CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 64 results for author: <span class="mathjax">Akerib, D S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ex" aria-role="search"> Searching in archive <strong>hep-ex</strong>. <a href="/search/?searchtype=author&query=Akerib%2C+D+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Akerib, D S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Akerib%2C+D+S&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Akerib, D S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04854">arXiv:2412.04854</a> <span> [<a href="https://arxiv.org/pdf/2412.04854">pdf</a>, <a href="https://arxiv.org/format/2412.04854">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> First search for atmospheric millicharged particles with the LUX-ZEPLIN experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a> , et al. (193 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04854v2-abstract-short" style="display: inline;"> We report on a search for millicharged particles (mCPs) produced in cosmic ray proton atmospheric interactions using data collected during the first science run of the LUX-ZEPLIN experiment. The mCPs produced by two processes -- meson decay and proton bremsstrahlung -- are considered in this study. This search utilized a novel signature unique to liquid xenon (LXe) time projection chambers (TPCs),… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04854v2-abstract-full').style.display = 'inline'; document.getElementById('2412.04854v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04854v2-abstract-full" style="display: none;"> We report on a search for millicharged particles (mCPs) produced in cosmic ray proton atmospheric interactions using data collected during the first science run of the LUX-ZEPLIN experiment. The mCPs produced by two processes -- meson decay and proton bremsstrahlung -- are considered in this study. This search utilized a novel signature unique to liquid xenon (LXe) time projection chambers (TPCs), allowing sensitivity to mCPs with masses ranging from 10 to 1000 MeV/c$^2$ and fractional charges between 0.001 and 0.02 of the electron charge e. With an exposure of 60 live days and a 5.5 tonne fiducial mass, we observed no significant excess over background. This represents the first experimental search for atmospheric mCPs and the first search for mCPs using an underground LXe experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04854v2-abstract-full').style.display = 'none'; document.getElementById('2412.04854v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span> [<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/hep-ex?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/hep-ex?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/hep-ex?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/hep-ex?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/hep-ex?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/hep-ex?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span> [<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/hep-ex?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/hep-ex?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/hep-ex?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/hep-ex?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/hep-ex?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/hep-ex?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17036">arXiv:2410.17036</a> <span> [<a href="https://arxiv.org/pdf/2410.17036">pdf</a>, <a href="https://arxiv.org/format/2410.17036">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a> , et al. (193 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17036v2-abstract-short" style="display: inline;"> We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17036v2-abstract-full').style.display = 'inline'; document.getElementById('2410.17036v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17036v2-abstract-full" style="display: none;"> We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $尾$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.1\times10^{-48}$ cm$^{2}$ at the 90% confidence level at a mass of 36 GeV/$c^2$, and the best SI median sensitivity achieved is $5.0\times10^{-48}$ cm$^{2}$ for a mass of 40 GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17036v2-abstract-full').style.display = 'none'; document.getElementById('2410.17036v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures. See https://www.hepdata.net/record/155182 for a data release related to this paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12874">arXiv:2406.12874</a> <span> [<a href="https://arxiv.org/pdf/2406.12874">pdf</a>, <a href="https://arxiv.org/format/2406.12874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/08/P08027">10.1088/1748-0221/19/08/P08027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Design, Implementation, and Performance of the LZ Calibration Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12874v3-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12874v3-abstract-full').style.display = 'inline'; document.getElementById('2406.12874v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12874v3-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12874v3-abstract-full').style.display = 'none'; document.getElementById('2406.12874v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 P08027 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02441">arXiv:2406.02441</a> <span> [<a href="https://arxiv.org/pdf/2406.02441">pdf</a>, <a href="https://arxiv.org/format/2406.02441">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01774-8">10.1038/s42005-024-01774-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the Scalar WIMP-Pion Coupling with the first LUX-ZEPLIN data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E+J">E. J. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02441v1-abstract-short" style="display: inline;"> Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we repor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02441v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02441v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02441v1-abstract-full" style="display: none;"> Weakly interacting massive particles (WIMPs) may interact with a virtual pion that is exchanged between nucleons. This interaction channel is important to consider in models where the spin-independent isoscalar channel is suppressed. Using data from the first science run of the LUX-ZEPLIN dark matter experiment, containing 60 live days of data in a 5.5~tonne fiducial mass of liquid xenon, we report the results on a search for WIMP-pion interactions. We observe no significant excess and set an upper limit of $1.5\times10^{-46}$~cm$^2$ at a 90\% confidence level for a WIMP mass of 33~GeV/c$^2$ for this interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02441v1-abstract-full').style.display = 'none'; document.getElementById('2406.02441v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 7, 292 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14732">arXiv:2405.14732</a> <span> [<a href="https://arxiv.org/pdf/2405.14732">pdf</a>, <a href="https://arxiv.org/format/2405.14732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The Data Acquisition System of the LZ Dark Matter Detector: FADR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (191 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14732v3-abstract-short" style="display: inline;"> The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14732v3-abstract-full').style.display = 'inline'; document.getElementById('2405.14732v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14732v3-abstract-full" style="display: none;"> The Data Acquisition System (DAQ) for the LUX-ZEPLIN (LZ) dark matter detector is described. The signals from 745 PMTs, distributed across three subsystems, are sampled with 100-MHz 32-channel digitizers (DDC-32s). A basic waveform analysis is carried out on the on-board Field Programmable Gate Arrays (FPGAs) to extract information about the observed scintillation and electroluminescence signals. This information is used to determine if the digitized waveforms should be preserved for offline analysis. The system is designed around the Kintex-7 FPGA. In addition to digitizing the PMT signals and providing basic event selection in real time, the flexibility provided by the use of FPGAs allows us to monitor the performance of the detector and the DAQ in parallel to normal data acquisition. The hardware and software/firmware of this FPGA-based Architecture for Data acquisition and Realtime monitoring (FADR) are discussed and performance measurements are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14732v3-abstract-full').style.display = 'none'; document.getElementById('2405.14732v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 24 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.17666">arXiv:2404.17666</a> <span> [<a href="https://arxiv.org/pdf/2404.17666">pdf</a>, <a href="https://arxiv.org/format/2404.17666">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.221801">10.1103/PhysRevLett.133.221801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraints On Covariant WIMP-Nucleon Effective Field Theory Interactions from the First Science Run of the LUX-ZEPLIN Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barillier%2C+E+E">E. E. Barillier</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E+J">E. J. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (179 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.17666v1-abstract-short" style="display: inline;"> The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17666v1-abstract-full').style.display = 'inline'; document.getElementById('2404.17666v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.17666v1-abstract-full" style="display: none;"> The first science run of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time project chamber operating in the Sanford Underground Research Facility in South Dakota, USA, has reported leading limits on spin-independent WIMP-nucleon interactions and interactions described from a non-relativistic effective field theory (NREFT). Using the same 5.5~t fiducial mass and 60 live days of exposure we report on the results of a relativistic extension to the NREFT. We present constraints on couplings from covariant interactions arising from the coupling of vector, axial currents, and electric dipole moments of the nucleon to the magnetic and electric dipole moments of the WIMP which cannot be described by recasting previous results described by an NREFT. Using a profile-likelihood ratio analysis, in an energy region between 0~keV$_\text{nr}$ to 270~keV$_\text{nr}$, we report 90% confidence level exclusion limits on the coupling strength of five interactions in both the isoscalar and isovector bases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.17666v1-abstract-full').style.display = 'none'; document.getElementById('2404.17666v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 221801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.08865">arXiv:2402.08865</a> <span> [<a href="https://arxiv.org/pdf/2402.08865">pdf</a>, <a href="https://arxiv.org/format/2402.08865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.112010">10.1103/PhysRevD.109.112010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New constraints on ultraheavy dark matter from the LZ experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Brew%2C+C+A+J">C. A. J. Brew</a> , et al. (174 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.08865v1-abstract-short" style="display: inline;"> Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08865v1-abstract-full').style.display = 'inline'; document.getElementById('2402.08865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.08865v1-abstract-full" style="display: none;"> Searches for dark matter with liquid xenon time projection chamber experiments have traditionally focused on the region of the parameter space that is characteristic of weakly interacting