biosurfactants have been considered as a desirable alternative to synthetic surfactants in various applications particularly in the environmental field. In comparison with their synthetic counterparts, biosurfactants have been reported to be less toxic, biodegradable and persistent. In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a HPLC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title="petroleum hydrocarbons">petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon%20marchika" title=" lagoon marchika"> lagoon marchika</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsification%20index" title=" emulsification index"> emulsification index</a> </p> <a href="https://publications.waset.org/abstracts/48774/study-of-petroleum-hydrocarbons-biodegradation-and-the-role-of-biosurfactants-produced-by-bacteria-isolated-from-the-lagoon-of-mar-chica-in-this-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ikram%20Kamal">Ikram Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Blaghen"> Mohamed Blaghen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title="biosurfactants">biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=Mannheimia%20haemolytica" title=" Mannheimia haemolytica"> Mannheimia haemolytica</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradability" title=" biodegradability"> biodegradability</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20cepacia" title=" Burkholderia cepacia"> Burkholderia cepacia</a>, <a href="https://publications.waset.org/abstracts/search?q=Serratia%20ficaria" title=" Serratia ficaria"> Serratia ficaria</a> </p> <a href="https://publications.waset.org/abstracts/42419/characterization-of-biosurfactants-produced-by-bacteria-degrading-gasoline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> High Productivity Fed-Batch Process for Biosurfactant Production for Enhanced Oil Recovery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Amin">G. A. Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Al-Talhi"> A. D. Al-Talhi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bacterium B. subtilis produced surfactin in conventional batch culture as a growth associated product and a growth rate (0.4 h-1). A fed-batch process was developed and the fermentative substrate and other nutrients were fed on hourly basis and according to the growth rate of the bacterium. Conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with fermentation run supplied with 200 g Maldex-15. Up to 35.4 g.l-1 of surfactin and cell biomass of 30.2 g.l-1 were achieved in 12 hrs. Also, markedly substrate yield of 0.269 g/g and volumetric reactor productivity of 2.61 g.1-1.h-1 were obtained confirming the establishment of a cost effective commercial surfactin production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title="Bacillus subtilis">Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20fed-batch%20fermentation" title=" exponentially fed-batch fermentation"> exponentially fed-batch fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactin" title=" surfactin"> surfactin</a> </p> <a href="https://publications.waset.org/abstracts/18449/high-productivity-fed-batch-process-for-biosurfactant-production-for-enhanced-oil-recovery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Alternative Energy and Carbon Source for Biosurfactant Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Abi">Akram Abi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Sarrafzadeh"> Mohammad Hossein Sarrafzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-industrial%20waste" title="agro-industrial waste">agro-industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bacillus%20subtilis" title=" bacillus subtilis"> bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20carbon%20and%20nitrogen%20source" title=" second carbon and nitrogen source"> second carbon and nitrogen source</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactin" title=" surfactin"> surfactin</a> </p> <a href="https://publications.waset.org/abstracts/36733/alternative-energy-and-carbon-source-for-biosurfactant-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Enhanced PAHs' Biodegradation by Consortia Developed with Biofilm – Biosurfactant - Producing Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapna%20Guntupalli">Swapna Guntupalli</a>, <a href="https://publications.waset.org/abstracts/search?q=Leela%20Madhuri%20Chalasani"> Leela Madhuri Chalasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kshatri%20Jyothi"> Kshatri Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Rao"> C. V. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bondili%20J.%20S."> Bondili J. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study hypothesizes that enhanced biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) is achievable with an assemblage of microorganisms that are capable of producing biofilm and biosurfactants. Accordingly, PAHs degrading microorganism’s (bacteria, fungi, actinomycetes and yeast) were screened and grouped into different consortia based on their capabilities to produce biofilm and biosurfactants. Among these, Consortium BTSN09 consisting of bacterial fungal cocultures showed highest degradation due to the synergistic action between them. Degradation effiencies were evaluated using HPLC and GC-MS. Within 7days, BTSN09 showed 51% and 50.7% degradation of Phenanthrene (PHE) and Pyrene (PYR) with 200mg/L and 100 mg/L concentrations respectively in a liquid medium. In addition, several degradative enzymes like laccases, 1hydroxy-2-naphthoicacid dioxygenase, 2-carboxybenzaldehyde dehydrogenase, catechol1,2 dioxygenase and catechol2,3 dioxygenase activity was observed during degradation. Degradation metabolites were identified using GC-MS analysis and from the results it was confirmed that the metabolism of degradation proceeds via pthalic acid pathway for both PAHs. Besides, Microbial consortia also demonstrated good biosurfactant