CINXE.COM
Search results for: multivariate regression tree
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: multivariate regression tree</title> <meta name="description" content="Search results for: multivariate regression tree"> <meta name="keywords" content="multivariate regression tree"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="multivariate regression tree" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="multivariate regression tree"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4442</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: multivariate regression tree</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4442</span> The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Turgal">Ebru Turgal</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyza%20Doganay%20Erdogan"> Beyza Doganay Erdogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boosted%20multivariate%20trees" title="boosted multivariate trees">boosted multivariate trees</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20data" title=" longitudinal data"> longitudinal data</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree" title=" multivariate regression tree"> multivariate regression tree</a>, <a href="https://publications.waset.org/abstracts/search?q=panel%20data" title=" panel data"> panel data</a> </p> <a href="https://publications.waset.org/abstracts/87009/the-use-of-boosted-multivariate-trees-in-medical-decision-making-for-repeated-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4441</span> Regression for Doubly Inflated Multivariate Poisson Distributions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishapathik%20Das">Ishapathik Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumen%20Sen"> Sumen Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rao%20Chaganty"> N. Rao Chaganty</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Sengupta"> Pooja Sengupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependent multivariate count data occur in several research studies. These data can be modeled by a multivariate Poisson or Negative binomial distribution constructed using copulas. However, when some of the counts are inflated, that is, the number of observations in some cells are much larger than other cells, then the copula based multivariate Poisson (or Negative binomial) distribution may not fit well and it is not an appropriate statistical model for the data. There is a need to modify or adjust the multivariate distribution to account for the inflated frequencies. In this article, we consider the situation where the frequencies of two cells are higher compared to the other cells, and develop a doubly inflated multivariate Poisson distribution function using multivariate Gaussian copula. We also discuss procedures for regression on covariates for the doubly inflated multivariate count data. For illustrating the proposed methodologies, we present a real data containing bivariate count observations with inflations in two cells. Several models and linear predictors with log link functions are considered, and we discuss maximum likelihood estimation to estimate unknown parameters of the models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copula" title="copula">copula</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20copula" title=" Gaussian copula"> Gaussian copula</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20distributions" title=" multivariate distributions"> multivariate distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=inflated%20distributios" title=" inflated distributios"> inflated distributios</a> </p> <a href="https://publications.waset.org/abstracts/105114/regression-for-doubly-inflated-multivariate-poisson-distributions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4440</span> A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Armin%20Motahari%20Tabari"> Seyed Armin Motahari Tabari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20tree" title="model tree">model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART" title=" CART"> CART</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shear%20strength" title=" soil shear strength"> soil shear strength</a> </p> <a href="https://publications.waset.org/abstracts/141471/a-hybrid-model-tree-and-logistic-regression-model-for-prediction-of-soil-shear-strength-in-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4439</span> Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Ahmad%20Afip">Irfan Ahmad Afip</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographical%20information%20system" title="geographical information system">geographical information system</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometeorological" title=" hydrometeorological"> hydrometeorological</a>, <a href="https://publications.waset.org/abstracts/search?q=leptospirosis" title=" leptospirosis"> leptospirosis</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20regression" title=" multivariate regression"> multivariate regression</a> </p> <a href="https://publications.waset.org/abstracts/121967/analyzing-the-influence-of-hydrometeorlogical-extremes-geological-setting-and-social-demographic-on-public-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4438</span> Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Umbleja">K. Umbleja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ichino"> M. Ichino</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yaguchi"> H. Yaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20visualization" title="data visualization">data visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilarity-based%20coloring" title=" dissimilarity-based coloring"> dissimilarity-based coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=proximity-based%20coloring" title=" proximity-based coloring"> proximity-based coloring</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20data" title=" symbolic data"> symbolic data</a> </p> <a href="https://publications.waset.org/abstracts/92191/dissimilarity-based-coloring-for-symbolic-and-multivariate-data-visualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4437</span> Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benchelha">S. Benchelha</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20C.%20Aoudjehane"> H. C. Aoudjehane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hakdaoui"> M. Hakdaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20El%20Hamdouni"> R. El Hamdouni</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mansouri"> H. Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Benchelha"> T. Benchelha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Layelmam"> M. Layelmam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alaoui"> M. Alaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide%20susceptibility%20mapping" title="landslide susceptibility mapping">landslide susceptibility mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20logistic" title=" regression logistic"> regression logistic</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20adaptive%20regression%20spline" title=" multivariate adaptive regression spline"> multivariate adaptive regression spline</a>, <a href="https://publications.waset.org/abstracts/search?q=Oudka" title=" Oudka"> Oudka</a>, <a href="https://publications.waset.org/abstracts/search?q=Taounate" title=" Taounate"> Taounate</a> </p> <a href="https://publications.waset.org/abstracts/107250/landslide-susceptibility-mapping-a-comparison-between-logistic-regression-and-multivariate-adaptive-regression-spline-models-in-the-municipality-of-oudka-northern-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4436</span> An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/70715/an-alternative-approach-for-assessing-the-impact-of-cutting-conditions-on-surface-roughness-using-single-decision-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4435</span> Heart Attack Prediction Using Several Machine Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzan%20Anwar">Suzan Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Utkarsh%20Goyal"> Utkarsh Goyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title="heart rate">heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/150492/heart-attack-prediction-using-several-machine-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4434</span> Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabilah%20Filzah%20Mohd%20Radzuan">Nabilah Filzah Mohd Radzuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Andi%20Putra"> Andi Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Zalinda%20Othman"> Zalinda Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Azuraliza%20Abu%20Bakar"> Azuraliza Abu Bakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Razak%20Hamdan"> Abdul Razak Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title="logistic regression">logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=decisions%20tree" title=" decisions tree"> decisions tree</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=VAR%20model" title=" VAR model"> VAR model</a> </p> <a href="https://publications.waset.org/abstracts/1420/comparative-study-od-three-artificial-intelligence-techniques-for-rain-domain-in-precipitation-forecast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4433</span> A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Adel%20Shokry%20Fahim">Mina Adel Shokry Fahim</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C5%ABrat%C4%97%20Su%C5%BEiedelyt%C4%97%20Visockien%C4%97"> Jūratė Sužiedelytė Visockienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20and%20natural%20sources" title=" anthropogenic and natural sources"> anthropogenic and natural sources</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process%20regression" title=" Gaussian process regression"> Gaussian process regression</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20ensemble" title=" tree ensemble"> tree ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting%20models" title=" forecasting models"> forecasting models</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a> </p> <a href="https://publications.waset.org/abstracts/183947/a-comparative-analysis-of-machine-learning-techniques-for-pm10-forecasting-in-vilnius" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4432</span> Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lina%20Wu">Lina Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyi%20Lu"> Wenyi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Li"> Ye Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation%20coefficients" title="correlation coefficients">correlation coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20effect" title=" displacement effect"> displacement effect</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis%20technique" title=" multivariate analysis technique"> multivariate analysis technique</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20coefficients" title=" regression coefficients"> regression coefficients</a> </p> <a href="https://publications.waset.org/abstracts/42703/effects-of-video-games-and-online-chat-on-mathematics-performance-in-high-school-an-approach-of-multivariate-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4431</span> Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishapathik%20Das">Ishapathik Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20misspecification" title="model misspecification">model misspecification</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20kriging" title=" multivariate kriging"> multivariate kriging</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20logistic%20link" title=" multivariate logistic link"> multivariate logistic link</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinal%20response%20models" title=" ordinal response models"> ordinal response models</a>, <a href="https://publications.waset.org/abstracts/search?q=quantile%20dispersion%20graphs" title=" quantile dispersion graphs"> quantile dispersion graphs</a> </p> <a href="https://publications.waset.org/abstracts/34042/selection-of-designs-in-ordinal-regression-models-under-linear-predictor-misspecification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4430</span> An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicodemus%20M.%20J.%20Mbwambo">Nicodemus M. J. Mbwambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Sun"> Yu-Shan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Murali%20Sitaraman"> Murali Sitaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Krone"> Joan Krone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20abstraction" title=" data abstraction"> data abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=maps" title=" maps"> maps</a>, <a href="https://publications.waset.org/abstracts/search?q=specification" title=" specification"> specification</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a> </p> <a href="https://publications.waset.org/abstracts/131080/an-encapsulation-of-a-navigable-tree-position-theory-specification-and-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4429</span> BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianna%20Zou">Gianna Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BART" title="BART">BART</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=matching" title=" matching"> matching</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/149989/bart-matching-method-using-bayesian-additive-regression-tree-for-data-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4428</span> Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20G.