massive particles, ranging from a few GeV/$c^2$ to a few TeV/$c^2$. Models of dark matter with a mass much heavier than this are well motivated by early production mechanisms different from the standard thermal freeze-out, but they have generally been less explored experimentally. In this work, we present a re-analysis of the first science run (SR1) of the LZ experiment, with an exposure of $0.9$ tonne$\times$year, to search for ultraheavy particle dark matter. The signal topology consists of multiple energy deposits in the active region of the detector forming a straight line, from which the velocity of the incoming particle can be reconstructed on an event-by-event basis. Zero events with this topology were observed after applying the data selection calibrated on a simulated sample of signal-like events. New experimental constraints are derived, which rule out previously unexplored regions of the dark matter parameter space of spin-independent interactions beyond a mass of 10$^{17}$ GeV/$c^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.08865v1-abstract-full').style.display = 'none'; document.getElementById('2402.08865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 112010 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02030">arXiv:2312.02030</a> <span> [<a href="https://arxiv.org/pdf/2312.02030">pdf</a>, <a href="https://arxiv.org/format/2312.02030">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.092003">10.1103/PhysRevD.109.092003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Constraints on WIMP-Nucleon Effective Field Theory Couplings in an Extended Energy Region From LUX-ZEPLIN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LZ+Collaboration"> LZ Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Bishop%2C+E">E. Bishop</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a> , et al. (175 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02030v2-abstract-short" style="display: inline;"> Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02030v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02030v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02030v2-abstract-full" style="display: none;"> Following the first science results of the LUX-ZEPLIN (LZ) experiment, a dual-phase xenon time projection chamber operating from the Sanford Underground Research Facility in Lead, South Dakota, USA, we report the initial limits on a model-independent non-relativistic effective field theory describing the complete set of possible interactions of a weakly interacting massive particle (WIMP) with a nucleon. These results utilize the same 5.5 t fiducial mass and 60 live days of exposure collected for the LZ spin-independent and spin-dependent analyses while extending the upper limit of the energy region of interest by a factor of 7.5 to 270 keVnr. No significant excess in this high energy region is observed. Using a profile-likelihood ratio analysis, we report 90% confidence level exclusion limits on the coupling of each individual non-relativistic WIMP-nucleon operator for both elastic and inelastic interactions in the isoscalar and isovector bases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02030v2-abstract-full').style.display = 'none'; document.getElementById('2312.02030v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 092003 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15753">arXiv:2307.15753</a> <span> [<a href="https://arxiv.org/pdf/2307.15753">pdf</a>, <a href="https://arxiv.org/format/2307.15753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.072006">10.1103/PhysRevD.108.072006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A search for new physics in low-energy electron recoils from the first LZ exposure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15753v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics inc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15753v2-abstract-full').style.display = 'inline'; document.getElementById('2307.15753v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15753v2-abstract-full" style="display: none;"> The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15753v2-abstract-full').style.display = 'none'; document.getElementById('2307.15753v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures. See https://tinyurl.com/LZDataReleaseRun1ER for a data release related to this paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 072006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.17120">arXiv:2211.17120</a> <span> [<a href="https://arxiv.org/pdf/2211.17120">pdf</a>, <a href="https://arxiv.org/format/2211.17120">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.012010">10.1103/PhysRevD.108.012010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Determination for the LUX-ZEPLIN (LZ) Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Blockinger%2C+G+M">G. M. Blockinger</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a> , et al. (178 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.17120v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $9.2\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 36 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-bet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17120v2-abstract-full').style.display = 'inline'; document.getElementById('2211.17120v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.17120v2-abstract-full" style="display: none;"> The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to $9.2\times10^{-48}$ cm$^2$ for the spin-independent interaction of a 36 GeV/c$^2$ WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was $(6.3\pm0.5)\times10^{-5}$ events/keV$_{ee}$/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.17120v2-abstract-full').style.display = 'none'; document.getElementById('2211.17120v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 012010 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05859">arXiv:2210.05859</a> <span> [<a href="https://arxiv.org/pdf/2210.05859">pdf</a>, <a href="https://arxiv.org/format/2210.05859">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Improved Dark Matter Search Sensitivity Resulting from LUX Low-Energy Nuclear Recoil Calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05859v2-abstract-short" style="display: inline;"> Dual-phase xenon time projection chamber (TPC) detectors have demonstrated superior search sensitivities to dark matter over a wide range of particle masses. To extend their sensitivity to include low-mass dark matter interactions, it is critical to characterize both the light and charge responses of liquid xenon to sub-keV nuclear recoils. In this work, we report a new nuclear recoil calibration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05859v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05859v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05859v2-abstract-full" style="display: none;"> Dual-phase xenon time projection chamber (TPC) detectors have demonstrated superior search sensitivities to dark matter over a wide range of particle masses. To extend their sensitivity to include low-mass dark matter interactions, it is critical to characterize both the light and charge responses of liquid xenon to sub-keV nuclear recoils. In this work, we report a new nuclear recoil calibration in the LUX detector $\textit{in situ}$ using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator. We demonstrate direct measurements of light and charge yields down to 0.45 keV (1.4 scintillation photons) and 0.27 keV (1.3 ionization electrons), respectively, approaching the physical limit of liquid xenon detectors. We discuss the implication of these new measurements on the physics reach of dual-phase xenon TPCs for nuclear-recoil-based low-mass dark matter detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05859v2-abstract-full').style.display = 'none'; document.getElementById('2210.05859v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07426">arXiv:2209.07426</a> <span> [<a href="https://arxiv.org/pdf/2209.07426">pdf</a>, <a href="https://arxiv.org/format/2209.07426">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Particle Dark Matter for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Cooley%2C+J">Jodi Cooley</a>, <a href="/search/hep-ex?searchtype=author&query=Lin%2C+T">Tongyan Lin</a>, <a href="/search/hep-ex?searchtype=author&query=Lippincott%2C+W+H">W. Hugh Lippincott</a>, <a href="/search/hep-ex?searchtype=author&query=Slatyer%2C+T+R">Tracy R. Slatyer</a>, <a href="/search/hep-ex?searchtype=author&query=Yu%2C+T">Tien-Tien Yu</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">Daniel S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Aramaki%2C+T">Tsuguo Aramaki</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+D">Daniel Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bringmann%2C+T">Torsten Bringmann</a>, <a href="/search/hep-ex?searchtype=author&query=Bunker%2C+R">Ray Bunker</a>, <a href="/search/hep-ex?searchtype=author&query=Carney%2C+D">Daniel Carney</a>, <a href="/search/hep-ex?searchtype=author&query=Cebri%C3%A1n%2C+S">Susana Cebri谩n</a>, <a href="/search/hep-ex?searchtype=author&query=Chen%2C+T+Y">Thomas Y. Chen</a>, <a href="/search/hep-ex?searchtype=author&query=Cushman%2C+P">Priscilla Cushman</a>, <a href="/search/hep-ex?searchtype=author&query=Dahl%2C+C+E">C. E. Dahl</a>, <a href="/search/hep-ex?searchtype=author&query=Essig%2C+R">Rouven Essig</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">Alden Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R">Richard Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Galbiati%2C+C">Cristano Galbiati</a>, <a href="/search/hep-ex?searchtype=author&query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ex?searchtype=author&query=Giovanetti%2C+G+K">Graham K. Giovanetti</a>, <a href="/search/hep-ex?searchtype=author&query=Giroux%2C+G">Guillaume Giroux</a>, <a href="/search/hep-ex?searchtype=author&query=Grandi%2C+L">Luca Grandi</a>, <a href="/search/hep-ex?searchtype=author&query=Harding%2C+J+P">J. Patrick Harding</a>, <a href="/search/hep-ex?searchtype=author&query=Haselschwardt%2C+S">Scott Haselschwardt</a> , et al. (49 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07426v1-abstract-short" style="display: inline;"> This report summarizes the findings of the CF1 Topical Subgroup to Snowmass 2021, which was focused on particle dark matter. One of the most important scientific goals of the next decade is to reveal the nature of dark matter (DM). To accomplish this goal, we must delve deep, to cover high priority targets including weakly-interacting massive particles (WIMPs), and search wide, to explore as much… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07426v1-abstract-full').style.display = 'inline'; document.getElementById('2209.07426v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07426v1-abstract-full" style="display: none;"> This report summarizes the findings of the CF1 Topical Subgroup to Snowmass 2021, which was focused on particle dark matter. One of the most important scientific goals of the next decade is to reveal the nature of dark matter (DM). To accomplish this goal, we must delve deep, to cover high priority targets including weakly-interacting massive particles (WIMPs), and search wide, to explore as much motivated DM parameter space as possible. A diverse, continuous portfolio of experiments at large, medium, and small scales that includes both direct and indirect detection techniques maximizes the probability of discovering particle DM. Detailed calibrations and modeling of signal and background processes are required to make a convincing discovery. In the event that a candidate particle is found through different means, for example at a particle collider, the program described in this report is also essential to show that it is consistent with the actual cosmological DM. The US has a leading role in both direct and indirect detection dark matter experiments -- to maintain this leading role, it is imperative to continue funding major experiments and support a robust R\&D