production capacity, achieving maximum oil displacement area and emulsification activity of 19.62 cm2, 65.5% in presence of PAHs as sole carbon source. Scanning Electron Microscopy analysis revealed exopolysaccharides (EPS) production, micro and macrocolonies formation with different stages of biofim development in presence of PAHs during degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PAHs" title="PAHs">PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation "> biodegradation </a> </p> <a href="https://publications.waset.org/abstracts/20079/enhanced-pahs-biodegradation-by-consortia-developed-with-biofilm-biosurfactant-producing-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Isolation and Characterization of Bio-surfactant Producing Alcaligenes sp YLA1 and Its Diesel Degradation Potentials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulhamid%20Arabo">Abdulrahman Abdulhamid Arabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Raji%20Arabi%20Bamanga"> Raji Arabi Bamanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujiburrahman%20Fadilu"> Mujiburrahman Fadilu</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Abubakar"> Musa Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Abdullahi%20Shehu"> Fatima Abdullahi Shehu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafeez%20Muhammad%20Yakasai"> Hafeez Muhammad Yakasai</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Abdullahi"> Nasiru Abdullahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to isolate and identify biosurfactant-producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel-contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using the conventional enrichment culture technique, where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as the sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that showed positive signs for drop collapse, foaming, hemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on the biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolate B11, and the optimum PH was confirmed as 8.0 for the isolate; similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favorable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% of individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA. Sequencing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20oil" title="diesel oil">diesel oil</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Alcaligenes%20sp" title=" Alcaligenes sp"> Alcaligenes sp</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a> </p> <a href="https://publications.waset.org/abstracts/161553/isolation-and-characterization-of-bio-surfactant-producing-alcaligenes-sp-yla1-and-its-diesel-degradation-potentials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Potential Applications of Biosurfactants from Corn Steep Liquor in Cosmetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz">J. M. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Vec%C4%B1no"> X. Vecıno</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rodr%C4%B1guez-L%C3%B3pez"> L. Rodrıguez-López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dominguez"> J. M. Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes"> A. B. Moldes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cosmetic and personal care industry are the fields where biosurfactants could have more possibilities of success because in this kind of products the replacement of synthetic detergents by natural surfactants will provide an additional added value to the product, at the same time that the harmful effects produced by some synthetic surfactants could be avoided or reduced. Therefore, nowadays, consumers are disposed to pay and additional cost if they obtain more natural products. In this work we provide data about the potential of biosurfactants in the cosmetic and personal care industry. Biosurfactants from corn steep liquor, that is a fermented and condensed stream, have showed good surface-active properties, reducing substantially the surface tension of water. The bacteria that usually growth in corn steep liquor comprises Lactobacillus species, generally recognize as safe. The biosurfactant extracted from CSL consists of a lipopeptide, composed by fatty acids, which can reduce the surface tension of water in more than 30 units. It is a yellow and viscous liquid with a density of 1.053 mg/mL and pH=4. By these properties, they could be introduced in the formulation of cosmetic creams, hair conditioners or shampoos. Moreover this biosurfactant extracted from corn steep liquor, have showed a potent antimicrobial effect on different strains of Streptococcus. Some species of Streptococcus are commonly found weakly living in the human respiratory and genitourinary systems, producing several diseases in humans, including skin diseases. For instance, Streptococcus pyogenes produces many toxins and enzymes that help to stabilize skin infections; probably biosurfactants from corn steep liquor can inhibit the mechanisms of the S. pyogenes enzymes. S. pyogenes is an important cause of pharyngitis, impetigo, cellulitis and necrotizing fasciitis. In this work it was observed that 50 mg/L of biosurfactant extract obtained from corn steep liquor is able to inhibit more than 50% the growth of S. pyogenes. Thus, cosmetic and personal care products, formulated with biosurfactants from corn steep liquor, could have prebiotic properties. The natural biosurfactant presented in this work and obtained from corn milling industry streams, have showed a high potential to provide an interesting and sustainable alternative to those, antibacterial and surfactant ingredients used in cosmetic and personal care manufacture, obtained by chemical synthesis, which can cause irritation, and often only show short time effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmetic" title=" cosmetic"> cosmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20care" title=" personal care"> personal care</a> </p> <a href="https://publications.waset.org/abstracts/46693/potential-applications-of-biosurfactants-from-corn-steep-liquor-in-cosmetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Efficacy Enhancement of Hydrophobic Antibiotics Employing Rhamnolipid as Biosurfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20A.