%20Koppad">Arjun G. Koppad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest" title="forest">forest</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC" title=" LULC"> LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20scatter" title=" back scatter"> back scatter</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR" title=" SAR"> SAR</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/187535/assessment-of-forest-above-ground-biomass-through-linear-modeling-technique-using-sar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4427</span> A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyin%20Afolabi">Doyin Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Adewole"> Phillip Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladipupo%20Sennaike"> Oladipupo Sennaike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance%20dataset" title=" imbalance dataset"> imbalance dataset</a> </p> <a href="https://publications.waset.org/abstracts/157609/a-ratio-weighted-decision-tree-algorithm-for-imbalance-dataset-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4426</span> Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Pramila">P. V. Pramila </a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Mahesh"> V. Mahesh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEV" title="FEV">FEV</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20adaptive%20regression%20splines%20pulmonary%20function%20test" title=" multivariate adaptive regression splines pulmonary function test"> multivariate adaptive regression splines pulmonary function test</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/27603/comparison-of-multivariate-adaptive-regression-splines-and-random-forest-regression-in-predicting-forced-expiratory-volume-in-one-second" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4425</span> A Kruskal Based Heuxistic for the Application of Spanning Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Naidu">Anjan Naidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minimum%20Spanning%20tree" title="Minimum Spanning tree">Minimum Spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Heuxistic" title=" Heuxistic"> Heuxistic</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20Sub%2097K90" title=" classification of Sub 97K90"> classification of Sub 97K90</a> </p> <a href="https://publications.waset.org/abstracts/30559/a-kruskal-based-heuxistic-for-the-application-of-spanning-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4424</span> The Factors Predicting Credibility of News in Social Media in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekapon%20Thienthaworn">Ekapon Thienthaworn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credibility%20of%20news" title="credibility of news">credibility of news</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviors%20and%20attitudes" title=" behaviors and attitudes"> behaviors and attitudes</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20board" title=" web board"> web board</a> </p> <a href="https://publications.waset.org/abstracts/55587/the-factors-predicting-credibility-of-news-in-social-media-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4423</span> Nearest Neighbor Investigate Using R+ Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rutuja%20Desai">Rutuja Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title="information retrieval">information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbor%20search" title=" nearest neighbor search"> nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20search" title=" keyword search"> keyword search</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2B%20tree" title=" R+ tree"> R+ tree</a> </p> <a href="https://publications.waset.org/abstracts/33680/nearest-neighbor-investigate-using-r-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4422</span> Competing Risks Modeling Using within Node Homogeneity Classification Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazeem%20Adesina%20Dauda">Kazeem Adesina Dauda</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Babatunde%20Yahya"> Waheed Babatunde Yahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To design a tree that maximizes within-node homogeneity, there is a need for a homogeneity measure that is appropriate for event history data with multiple risks. We consider the use of Deviance and Modified Cox-Snell residuals as a measure of impurity in Classification Regression Tree (CART) and compare our results with the results of Fiona (2008) in which homogeneity measures were based on Martingale Residual. Data structure approach was used to validate the performance of our proposed techniques via simulation and real life data. The results of univariate competing risk revealed that: using Deviance and Cox-Snell residuals as a response in within node homogeneity classification tree perform better than using other residuals irrespective of performance techniques. Bone marrow transplant data and double-blinded randomized clinical trial, conducted in other to compare two treatments for patients with prostate cancer were used to demonstrate the efficiency of our proposed method vis-à-vis the existing ones. Results from empirical studies of the bone marrow transplant data showed that the proposed model with Cox-Snell residual (Deviance=16.6498) performs better than both the Martingale residual (deviance=160.3592) and Deviance residual (Deviance=556.8822) in both event of interest and competing risks. Additionally, results from prostate cancer also reveal the performance of proposed model over the existing one in both causes, interestingly, Cox-Snell residual (MSE=0.01783563) outfit both the Martingale residual (MSE=0.1853148) and Deviance residual (MSE=0.8043366). Moreover, these results validate those obtained from the Monte-Carlo studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=within-node%20homogeneity" title="within-node homogeneity">within-node homogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=Martingale%20residual" title=" Martingale residual"> Martingale residual</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Cox-Snell%20residual" title=" modified Cox-Snell residual"> modified Cox-Snell residual</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20and%20regression%20tree" title=" classification and regression tree"> classification and regression tree</a> </p> <a href="https://publications.waset.org/abstracts/54622/competing-risks-modeling-using-within-node-homogeneity-classification-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4421</span> Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Ahirwar">Neha Ahirwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20credit%20card%20fraud%20detection" title="efficient credit card fraud detection">efficient credit card fraud detection</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=XGBoost" title=" XGBoost"> XGBoost</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a> </p> <a href="https://publications.waset.org/abstracts/179778/efficient-credit-card-fraud-detection-based-on-multiple-ml-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4420</span> The Modality of Multivariate Skew Normal Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bader%20Alruwaili">Bader Alruwaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Ray"> Surajit Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mode" title="mode">mode</a>, <a href="https://publications.waset.org/abstracts/search?q=modality" title=" modality"> modality</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20skew%20normal" title=" multivariate skew normal"> multivariate skew normal</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20mixture" title=" finite mixture"> finite mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20mode" title=" number of mode"> number of mode</a> </p> <a href="https://publications.waset.org/abstracts/68912/the-modality-of-multivariate-skew-normal-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4419</span> Regression Model Evaluation on Depth Camera