program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07426v1-abstract-full').style.display = 'none'; document.getElementById('2209.07426v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted 30 pages, 11 figures, many references, Report of the CF1 Topical Group for Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.03764">arXiv:2207.03764</a> <span> [<a href="https://arxiv.org/pdf/2207.03764">pdf</a>, <a href="https://arxiv.org/format/2207.03764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.041002">10.1103/PhysRevLett.131.041002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Alqahtani%2C+A">A. Alqahtani</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Azadi%2C+S">S. Azadi</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/hep-ex?searchtype=author&query=Barthel%2C+J">J. Barthel</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a> , et al. (322 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.03764v4-abstract-short" style="display: inline;"> The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03764v4-abstract-full').style.display = 'inline'; document.getElementById('2207.03764v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.03764v4-abstract-full" style="display: none;"> The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60~live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set for spin-independent scattering at 36 GeV/c$^2$, rejecting cross sections above 9.2$\times 10^{-48}$ cm$^2$ at the 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.03764v4-abstract-full').style.display = 'none'; document.getElementById('2207.03764v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures. See https://doi.org/10.1103/PhysRevLett.131.041002 for a data release related to this paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 041002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08084">arXiv:2203.08084</a> <span> [<a href="https://arxiv.org/pdf/2203.08084">pdf</a>, <a href="https://arxiv.org/format/2203.08084">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier Dark Matter Direct Detection to the Neutrino Fog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Cushman%2C+P+B">P. B. Cushman</a>, <a href="/search/hep-ex?searchtype=author&query=Dahl%2C+C+E">C. E. Dahl</a>, <a href="/search/hep-ex?searchtype=author&query=Ebadi%2C+R">R. Ebadi</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Galbiati%2C+C">C. Galbiati</a>, <a href="/search/hep-ex?searchtype=author&query=Giovanetti%2C+G+K">G. K. Giovanetti</a>, <a href="/search/hep-ex?searchtype=author&query=Gelmini%2C+G+B">Graciela B. Gelmini</a>, <a href="/search/hep-ex?searchtype=author&query=Grandi%2C+L">L. Grandi</a>, <a href="/search/hep-ex?searchtype=author&query=Haselschwardt%2C+S+J">S. J. Haselschwardt</a>, <a href="/search/hep-ex?searchtype=author&query=Jackson%2C+C+M">C. M. Jackson</a>, <a href="/search/hep-ex?searchtype=author&query=Lang%2C+R+F">R. F. Lang</a>, <a href="/search/hep-ex?searchtype=author&query=Loer%2C+B">B. Loer</a>, <a href="/search/hep-ex?searchtype=author&query=Loomba%2C+D">D. Loomba</a>, <a href="/search/hep-ex?searchtype=author&query=Marshall%2C+M+C">M. C. Marshall</a>, <a href="/search/hep-ex?searchtype=author&query=Mills%2C+A+F">A. F. Mills</a>, <a href="/search/hep-ex?searchtype=author&query=OHare%2C+C+A+J">C. A. J. OHare</a>, <a href="/search/hep-ex?searchtype=author&query=Savarese%2C+C">C. Savarese</a>, <a href="/search/hep-ex?searchtype=author&query=Schueler%2C+J">J. Schueler</a>, <a href="/search/hep-ex?searchtype=author&query=Szydagis%2C+M">M. Szydagis</a>, <a href="/search/hep-ex?searchtype=author&query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ex?searchtype=author&query=Tait%2C+T+M+P">Tim M. P. Tait</a>, <a href="/search/hep-ex?searchtype=author&query=Tsai%2C+Y+D">Y. D. Tsai</a>, <a href="/search/hep-ex?searchtype=author&query=Vahsen%2C+S+E">S. E. Vahsen</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08084v1-abstract-short" style="display: inline;"> We present a summary of future prospects for direct detection of dark matter within the GeV/c2 to TeV/c2 mass range. This is paired with a new definition of the neutrino fog in order to better quantify the rate of diminishing returns on sensitivity due to irreducible neutrino backgrounds. A survey of dark matter candidates predicted to fall within this mass range demonstrates that fully testing mu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08084v1-abstract-full').style.display = 'inline'; document.getElementById('2203.08084v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08084v1-abstract-full" style="display: none;"> We present a summary of future prospects for direct detection of dark matter within the GeV/c2 to TeV/c2 mass range. This is paired with a new definition of the neutrino fog in order to better quantify the rate of diminishing returns on sensitivity due to irreducible neutrino backgrounds. A survey of dark matter candidates predicted to fall within this mass range demonstrates that fully testing multiple well-motivated theo-ries will require expanding the currently-funded generation of experiments down to and past the neutrino fog. We end with the status and plans for next-generation exper-iments and novel R&D concepts which will get us there. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08084v1-abstract-full').style.display = 'none'; document.getElementById('2203.08084v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07623">arXiv:2203.07623</a> <span> [<a href="https://arxiv.org/pdf/2203.07623">pdf</a>, <a href="https://arxiv.org/format/2203.07623">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass2021 Cosmic Frontier White Paper: Calibrations and backgrounds for dark matter direct detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+D">Daniel Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bunker%2C+R">Raymond Bunker</a>, <a href="/search/hep-ex?searchtype=author&query=Shaw%2C+S">Sally Shaw</a>, <a href="/search/hep-ex?searchtype=author&query=Westerdale%2C+S">Shawn Westerdale</a>, <a href="/search/hep-ex?searchtype=author&query=Arnquist%2C+I">Isaac Arnquist</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">Daniel S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Calkins%2C+R">Rob Calkins</a>, <a href="/search/hep-ex?searchtype=author&query=Cebri%C3%A1n%2C+S">Susana Cebri谩n</a>, <a href="/search/hep-ex?searchtype=author&query=Dent%2C+J+B">James B. Dent</a>, <a href="/search/hep-ex?searchtype=author&query=di+Vacri%2C+M+L">Maria Laura di Vacri</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J">Jim Dobson</a>, <a href="/search/hep-ex?searchtype=author&query=Egana-Ugrinovic%2C+D">Daniel Egana-Ugrinovic</a>, <a href="/search/hep-ex?searchtype=author&query=Erlandson%2C+A">Andrew Erlandson</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">Chamkaur Ghag</a>, <a href="/search/hep-ex?searchtype=author&query=Hall%2C+C">Carter Hall</a>, <a href="/search/hep-ex?searchtype=author&query=Hall%2C+J">Jeter Hall</a>, <a href="/search/hep-ex?searchtype=author&query=Haselschwardt%2C+S">Scott Haselschwardt</a>, <a href="/search/hep-ex?searchtype=author&query=Hoppe%2C+E">Eric Hoppe</a>, <a href="/search/hep-ex?searchtype=author&query=Jackson%2C+C+M">Chris M. Jackson</a>, <a href="/search/hep-ex?searchtype=author&query=Kahn%2C+Y">Yonatan Kahn</a>, <a href="/search/hep-ex?searchtype=author&query=Kamaha%2C+A">Alvine Kamaha</a>, <a href="/search/hep-ex?searchtype=author&query=Kelsey%2C+M">Mike Kelsey</a>, <a href="/search/hep-ex?searchtype=author&query=Kish%2C+A">Alexander Kish</a>, <a href="/search/hep-ex?searchtype=author&query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/hep-ex?searchtype=author&query=Laubenstein%2C+M">Matthias Laubenstein</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07623v2-abstract-short" style="display: inline;"> Future dark matter direct detection experiments will reach unprecedented levels of sensitivity. Achieving this sensitivity will require more precise models of signal and background rates in future detectors. Improving the precision of signal and background modeling goes hand-in-hand with novel calibration techniques that can probe rare processes and lower threshold detector response. The goal of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07623v2-abstract-full').style.display = 'inline'; document.getElementById('2203.07623v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07623v2-abstract-full" style="display: none;"> Future dark matter direct detection experiments will reach unprecedented levels of sensitivity. Achieving this sensitivity will require more precise models of signal and background rates in future detectors. Improving the precision of signal and background modeling goes hand-in-hand with novel calibration techniques that can probe rare processes and lower threshold detector response. The goal of this white paper is to outline community needs to meet the background and calibration requirements of next-generation dark matter direct detection experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07623v2-abstract-full').style.display = 'none'; document.getElementById('2203.07623v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Solicited community whitepaper for the Snowmass2021 process (Cosmic frontier, particle dark matter working group)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span> [<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/hep-ex?searchtype=author&query=Aerne%2C+V">V. Aerne</a>, <a href="/search/hep-ex?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/hep-ex?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/hep-ex?searchtype=author&query=Akshat%2C+J">J. Akshat</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/hep-ex?searchtype=author&query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/hep-ex?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/hep-ex?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/hep-ex?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/hep-ex?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05734">arXiv:2201.05734</a> <span> [<a href="https://arxiv.org/pdf/2201.05734">pdf</a>, <a href="https://arxiv.org/format/2201.05734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.072009">10.1103/PhysRevD.106.072009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast and Flexible Analysis of Direct Dark Matter Search Data with Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carrara%2C+N">N. Carrara</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Ernst%2C+J">J. Ernst</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05734v2-abstract-short" style="display: inline;"> We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations betwe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05734v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05734v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05734v2-abstract-full" style="display: none;"> We present the results from combining machine learning with the profile likelihood fit procedure, using data from the Large Underground Xenon (LUX) dark matter experiment. This approach demonstrates reduction in computation time by a factor of 30 when compared with the previous approach, without loss of performance on real data. We establish its flexibility to capture non-linear correlations between variables (such as smearing in light and charge signals due to position variation) by achieving equal performance using pulse areas with and without position-corrections applied. Its efficiency and scalability furthermore enables searching for dark matter using additional variables without significant computational burden. We demonstrate this by including a light signal pulse shape variable alongside more traditional inputs such as light and charge signal strengths. This technique can be exploited by future dark matter experiments to make use of additional information, reduce computational resources needed for signal searches and simulations, and make inclusion of physical nuisance parameters in fits