%20Elouzi">Abdurrahim A. Elouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrauf%20M.%20Gusbi"> Abdurrauf M. Gusbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Elgerbi"> Ali M. Elgerbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance has become a global public-health problem, thus it is imperative that new antibiotics continue to be developed. Major problems are being experienced in human medicine from antibiotic resistant bacteria. Moreover, no new chemical class of antibiotics has been introduced into medicine in the past two decades. The aim of the current study presents experimental results that evaluate the capability of bio surfactant rhamnolipid on enhancing the efficacy of hydrophobic antibiotics. Serial dilutions of azithromycin and clarithromycin were prepared. A bacterial suspension (approximately 5 X 105 CFU) from an overnight culture in MSM was inoculated into 20 ml sterile test tube each containing a serial 10-fold dilution of the test antibiotic(s) in broth with or without 200 mgL-1 rhamnolipid. The tubes were incubated for 24 h with vigorous shaking at 37°C. Antimicrobial activity in multiple antibiotic-resistant gram-negative bacteria pathogens and gram-positive bacteria were assessed using optical density technique. The results clearly demonstrated that the presence of rhamnolipid significantly improved the efficiency of both antibiotics. We hypothesized that the addition of rhamnolipid at low concentration, causes release of LPS which results in an increase in cell surface hydrophobicity. This allows increased association of cells with hydrophobic antibiotics resulting in increased cytotoxicity rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20antibiotics" title="hydrophobic antibiotics">hydrophobic antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a>, <a href="https://publications.waset.org/abstracts/search?q=azithromycin" title=" azithromycin"> azithromycin</a>, <a href="https://publications.waset.org/abstracts/search?q=clarithromycin" title=" clarithromycin "> clarithromycin </a> </p> <a href="https://publications.waset.org/abstracts/16898/efficacy-enhancement-of-hydrophobic-antibiotics-employing-rhamnolipid-as-biosurfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Farhadian">Abdolreza Farhadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Phan"> Anh Phan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Taheri%20Rizi"> Zahra Taheri Rizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Sadeh"> Elaheh Sadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS follows a simple, three-step process that is amenable to industrial scale production. The first two steps of the process are solvent-free, which helps reduce potential environmental impacts and makes scaling up more feasible. Additionally, the final step utilizes a water-isopropanol mixture, which is an easily accessible and cost-effective solvent system for large-scale production. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solidified%20methane" title="solidified methane">solidified methane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20storage" title=" gas storage"> gas storage</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrates" title=" gas hydrates"> gas hydrates</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20surfactant" title=" green surfactant"> green surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20hydrate%20promoter" title=" gas hydrate promoter"> gas hydrate promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20simulation" title=" computational simulation"> computational simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/195035/energy-efficient-storage-of-methane-using-biosurfactant-in-the-form-of-clathrate-hydrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20V.%20Ukwungwu">S. V. Ukwungwu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Abbas"> A. J. Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Nasr"> G. G. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacillus" title="bacillus">bacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20oil" title=" residual oil"> residual oil</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/45652/experimental-investigation-of-the-impact-of-biosurfactants-on-residual-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Contribution of the Corn Milling Industry to a Global and Circular Economy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Moldes">A. B. Moldes</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Vecino"> X. Vecino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Rodriguez-L%C3%B3pez"> L. Rodriguez-López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Dominguez"> J. M. Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Cruz"> J. M. Cruz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactantes" title="biosurfactantes">biosurfactantes</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/46695/contribution-of-the-corn-milling-industry-to-a-global-and-circular-economy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Pajuhan">Saba Pajuhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20M.%20Dastgheib"> S. M. M. Dastgheib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=bioemulsifier" title=" bioemulsifier"> bioemulsifier</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/49047/different-methods-of-producing-bioemulsifier-by-bacillus-licheniformis-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biosurfactant&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biosurfactant&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>