Data for Gaze Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Purnama">James Purnama</a>, <a href="https://publications.waset.org/abstracts/search?q=Riri%20Fitri%20Sari"> Riri Fitri Sari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaze%20estimation" title="gaze estimation">gaze estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=gaze%20tracking" title=" gaze tracking"> gaze tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20tracking" title=" eye tracking"> eye tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=kinect" title=" kinect"> kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20python" title=" orange python"> orange python</a> </p> <a href="https://publications.waset.org/abstracts/17938/regression-model-evaluation-on-depth-camera-data-for-gaze-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4418</span> Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuei-Ling%20Sun">Kuei-Ling Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Chia-Yu%20Su"> Emily Chia-Yu Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergy" title="allergy">allergy</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/64231/using-machine-learning-methods-for-allergen-amino-acid-sequences-permutations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4417</span> A Novel PSO Based Decision Tree Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Farzan">Ali Farzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20criteria" title=" splitting criteria"> splitting criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/32425/a-novel-pso-based-decision-tree-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4416</span> Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Bindu">K. A. Bindu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20V.%20Raja"> T. V. Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Rojan"> P. M. Rojan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siby"> A. Siby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component%20analysis" title="component analysis">component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate" title=" multivariate"> multivariate</a>, <a href="https://publications.waset.org/abstracts/search?q=slaughter" title=" slaughter"> slaughter</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/104373/prediction-of-slaughter-body-weight-in-rabbits-multivariate-approach-through-path-coefficient-and-principal-component-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4415</span> Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Cicekli">S. Y. Cicekli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close-%20range%20photogrammetry" title="close- range photogrammetry">close- range photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20model" title=" three-dimensional model"> three-dimensional model</a> </p> <a href="https://publications.waset.org/abstracts/39825/monitoring-three-dimensional-models-of-tree-and-forest-by-using-digital-close-range-photogrammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4414</span> Forecasting Stock Indexes Using Bayesian Additive Regression Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darren%20Zou">Darren Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BART" title="BART">BART</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=predict" title=" predict"> predict</a>, <a href="https://publications.waset.org/abstracts/search?q=stock" title=" stock"> stock</a> </p> <a href="https://publications.waset.org/abstracts/124504/forecasting-stock-indexes-using-bayesian-additive-regression-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4413</span> Infestation in Omani Date Palm Orchards by Dubas Bug Is Related to Tree Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Kumar">Lalit Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Al%20Shidi"> Rashid Al Shidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phoenix dactylifera (date palm) is a major crop in many middle-eastern countries, including Oman. The Dubas bug Ommatissus lybicus is the main pest that affects date palm crops. However not all plantations are infested. It is still uncertain why some plantations get infested while others are not. This research investigated whether tree density and the system of planting (random versus systematic) had any relationship with infestation and levels of infestation. Remote Sensing and Geographic Information Systems were used to determine the density of trees (number of trees per unit area) while infestation levels were determined by manual counting of insects on 40 leaflets from two fronds on each tree, with a total of 20-60 trees in each village. The infestation was recorded as the average number of insects per leaflet. For tree density estimation, WorldView-3 scenes, with eight bands and 2m spatial resolution, were used. The Local maxima method, which depends on locating of the pixel of highest brightness inside a certain exploration window, was used to identify the trees in the image and delineating individual trees. This information was then used to determine whether the plantation was random or systematic. The ordinary least square regression (OLS) was used to test the global correlation between tree density and infestation level and the Geographic Weight Regression (GWR) was used to find the local spatial relationship. The accuracy of detecting trees varied from 83–99% in agricultural lands with systematic planting patterns to 50–70% in natural forest areas. Results revealed that the density of the trees in most of the villages was higher than the recommended planting number (120–125 trees/hectare). For infestation correlations, the GWR model showed a good positive significant relationship between infestation and tree density in the spring season with R² = 0.60 and medium positive significant relationship in the autumn season, with R² = 0.30. In contrast, the OLS model results showed a weaker positive significant relationship in the spring season with R² = 0.02, p < 0.05 and insignificant relationship in the autumn season with R² = 0.01, p > 0.05. The results showed a positive correlation between infestation and tree density, which suggests the infestation severity increased as the density of date palm trees increased. The correlation result showed that the density alone was responsible for about 60% of the increase in the infestation. This information can be used by the relevant authorities to better control infestations as well as to manage their pesticide spraying programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dubas%20bug" title="dubas bug">dubas bug</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm" title=" date palm"> date palm</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20density" title=" tree density"> tree density</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation%20levels" title=" infestation levels"> infestation levels</a> </p> <a href="https://publications.waset.org/abstracts/90701/infestation-in-omani-date-palm-orchards-by-dubas-bug-is-related-to-tree-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=148">148</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=multivariate%20regression%20tree&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>