tractable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05734v2-abstract-full').style.display = 'none'; document.getElementById('2201.05734v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106 (2022), 072009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02858">arXiv:2201.02858</a> <span> [<a href="https://arxiv.org/pdf/2201.02858">pdf</a>, <a href="https://arxiv.org/format/2201.02858">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.082004">10.1103/PhysRevD.105.082004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic production of $^{37}$Ar in the context of the LUX-ZEPLIN experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a> , et al. (183 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02858v2-abstract-short" style="display: inline;"> We estimate the amount of $^{37}$Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting $^{37}$Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage and delivery to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02858v2-abstract-full').style.display = 'inline'; document.getElementById('2201.02858v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02858v2-abstract-full" style="display: none;"> We estimate the amount of $^{37}$Ar produced in natural xenon via cosmic ray-induced spallation, an inevitable consequence of the transportation and storage of xenon on the Earth's surface. We then calculate the resulting $^{37}$Ar concentration in a 10-tonne payload~(similar to that of the LUX-ZEPLIN experiment) assuming a representative schedule of xenon purification, storage and delivery to the underground facility. Using the spallation model by Silberberg and Tsao, the sea level production rate of $^{37}$Ar in natural xenon is estimated to be 0.024~atoms/kg/day. Assuming the xenon is successively purified to remove radioactive contaminants in 1-tonne batches at a rate of 1~tonne/month, the average $^{37}$Ar activity after 10~tonnes are purified and transported underground is 0.058--0.090~$渭$Bq/kg, depending on the degree of argon removal during above-ground purification. Such cosmogenic $^{37}$Ar will appear as a noticeable background in the early science data, while decaying with a 35~day half-life. This newly-noticed production mechanism of $^{37}$Ar should be considered when planning for future liquid xenon-based experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02858v2-abstract-full').style.display = 'none'; document.getElementById('2201.02858v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06622">arXiv:2106.06622</a> <span> [<a href="https://arxiv.org/pdf/2106.06622">pdf</a>, <a href="https://arxiv.org/format/2106.06622">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165955">10.1016/j.nima.2021.165955 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and production of the high voltage electrode grids and electron extraction region for the LZ dual-phase xenon time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Linehan%2C+R">R. Linehan</a>, <a href="/search/hep-ex?searchtype=author&query=Mannino%2C+R+L">R. L. Mannino</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Ignarra%2C+C+M">C. M. Ignarra</a>, <a href="/search/hep-ex?searchtype=author&query=Luitz%2C+S">S. Luitz</a>, <a href="/search/hep-ex?searchtype=author&query=Skarpaas%2C+K">K. Skarpaas</a>, <a href="/search/hep-ex?searchtype=author&query=Shutt%2C+T+A">T. A. Shutt</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Breidenbach%2C+M">M. Breidenbach</a>, <a href="/search/hep-ex?searchtype=author&query=Cherwinka%2C+J+J">J. J. Cherwinka</a>, <a href="/search/hep-ex?searchtype=author&query=Conley%2C+R+A">R. A. Conley</a>, <a href="/search/hep-ex?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/hep-ex?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a>, <a href="/search/hep-ex?searchtype=author&query=Glaenzer%2C+A">A. Glaenzer</a>, <a href="/search/hep-ex?searchtype=author&query=Gonda%2C+T+G">T. G. Gonda</a>, <a href="/search/hep-ex?searchtype=author&query=Hanzel%2C+K">K. Hanzel</a>, <a href="/search/hep-ex?searchtype=author&query=Hoff%2C+M+D">M. D. Hoff</a>, <a href="/search/hep-ex?searchtype=author&query=Ji%2C+W">W. Ji</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06622v1-abstract-short" style="display: inline;"> The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06622v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06622v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06622v1-abstract-full" style="display: none;"> The dual-phase xenon time projection chamber (TPC) is a powerful tool for direct-detection experiments searching for WIMP dark matter, other dark matter models, and neutrinoless double-beta decay. Successful operation of such a TPC is critically dependent on the ability to hold high electric fields in the bulk liquid, across the liquid surface, and in the gas. Careful design and construction of the electrodes used to establish these fields is therefore required. We present the design and production of the LUX-ZEPLIN (LZ) experiment's high-voltage electrodes, a set of four woven mesh wire grids. Grid design drivers are discussed, with emphasis placed on design of the electron extraction region. We follow this with a description of the grid production process and a discussion of steps taken to validate the LZ grids prior to integration into the TPC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06622v1-abstract-full').style.display = 'none'; document.getElementById('2106.06622v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 20 figures, to be submitted to Nuclear Instruments and Methods in Physics Research Section A. Corresponding authors: rlinehan@stanford.edu and mannino2@wisc.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.11740">arXiv:2102.11740</a> <span> [<a href="https://arxiv.org/pdf/2102.11740">pdf</a>, <a href="https://arxiv.org/format/2102.11740">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.092009">10.1103/PhysRevD.104.092009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected sensitivities of the LUX-ZEPLIN (LZ) experiment to new physics via low-energy electron recoils </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/hep-ex?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bargemann%2C+J+W">J. W. Bargemann</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a> , et al. (172 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.11740v2-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11740v2-abstract-full').style.display = 'inline'; document.getElementById('2102.11740v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.11740v2-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a dark matter detector expected to obtain world-leading sensitivity to weakly interacting massive particles (WIMPs) interacting via nuclear recoils with a ~7-tonne xenon target mass. This manuscript presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment and 2) an effective neutrino millicharge, both for pp-chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axion-like particles forming the galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6t 1000d exposure and low expected rate of electron recoil backgrounds in the $<$100keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.11740v2-abstract-full').style.display = 'none'; document.getElementById('2102.11740v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 updates exclusion sensitivities from single-sided to two-sided</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09602">arXiv:2011.09602</a> <span> [<a href="https://arxiv.org/pdf/2011.09602">pdf</a>, <a href="https://arxiv.org/format/2011.09602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012011">10.1103/PhysRevD.104.012011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving sensitivity to low-mass dark matter in LUX using a novel electrode background mitigation technique </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09602v1-abstract-short" style="display: inline;"> This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and seldom produce detectable scintillation signals. In… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09602v1-abstract-full').style.display = 'inline'; document.getElementById('2011.09602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09602v1-abstract-full" style="display: none;"> This paper presents a novel technique for mitigating electrode backgrounds that limit the sensitivity of searches for low-mass dark matter (DM) using xenon time projection chambers. In the LUX detector, signatures of low-mass DM interactions would be very low energy ($\sim$keV) scatters in the active target that ionize only a few xenon atoms and seldom produce detectable scintillation signals. In this regime, extra precaution is required to reject a complex set of low-energy electron backgrounds that have long been observed in this class of detector. Noticing backgrounds from the wire grid electrodes near the top and bottom of the active target are particularly pernicious, we develop a machine learning technique based on ionization pulse shape to identify and reject these events. We demonstrate the technique can improve Poisson limits on low-mass DM interactions by a factor of $2$-$7$ with improvement depending heavily on the size of ionization signals. We use the technique on events in an effective $5$ tonne$\cdot$day exposure from LUX's 2013 science operation to place strong limits on low-mass DM particles with masses in the range $m_蠂\in0.15$-$10$ GeV. This machine learning technique is expected to be useful for near-future experiments, such as LZ and XENONnT, which hope to perform low-mass DM searches with the stringent background control necessary to make a discovery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09602v1-abstract-full').style.display = 'none'; document.getElementById('2011.09602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012011 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.02506">arXiv:2006.02506</a> <span> [<a href="https://arxiv.org/pdf/2006.02506">pdf</a>, <a href="https://arxiv.org/format/2006.02506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8420-x">10.1140/epjc/s10052-020-8420-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/hep-ex?searchtype=author&query=Alquahtani%2C+A">A. Alquahtani</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Arbuckle%2C+A">A. Arbuckle</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/hep-ex?searchtype=author&query=Aviles%2C+S">S. Aviles</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bensinger%2C+J">J. Bensinger</a> , et al. (365 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.02506v3-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02506v3-abstract-full').style.display = 'inline'; document.getElementById('2006.02506v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.02506v3-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above $1.4 \times 10^{-48}$ cm$^{2}$ for a WIMP mass of 40 GeV/c$^{2}$ and a 1000 d exposure. LZ achieves this sensitivity through a combination of a large 5.6 t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.02506v3-abstract-full').style.display = 'none'; document.getElementById('2006.02506v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages (79 inc. tables), 7 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The European Physical Journal C, Volume 80, Article number: 1044 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.06304">arXiv:2004.06304</a> <span> [<a href="https://arxiv.org/pdf/2004.06304">pdf</a>, <a href="https://arxiv.org/format/2004.06304">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.112002">10.1103/PhysRevD.102.112002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discrimination of electronic recoils from nuclear recoils in two-phase xenon time projection chambers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/hep-ex?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (72 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.06304v3-abstract-short" style="display: inline;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'inline'; document.getElementById('2004.06304v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.06304v3-abstract-full" style="display: none;"> We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe strong charge-to-light discrimination enhancement with increased event energy. For events with S1 = 120 detected photons, i.e. equivalent to a nuclear recoil energy of $\sim$100 keV, we observe an electronic recoil background acceptance of $<10^{-5}$ at a nuclear recoil signal acceptance of 50%. We also observe modest electric field dependence of the discrimination power, which peaks at a field of around 300 V/cm over the range of fields explored in this study (50-500 V/cm). In the WIMP search region of S1 = 1-80 phd, the minimum electronic recoil leakage we observe is ${(7.3\pm0.6)\times10^{-4}}$, which is obtained for a drift field of 240-290 V/cm. Pulse shape discrimination is utilized to improve our results, and we find that, at low energies and low fields, there is an additional reduction in background leakage by a factor of up to 3. We develop an empirical model for recombination fluctuations which, when used alongside the Noble Element Scintillation Technique (NEST) simulation package, correctly reproduces the skewness of the electronic recoil data. We use this updated simulation to study the width of the electronic recoil band, finding that its dominant contribution comes from electron-ion recombination fluctuations, followed in magnitude of contribution by fluctuations in the S1 signal, fluctuations in the S2 signal, and fluctuations in the total number of quanta produced for a given energy deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.06304v3-abstract-full').style.display = 'none'; document.getElementById('2004.06304v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 33 figures; minor typos corrected, references updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 112002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09363">arXiv:2001.09363</a> <span> [<a href="https://arxiv.org/pdf/2001.09363">pdf</a>, <a href="https://arxiv.org/format/2001.09363">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2020.102480">10.1016/j.astropartphys.2020.102480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Collaboration%2C+T+L">The LUX-ZEPLIN Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=%3A"> :</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Alqahtani%2C+A">A. Alqahtani</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bensinger%2C+J">J. Bensinger</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Birch%2C+H+J">H. J. Birch</a>, <a href="/search/hep-ex?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a> , et al. (173 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09363v2-abstract-short" style="display: inline;"> The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$\times10^{-12}$\,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09363v2-abstract-full').style.display = 'inline'; document.getElementById('2001.09363v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09363v2-abstract-full" style="display: none;"> The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1--2)$\times10^{-12}$\,pb at a WIMP mass of 40 GeV/$c^2$. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09363v2-abstract-full').style.display = 'none'; document.getElementById('2001.09363v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures; Corresponding Authors: A. Cottle, V. Kudryavtsev, D. Woodward</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09124">arXiv:1910.09124</a> <span> [<a href="https://arxiv.org/pdf/1910.09124">pdf</a>, <a href="https://arxiv.org/format/1910.09124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.163047">10.1016/j.nima.2019.163047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The LUX-ZEPLIN (LZ) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/hep-ex?searchtype=author&query=Alquahtani%2C+A">A. Alquahtani</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Arbuckle%2C+A">A. Arbuckle</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Auyeung%2C+H">H. Auyeung</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bang%2C+J">J. Bang</a>, <a href="/search/hep-ex?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/hep-ex?searchtype=author&query=Barthel%2C+J">J. Barthel</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a> , et al. (357 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09124v2-abstract-short" style="display: inline;"> We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09124v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09124v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09124v2-abstract-full" style="display: none;"> We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09124v2-abstract-full').style.display = 'none'; document.getElementById('1910.09124v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.04211">arXiv:1910.04211</a> <span> [<a href="https://arxiv.org/pdf/1910.04211">pdf</a>, <a href="https://arxiv.org/format/1910.04211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/02/T02007">10.1088/1748-0221/15/02/T02007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Modeling of $尾$ Electronic Recoils in Liquid Xenon Using LUX Calibration Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=The+LUX+Collaboration"> The LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/hep-ex?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (74 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.04211v2-abstract-short" style="display: inline;"> We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $尾$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04211v2-abstract-full').style.display = 'inline'; document.getElementById('1910.04211v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.04211v2-abstract-full" style="display: none;"> We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $尾$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.04211v2-abstract-full').style.display = 'none'; document.getElementById('1910.04211v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 Pages, 10 Figures, 2 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 15, February 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.03479">arXiv:1908.03479</a> <span> [<a href="https://arxiv.org/pdf/1908.03479">pdf</a>, <a href="https://arxiv.org/format/1908.03479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.012003">10.1103/PhysRevD.101.012003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First direct detection constraint on mirror dark matter kinetic mixing using LUX 2013 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a>, <a href="/search/hep-ex?searchtype=author&query=Gilchriese%2C+M+G+D">M. G. D. Gilchriese</a> , et al. (75 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.03479v2-abstract-short" style="display: inline;"> We present the results of a direct detection search for mirror dark matter interactions, using data collected from the Large Underground Xenon experiment during 2013, with an exposure of 95 live-days $\times$ 118 kg. Here, the calculations of the mirror electron scattering rate in liquid xenon take into account the shielding effects from mirror dark matter captured within the Earth. Annual and diu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03479v2-abstract-full').style.display = 'inline'; document.getElementById('1908.03479v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.03479v2-abstract-full" style="display: none;"> We present the results of a direct detection search for mirror dark matter interactions, using data collected from the Large Underground Xenon experiment during 2013, with an exposure of 95 live-days $\times$ 118 kg. Here, the calculations of the mirror electron scattering rate in liquid xenon take into account the shielding effects from mirror dark matter captured within the Earth. Annual and diurnal modulation of the dark matter flux and atomic shell effects in xenon are also accounted for. Having found no evidence for an electron recoil signal induced by mirror dark matter interactions we place an upper limit on the kinetic mixing parameter over a range of local mirror electron temperatures between 0.1 and 0.6 keV. This limit shows significant improvement over the previous experimental constraint from orthopositronium decays and significantly reduces the allowed parameter space for the model. We exclude mirror electron temperatures above 0.3 keV at a 90% confidence level, for this model, and constrain the kinetic mixing below this temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.03479v2-abstract-full').style.display = 'none'; document.getElementById('1908.03479v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 012003 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.06272">arXiv:1907.06272</a> <span> [<a href="https://arxiv.org/pdf/1907.06272">pdf</a>, <a href="https://arxiv.org/ps/1907.06272">ps</a>, <a href="https://arxiv.org/format/1907.06272">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.042001">10.1103/PhysRevD.101.042001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extending light WIMP searches to single scintillation photons in LUX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.06272v2-abstract-short" style="display: inline;"> We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a 2-fold coincidence signal in its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06272v2-abstract-full').style.display = 'inline'; document.getElementById('1907.06272v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.06272v2-abstract-full" style="display: none;"> We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a 2-fold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV/c$^2$ WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.06272v2-abstract-full').style.display = 'none'; document.getElementById('1907.06272v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 042001 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.02112">arXiv:1904.02112</a> <span> [<a href="https://arxiv.org/pdf/1904.02112">pdf</a>, <a href="https://arxiv.org/format/1904.02112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2019.102391">10.1016/j.astropartphys.2019.102391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of the Gamma Ray Background in the Davis Cavern at the Sanford Underground Research Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Biekert%2C+A">A. Biekert</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/hep-ex?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a>, <a href="/search/hep-ex?searchtype=author&query=Carels%2C+C">C. Carels</a>, <a href="/search/hep-ex?searchtype=author&query=Carlsmith%2C+D+L">D. L. Carlsmith</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Cascella%2C+M">M. Cascella</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.02112v2-abstract-short" style="display: inline;"> Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from $纬$-rays emitted by $^{40}$K and the $^{238}$U and $^{232}$Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02112v2-abstract-full').style.display = 'inline'; document.getElementById('1904.02112v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.02112v2-abstract-full" style="display: none;"> Deep underground environments are ideal for low background searches due to the attenuation of cosmic rays by passage through the earth. However, they are affected by backgrounds from $纬$-rays emitted by $^{40}$K and the $^{238}$U and $^{232}$Th decay chains in the surrounding rock. The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a liquid xenon TPC located within the Davis campus at the Sanford Underground Research Facility, Lead, South Dakota, at the 4,850-foot level. In order to characterise the cavern background, in-situ $纬$-ray measurements were taken with a sodium iodide detector in various locations and with lead shielding. The integral count rates (0--3300~keV) varied from 596~Hz to 1355~Hz for unshielded measurements, corresponding to a total flux in the cavern of $1.9\pm0.4$~$纬~$cm$^{-2}$s$^{-1}$. The resulting activity in the walls of the cavern can be characterised as $220\pm60$~Bq/kg of $^{40}$K, $29\pm15$~Bq/kg of $^{238}$U, and $13\pm3$~Bq/kg of $^{232}$Th. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.02112v2-abstract-full').style.display = 'none'; document.getElementById('1904.02112v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astroparticle Physics, Volume 116, Pages 102391 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.12372">arXiv:1903.12372</a> <span> [<a href="https://arxiv.org/pdf/1903.12372">pdf</a>, <a href="https://arxiv.org/format/1903.12372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.022002">10.1103/PhysRevD.100.022002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Measurements of the \b{eta}-Decay Response of Liquid Xenon with the LUX Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Baxter%2C+A">A. Baxter</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.12372v2-abstract-short" style="display: inline;"> We report results from an extensive set of measurements of the \b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.12372v2-abstract-full" style="display: none;"> We report results from an extensive set of measurements of the \b{eta}-decay response in liquid xenon.These measurements are derived from high-statistics calibration data from injected sources of both $^{3}$H and $^{14}$C in the LUX detector. The mean light-to-charge ratio is reported for 13 electric field values ranging from 43 to 491 V/cm, and for energies ranging from 1.5 to 145 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.12372v2-abstract-full').style.display = 'none'; document.getElementById('1903.12372v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 022002 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11241">arXiv:1811.11241</a> <span> [<a href="https://arxiv.org/pdf/1811.11241">pdf</a>, <a href="https://arxiv.org/format/1811.11241">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.131301">10.1103/PhysRevLett.122.131301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (73 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11241v3-abstract-short" style="display: inline;"> The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a Bremsstrahlung photon or a so-called "Migdal" electr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11241v3-abstract-full').style.display = 'inline'; document.getElementById('1811.11241v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11241v3-abstract-full" style="display: none;"> The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a Bremsstrahlung photon or a so-called "Migdal" electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.4-5 GeV/c$^2$ using 1.4$\times10^4$ kg$\cdot$day of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11241v3-abstract-full').style.display = 'none'; document.getElementById('1811.11241v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 131301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07113">arXiv:1807.07113</a> <span> [<a href="https://arxiv.org/pdf/1807.07113">pdf</a>, <a href="https://arxiv.org/format/1807.07113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.062005">10.1103/PhysRevD.98.062005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for annual and diurnal rate modulations in the LUX experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Genovesi%2C+J">J. Genovesi</a>, <a href="/search/hep-ex?searchtype=author&query=Ghag%2C+C">C. Ghag</a> , et al. (71 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07113v2-abstract-short" style="display: inline;"> Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth's motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07113v2-abstract-full').style.display = 'inline'; document.getElementById('1807.07113v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07113v2-abstract-full" style="display: none;"> Various dark matter models predict annual and diurnal modulations of dark matter interaction rates in Earth-based experiments as a result of the Earth's motion in the halo. Observation of such features can provide generic evidence for detection of dark matter interactions. This paper reports a search for both annual and diurnal rate modulations in the LUX dark matter experiment using over 20 calendar months of data acquired between 2013 and 2016. This search focuses on electron recoil events at low energies, where leptophilic dark matter interactions are expected to occur and where the DAMA experiment has observed a strong rate modulation for over two decades. By using the innermost volume of the LUX detector and developing robust cuts and corrections, we obtained a stable event rate of 2.3$\pm$0.2~cpd/keV$_{\text{ee}}$/tonne, which is among the lowest in all dark matter experiments. No statistically significant annual modulation was observed in energy windows up to 26~keV$_{\text{ee}}$. Between 2 and 6~keV$_{\text{ee}}$, this analysis demonstrates the most sensitive annual modulation search up to date, with 9.2$蟽$ tension with the DAMA/LIBRA result. We also report no observation of diurnal modulations above 0.2~cpd/keV$_{\text{ee}}$/tonne amplitude between 2 and 6~keV$_{\text{ee}}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07113v2-abstract-full').style.display = 'none'; document.getElementById('1807.07113v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-757487 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 062005 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.06039">arXiv:1802.06039</a> <span> [<a href="https://arxiv.org/pdf/1802.06039">pdf</a>, <a href="https://arxiv.org/format/1802.06039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.052002">10.1103/PhysRevD.101.052002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+D">D. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/hep-ex?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a>, <a href="/search/hep-ex?searchtype=author&query=Carels%2C+C">C. Carels</a>, <a href="/search/hep-ex?searchtype=author&query=Carlsmith%2C+D+L">D. L. Carlsmith</a>, <a href="/search/hep-ex?searchtype=author&query=Carlson%2C+B">B. Carlson</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.06039v2-abstract-short" style="display: inline;"> LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7~tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06039v2-abstract-full').style.display = 'inline'; document.getElementById('1802.06039v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.06039v2-abstract-full" style="display: none;"> LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7~tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000~live day run using a 5.6~tonne fiducial mass, LZ is projected to exclude at 90\% confidence level spin-independent WIMP-nucleon cross sections above $1.4 \times 10^{-48}$~cm$^{2}$ for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP. Additionally, a $5蟽$ discovery potential is projected reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $2.3 \times 10^{-43}$~cm$^{2}$ ($7.1 \times 10^{-42}$~cm$^{2}$) for a 40~$\mathrm{GeV}/c^{2}$ mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.06039v2-abstract-full').style.display = 'none'; document.getElementById('1802.06039v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 052002 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.02752">arXiv:1710.02752</a> <span> [<a href="https://arxiv.org/pdf/1710.02752">pdf</a>, <a href="https://arxiv.org/format/1710.02752">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/02/P02001">10.1088/1748-0221/13/02/P02001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Position Reconstruction in LUX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.02752v2-abstract-short" style="display: inline;"> The $(x, y)$ position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional fo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02752v2-abstract-full').style.display = 'inline'; document.getElementById('1710.02752v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.02752v2-abstract-full" style="display: none;"> The $(x, y)$ position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including ${}^{\mathrm{83m}}$Kr (releasing a total energy of 41.5 keV) and ${}^{3}$H ($尾^-$ with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV). In the horizontal plane, the reconstruction has achieved an $(x, y)$ position uncertainty of $蟽$= 0.82 cm for events of only 200 electroluminescence photons and $蟽$ = 0.17 cm for 4,000 electroluminescence photons. Such signals are associated with electron recoils of energies $\sim$0.25 keV and $\sim$10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface has a horizontal $(x, y)$ uncertainty of 2.13 cm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.02752v2-abstract-full').style.display = 'none'; document.getElementById('1710.02752v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Instrumentation, Volume 13, February 2018, P02001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00800">arXiv:1709.00800</a> <span> [<a href="https://arxiv.org/pdf/1709.00800">pdf</a>, <a href="https://arxiv.org/format/1709.00800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.96.112011">10.1103/PhysRevD.96.112011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultra-Low Energy Calibration of LUX Detector using $^{127}$Xe Electron Capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00800v1-abstract-short" style="display: inline;"> We report an absolute calibration of the ionization yields($\textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $^{127}$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in sea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00800v1-abstract-full').style.display = 'inline'; document.getElementById('1709.00800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00800v1-abstract-full" style="display: none;"> We report an absolute calibration of the ionization yields($\textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $^{127}$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $^{127}$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $\textit{in situ}$ measurements that have been explored in liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00800v1-abstract-full').style.display = 'none'; document.getElementById('1709.00800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 96, 112011 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00095">arXiv:1709.00095</a> <span> [<a href="https://arxiv.org/pdf/1709.00095">pdf</a>, <a href="https://arxiv.org/format/1709.00095">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/12/11/P11022">10.1088/1748-0221/12/11/P11022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D Modeling of Electric Fields in the LUX Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Edwards%2C+B+N">B. N. Edwards</a>, <a href="/search/hep-ex?searchtype=author&query=Fallon%2C+S+R">S. R. Fallon</a>, <a href="/search/hep-ex?searchtype=author&query=Fan%2C+A">A. Fan</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00095v4-abstract-short" style="display: inline;"> This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00095v4-abstract-full').style.display = 'inline'; document.getElementById('1709.00095v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00095v4-abstract-full" style="display: none;"> This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were built on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to $-5.5~渭$C/m$^2$. From our studies, we deduce that the electric field magnitude varied while the mean value of the field of $\sim200$~V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00095v4-abstract-full').style.display = 'none'; document.getElementById('1709.00095v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 12, no. 11, P11022 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.09144">arXiv:1703.09144</a> <span> [<a href="https://arxiv.org/pdf/1703.09144">pdf</a>, <a href="https://arxiv.org/format/1703.09144">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> LUX-ZEPLIN (LZ) Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Mount%2C+B+J">B. J. Mount</a>, <a href="/search/hep-ex?searchtype=author&query=Hans%2C+S">S. Hans</a>, <a href="/search/hep-ex?searchtype=author&query=Rosero%2C+R">R. Rosero</a>, <a href="/search/hep-ex?searchtype=author&query=Yeh%2C+M">M. Yeh</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Gaitskell%2C+R+J">R. J. Gaitskell</a>, <a href="/search/hep-ex?searchtype=author&query=Huang%2C+D+Q">D. Q. Huang</a>, <a href="/search/hep-ex?searchtype=author&query=Makkinje%2C+J">J. Makkinje</a>, <a href="/search/hep-ex?searchtype=author&query=Malling%2C+D+C">D. C. Malling</a>, <a href="/search/hep-ex?searchtype=author&query=Pangilinan%2C+M">M. Pangilinan</a>, <a href="/search/hep-ex?searchtype=author&query=Rhyne%2C+C+A">C. A. Rhyne</a>, <a href="/search/hep-ex?searchtype=author&query=Taylor%2C+W+C">W. C. Taylor</a>, <a href="/search/hep-ex?searchtype=author&query=Verbus%2C+J+R">J. R. Verbus</a>, <a href="/search/hep-ex?searchtype=author&query=Kim%2C+Y+D">Y. D. Kim</a>, <a href="/search/hep-ex?searchtype=author&query=Lee%2C+H+S">H. S. Lee</a>, <a href="/search/hep-ex?searchtype=author&query=Lee%2C+J">J. Lee</a>, <a href="/search/hep-ex?searchtype=author&query=Leonard%2C+D+S">D. S. Leonard</a>, <a href="/search/hep-ex?searchtype=author&query=Li%2C+J">J. Li</a>, <a href="/search/hep-ex?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/hep-ex?searchtype=author&query=Cottle%2C+A">A. Cottle</a>, <a href="/search/hep-ex?searchtype=author&query=Lippincott%2C+W+H">W. H. Lippincott</a>, <a href="/search/hep-ex?searchtype=author&query=Markley%2C+D+J">D. J. Markley</a>, <a href="/search/hep-ex?searchtype=author&query=Martin%2C+T+J">T. J. Martin</a>, <a href="/search/hep-ex?searchtype=author&query=Sarychev%2C+M">M. Sarychev</a>, <a href="/search/hep-ex?searchtype=author&query=Tope%2C+T+E">T. E. Tope</a> , et al. (237 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.09144v1-abstract-short" style="display: inline;"> In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.09144v1-abstract-full" style="display: none;"> In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.09144v1-abstract-full').style.display = 'none'; document.getElementById('1703.09144v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">392 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Numbers Two and Three (CD-2 and CD-3) management processes. Report also available by chapter at <a href="http://hep.ucsb.edu/LZ/TDR/">this URL</a></span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LBNL-1007256 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.02646">arXiv:1702.02646</a> <span> [<a href="https://arxiv.org/pdf/1702.02646">pdf</a>, <a href="https://arxiv.org/format/1702.02646">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.astropartphys.2017.09.002">10.1016/j.astropartphys.2017.09.002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/hep-ex?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/hep-ex?searchtype=author&query=Belle%2C+J">J. Belle</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Benson%2C+T">T. Benson</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/hep-ex?searchtype=author&query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/hep-ex?searchtype=author&query=Boxer%2C+B">B. Boxer</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/hep-ex?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a> , et al. (180 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.02646v5-abstract-short" style="display: inline;"> The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02646v5-abstract-full').style.display = 'inline'; document.getElementById('1702.02646v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.02646v5-abstract-full" style="display: none;"> The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of $^{238}$U$_{e}$~$<$1.6~mBq/kg, $^{238}$U$_{l}$~$<$0.09~mBq/kg, $^{232}$Th$_{e}$~$=0.28\pm 0.03$~mBq/kg, $^{232}$Th$_{l}$~$=0.25\pm 0.02$~mBq/kg, $^{40}$K~$<$0.54~mBq/kg, and $^{60}$Co~$<$0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of $0.160\pm0.001$(stat)$\pm0.030$(sys) counts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.02646v5-abstract-full').style.display = 'none'; document.getElementById('1702.02646v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, accepted for publication in Astroparticle Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02076">arXiv:1610.02076</a> <span> [<a href="https://arxiv.org/pdf/1610.02076">pdf</a>, <a href="https://arxiv.org/format/1610.02076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.012008">10.1103/PhysRevD.95.012008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal yields, energy resolution, and recombination fluctuations in liquid xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02076v1-abstract-short" style="display: inline;"> This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additiona… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02076v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02076v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02076v1-abstract-full" style="display: none;"> This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon re- combination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2-16 keV with $^3$H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02076v1-abstract-full').style.display = 'none'; document.getElementById('1610.02076v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 012008 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.07648">arXiv:1608.07648</a> <span> [<a href="https://arxiv.org/pdf/1608.07648">pdf</a>, <a href="https://arxiv.org/format/1608.07648">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.118.021303">10.1103/PhysRevLett.118.021303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from a search for dark matter in the complete LUX exposure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.07648v3-abstract-short" style="display: inline;"> We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07648v3-abstract-full').style.display = 'inline'; document.getElementById('1608.07648v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.07648v3-abstract-full" style="display: none;"> We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35e4 kg-day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV/c^2, WIMP-nucleon spin-independent cross sections above 2.2e-46 cm^2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1e-46 cm^2 at 50 GeV/c^2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.07648v3-abstract-full').style.display = 'none'; document.getElementById('1608.07648v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version includes a combined analysis with previously published LUX results, and matches the version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 118, 021303 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.05381">arXiv:1608.05381</a> <span> [<a href="https://arxiv.org/pdf/1608.05381">pdf</a>, <a href="https://arxiv.org/format/1608.05381">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S">S. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Br%C3%A1s%2C+P">P. Br谩s</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.05381v2-abstract-short" style="display: inline;"> The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05381v2-abstract-full').style.display = 'inline'; document.getElementById('1608.05381v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.05381v2-abstract-full" style="display: none;"> The Large Underground Xenon (LUX) experiment is a dual-phase liquid xenon time projection chamber (TPC) operating at the Sanford Underground Research Facility in Lead, South Dakota. A calibration of nuclear recoils in liquid xenon was performed $\textit{in situ}$ in the LUX detector using a collimated beam of mono-energetic 2.45 MeV neutrons produced by a deuterium-deuterium (D-D) fusion source. The nuclear recoil energy from the first neutron scatter in the TPC was reconstructed using the measured scattering angle defined by double-scatter neutron events within the active xenon volume. We measured the absolute charge ($Q_{y}$) and light ($L_{y}$) yields at an average electric field of 180 V/cm for nuclear recoil energies spanning 0.7 to 74 keV and 1.1 to 74 keV, respectively. This calibration of the nuclear recoil signal yields will permit the further refinement of liquid xenon nuclear recoil signal models and, importantly for dark matter searches, clearly demonstrates measured ionization and scintillation signals in this medium at recoil energies down to $\mathcal{O}$(1 keV). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.05381v2-abstract-full').style.display = 'none'; document.getElementById('1608.05381v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 15 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.03489">arXiv:1602.03489</a> <span> [<a href="https://arxiv.org/pdf/1602.03489">pdf</a>, <a href="https://arxiv.org/format/1602.03489">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.161302">10.1103/PhysRevLett.116.161302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.03489v3-abstract-short" style="display: inline;"> We present the first experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03489v3-abstract-full').style.display = 'inline'; document.getElementById('1602.03489v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.03489v3-abstract-full" style="display: none;"> We present the first experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of $1.4~\times~10^{4}~\text{kg}\cdot~\text{days}$ of fiducial exposure allows 90% CL upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of $蟽_n~=~9.4~\times~10^{-41}~\text{cm}^2$ ($蟽_p~=~2.9~\times~10^{-39}~\text{cm}^2$) at 33 GeV/c$^2$. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.03489v3-abstract-full').style.display = 'none'; document.getElementById('1602.03489v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 161302 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03506">arXiv:1512.03506</a> <span> [<a href="https://arxiv.org/pdf/1512.03506">pdf</a>, <a href="https://arxiv.org/format/1512.03506">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.161301">10.1103/PhysRevLett.116.161301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a> , et al. (77 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03506v3-abstract-short" style="display: inline;"> We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including $1.4\times10^{4}\;\mathrm{kg\; day}$ of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03506v3-abstract-full').style.display = 'inline'; document.getElementById('1512.03506v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03506v3-abstract-full" style="display: none;"> We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including $1.4\times10^{4}\;\mathrm{kg\; day}$ of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium $尾$ source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 $\mathrm{GeV}\,c^{-2}$, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 $\mathrm{GeV}\,c^{-2}$ WIMP mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03506v3-abstract-full').style.display = 'none'; document.getElementById('1512.03506v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 161301 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.03133">arXiv:1512.03133</a> <span> [<a href="https://arxiv.org/pdf/1512.03133">pdf</a>, <a href="https://arxiv.org/format/1512.03133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.072009">10.1103/PhysRevD.93.072009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tritium calibration of the LUX dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/hep-ex?searchtype=author&query=Davison%2C+T+J+R">T. J. R. Davison</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J+E+Y">J. E. Y. Dobson</a> , et al. (76 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.03133v2-abstract-short" style="display: inline;"> We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170,000 highly pure and spatially-uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 V/cm and 105 V/cm and compare the resu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03133v2-abstract-full').style.display = 'inline'; document.getElementById('1512.03133v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.03133v2-abstract-full" style="display: none;"> We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170,000 highly pure and spatially-uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 V/cm and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a re-analysis of the LUX Run3 WIMP search. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.03133v2-abstract-full').style.display = 'none'; document.getElementById('1512.03133v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 072009 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.02910">arXiv:1509.02910</a> <span> [<a href="https://arxiv.org/pdf/1509.02910">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> LUX-ZEPLIN (LZ) Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=The+LZ+Collaboration"> The LZ Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Akerlof%2C+C+W">C. W. Akerlof</a>, <a href="/search/hep-ex?searchtype=author&query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/hep-ex?searchtype=author&query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/hep-ex?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Balashov%2C+S">S. Balashov</a>, <a href="/search/hep-ex?searchtype=author&query=Barry%2C+M+J">M. J. Barry</a>, <a href="/search/hep-ex?searchtype=author&query=Bauer%2C+P">P. Bauer</a>, <a href="/search/hep-ex?searchtype=author&query=Beltrame%2C+P">P. Beltrame</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Biesiadzinski%2C+T+P">T. P. Biesiadzinski</a>, <a href="/search/hep-ex?searchtype=author&query=Boast%2C+K+E">K. E. Boast</a>, <a href="/search/hep-ex?searchtype=author&query=Bolozdynya%2C+A+I">A. I. Bolozdynya</a>, <a href="/search/hep-ex?searchtype=author&query=Boulton%2C+E+M">E. M. Boulton</a>, <a href="/search/hep-ex?searchtype=author&query=Bramante%2C+R">R. Bramante</a>, <a href="/search/hep-ex?searchtype=author&query=Buckley%2C+J+H">J. H. Buckley</a>, <a href="/search/hep-ex?searchtype=author&query=Bugaev%2C+V+V">V. V. Bugaev</a>, <a href="/search/hep-ex?searchtype=author&query=Bunker%2C+R">R. Bunker</a>, <a href="/search/hep-ex?searchtype=author&query=Burdin%2C+S">S. Burdin</a>, <a href="/search/hep-ex?searchtype=author&query=Busenitz%2C+J+K">J. K. Busenitz</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.02910v2-abstract-short" style="display: inline;"> The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive exp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02910v2-abstract-full').style.display = 'inline'; document.getElementById('1509.02910v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.02910v2-abstract-full" style="display: none;"> The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.02910v2-abstract-full').style.display = 'none'; document.getElementById('1509.02910v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">278 pages. Submitted to the Department of Energy as part of the documentation for the Critical Decision Number One (CD-1) management process. Report also available by chapter at http://hep.ucsb.edu/LZ/CDR. This version includes corrections of minor typographic errors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LBNL-190005 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.3731">arXiv:1402.3731</a> <span> [<a href="https://arxiv.org/pdf/1402.3731">pdf</a>, <a href="https://arxiv.org/format/1402.3731">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A Detailed Look at the First Results from the Large Underground Xenon (LUX) Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Szydagis%2C+M">M. Szydagis</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Araujo%2C+H+M">H. M. Araujo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E">E. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Coffey%2C+T">T. Coffey</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dobson%2C+J">J. Dobson</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a>, <a href="/search/hep-ex?searchtype=author&query=Edwards%2C+B">B. Edwards</a>, <a href="/search/hep-ex?searchtype=author&query=Faham%2C+C+H">C. H. Faham</a>, <a href="/search/hep-ex?searchtype=author&query=Fiorucci%2C+S">S. Fiorucci</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.3731v2-abstract-short" style="display: inline;"> LUX, the world's largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on the spin-independent WIMP-nucleon scattering cross-section was released in October 2013, with a primary scintillation threshold of 2 phe, roughly 3 keV… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3731v2-abstract-full').style.display = 'inline'; document.getElementById('1402.3731v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.3731v2-abstract-full" style="display: none;"> LUX, the world's largest dual-phase xenon time-projection chamber, with a fiducial target mass of 118 kg and 10,091 kg-days of exposure thus far, is currently the most sensitive direct dark matter search experiment. The initial null-result limit on the spin-independent WIMP-nucleon scattering cross-section was released in October 2013, with a primary scintillation threshold of 2 phe, roughly 3 keVnr for LUX. The detector has been deployed at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, and is the first experiment to achieve a limit on the WIMP cross-section lower than $10^{-45}$ cm$^{2}$. Here we present a more in-depth discussion of the novel energy scale employed to better understand the nuclear recoil light and charge yields, and of the calibration sources, including the new internal tritium source. We found the LUX data to be in conflict with low-mass WIMP signal interpretations of other results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.3731v2-abstract-full').style.display = 'none'; document.getElementById('1402.3731v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures, to appear in the proceedings of The 10th International Symposium on Cosmology and Particle Astrophysics (CosPA2013); fixed author list and added info on new calibration</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1310.8214">arXiv:1310.8214</a> <span> [<a href="https://arxiv.org/pdf/1310.8214">pdf</a>, <a href="https://arxiv.org/format/1310.8214">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.091303">10.1103/PhysRevLett.112.091303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First results from the LUX dark matter experiment at the Sanford Underground Research Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=LUX+Collaboration"> LUX Collaboration</a>, <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Araujo%2C+H+M">H. M. Araujo</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bailey%2C+A+J">A. J. Bailey</a>, <a href="/search/hep-ex?searchtype=author&query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/hep-ex?searchtype=author&query=Bedikian%2C+S">S. Bedikian</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E">E. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Chan%2C+C">C. Chan</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A+A">A. A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Clark%2C+K">K. Clark</a>, <a href="/search/hep-ex?searchtype=author&query=Coffey%2C+T">T. Coffey</a>, <a href="/search/hep-ex?searchtype=author&query=Currie%2C+A">A. Currie</a>, <a href="/search/hep-ex?searchtype=author&query=Curioni%2C+A">A. Curioni</a>, <a href="/search/hep-ex?searchtype=author&query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1310.8214v2-abstract-short" style="display: inline;"> The Large Underground Xenon (LUX) experiment, a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), was cooled and filled in February 2013. We report results of the first WIMP search dataset, taken during the period April to August 2013, presenting the analysis of 85.3 live-days of data with a fiducial volume of 118 kg. A profile-li… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8214v2-abstract-full').style.display = 'inline'; document.getElementById('1310.8214v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1310.8214v2-abstract-full" style="display: none;"> The Large Underground Xenon (LUX) experiment, a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), was cooled and filled in February 2013. We report results of the first WIMP search dataset, taken during the period April to August 2013, presenting the analysis of 85.3 live-days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of $7.6 \times 10^{-46}$ cm$^{2}$ at a WIMP mass of 33 GeV/c$^2$. We find that the LUX data are in strong disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1310.8214v2-abstract-full').style.display = 'none'; document.getElementById('1310.8214v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Phys. Rev. Lett. Appendix A included as supplementary material with PRL article</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 091303 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.3788">arXiv:1211.3788</a> <span> [<a href="https://arxiv.org/pdf/1211.3788">pdf</a>, <a href="https://arxiv.org/format/1211.3788">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2012.11.135">10.1016/j.nima.2012.11.135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Underground Xenon (LUX) Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ex?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/hep-ex?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/hep-ex?searchtype=author&query=Bedikian%2C+S">S. Bedikian</a>, <a href="/search/hep-ex?searchtype=author&query=Bernard%2C+E">E. Bernard</a>, <a href="/search/hep-ex?searchtype=author&query=Bernstein%2C+A">A. Bernstein</a>, <a href="/search/hep-ex?searchtype=author&query=Bolozdynya%2C+A">A. Bolozdynya</a>, <a href="/search/hep-ex?searchtype=author&query=Bradley%2C+A">A. Bradley</a>, <a href="/search/hep-ex?searchtype=author&query=Byram%2C+D">D. Byram</a>, <a href="/search/hep-ex?searchtype=author&query=Cahn%2C+S+B">S. B. Cahn</a>, <a href="/search/hep-ex?searchtype=author&query=Camp%2C+C">C. Camp</a>, <a href="/search/hep-ex?searchtype=author&query=Carmona-Benitez%2C+M+C">M. C. Carmona-Benitez</a>, <a href="/search/hep-ex?searchtype=author&query=Carr%2C+D">D. Carr</a>, <a href="/search/hep-ex?searchtype=author&query=Chapman%2C+J+J">J. J. Chapman</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+A">A. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Chiller%2C+C">C. Chiller</a>, <a href="/search/hep-ex?searchtype=author&query=Clark%2C+K">K. Clark</a>, <a href="/search/hep-ex?searchtype=author&query=Classen%2C+T">T. Classen</a>, <a href="/search/hep-ex?searchtype=author&query=Coffey%2C+T">T. Coffey</a>, <a href="/search/hep-ex?searchtype=author&query=Curioni%2C+A">A. Curioni</a>, <a href="/search/hep-ex?searchtype=author&query=Dahl%2C+E">E. Dahl</a>, <a href="/search/hep-ex?searchtype=author&query=Dazeley%2C+S">S. Dazeley</a>, <a href="/search/hep-ex?searchtype=author&query=de+Viveiros%2C+L">L. de Viveiros</a>, <a href="/search/hep-ex?searchtype=author&query=Dobi%2C+A">A. Dobi</a>, <a href="/search/hep-ex?searchtype=author&query=Dragowsky%2C+E">E. Dragowsky</a>, <a href="/search/hep-ex?searchtype=author&query=Druszkiewicz%2C+E">E. Druszkiewicz</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.3788v2-abstract-short" style="display: inline;"> The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\times 10^{-46}$ cm$^{2}$, equivalent to $\sim$1 event/100… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3788v2-abstract-full').style.display = 'inline'; document.getElementById('1211.3788v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.3788v2-abstract-full" style="display: none;"> The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\times 10^{-46}$ cm$^{2}$, equivalent to $\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.3788v2-abstract-full').style.display = 'none'; document.getElementById('1211.3788v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research A704 (2013) 111 - 126 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Akerib%2C+D+S&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>