CINXE.COM
{"title":"Construction of Recombinant E.coli Expressing Fusion Protein to Produce 1,3-Propanediol","authors":"Rosarin Rujananon, Poonsuk Prasertsan, Amornrat Phongdara, Tanate Panrat,Jibin Sun, Sugima Rappert, An-Ping Zeng","volume":52,"journal":"International Journal of Biotechnology and Bioengineering","pagesStart":228,"pagesEnd":235,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/7023","abstract":"In this study, a synthetic pathway was created by\r\nassembling genes from Clostridium butyricum and Escherichia coli\r\nin different combinations. Among the genes were dhaB1 and dhaB2\r\nfrom C. butyricum VPI1718 coding for glycerol dehydratase (GDHt)\r\nand its activator (GDHtAc), respectively, involved in the conversion\r\nof glycerol to 3-hydroxypropionaldehyde (3-HPA). The yqhD gene\r\nfrom E.coli BL21 was also included which codes for an NADPHdependent\r\n1,3-propanediol oxidoreductase isoenzyme (PDORI)\r\nreducing 3-HPA to 1,3-propanediol (1,3-PD). Molecular modeling\r\nanalysis indicated that the conformation of fusion protein of YQHD\r\nand DHAB1 was favorable for direct molecular channeling of the\r\nintermediate 3-HPA. According to the simulation results, the yqhD\r\nand dhaB1 gene were assembled in the upstream of dhaB2 to express\r\na fusion protein, yielding the recombinant strain E. coliBL21\r\n(DE3)\/\/pET22b+::yqhD-dhaB1_dhaB2 (strain BP41Y3). Strain\r\nBP41Y3 gave 10-fold higher 1,3-PD concentration than E. coliBL21\r\n(DE3)\/\/pET22b+::yqhD-dhaB1_dhaB2 (strain BP31Y2) expressing\r\nthe recombinant enzymes simultaneously but in a non-fusion mode.\r\nThis is the first report using a gene fusion approach to enhance the\r\nbiological conversion of glycerol to the value added compound 1,3-\r\nPD.","references":"[1] H. Miller, \"Major fiber producers hop on corterra bandwagon,\" Int\r\nFiber J, vol. 15, pp. 14-16, 2000.\r\n[2] R. Rudie, \"Cargill dow sows seeds of future fibers; will build $ 300\r\nmillion PLA polymer plant,\" Int Fiber J, vol. 15, pp. 8-12, 2000.\r\n[3] A.Nemeth, B. Kupcsulik, and B. Sevella, \"1,3-Propanediol\r\noxidoreductase production with Klebsiella pneumoniae DSM 2026,\"\r\nWorld J Microbiol Biotechnol, vol. 19, pp. 659-663, 2003.\r\n[4] H. Biebl, K. Menzel, A.-P. Zeng, and W.-D. Deckwer, \"Microbial\r\nproduction of 1,3-propanediol,\" Appl Microbiol Biotechnol, vol. 52, pp.\r\n289-297, 1999.\r\n[5] A.-P. Zeng, H. Biebl,, H. Schlieker, and W.-D. Deckwer, \"Pathway\r\nanalysis of glycerol fermentation by Klebsiella pneumoniae: regulation\r\nof reducing equivalent balance and product formation,\" Enz Microb\r\nTechnol, vol. 15, pp. 770-779, 1993.\r\n[6] S. Sattayasamitsathit, P. Prasertsan, and P. Methacanon, \"Statistical\r\noptimization for simultaneous production of 1,3-propanediol and 2,3-\r\nbutanediol using crude glycerol by newly bacterial isolate,\" Process\r\nBiochem vol. 46, pp. 608-614, 2011.\r\n[7] M. Seyfried, R. Daniel, and G. Gottschalk, \"Cloning, sequencing, and\r\noverexpression of the genes encoding coenzyme B12-dependent glycerol\r\ndehydratase of Citrobacter freundii,\" J Bacteriol, vol. 178, pp. 5793-\r\n5796, 1996.\r\n[8] B. Guenzel, S. Yonsel, and W.-D. Deckwer, \"Fermentative production\r\nof 1,3-propanediol from glycerol by Clostridium butyricum up to a scale\r\nof 2 m3,\" Appl Microbiol Biot, vol. 36, pp. 288-294, 1991.\r\n[9] I.T. Tong, H.H. Liao, and D.C. Cameron, \"1,3-Propanediol Production\r\nby Escherichia coli Expressing Genes from the Klebsiella pneumoniae\r\ndha Regulon,\" Appl Environ Microbiol, vol. 57, pp. 3541-3546, 1991.\r\n[10] T. Tobimatsu, M. Azuma, H. Matsubara, H. Takatori, T. Niida, K.\r\nNishimoto, H. Satoh, R. Hayashi, and T. Toraya, \"Cloning, sequencing,\r\nand high level expression of the genes encoding adenosylcobalamindependent\r\nglycerol dehydrase of Klebsiella pneumoniae,\" J Biol Chem,\r\nvol. 27, pp. 22352-22357, 1996.\r\n[11] J. Sun, J. Heuvel, P. Soucaille, Y. Qu, and A.-P. Zeng, \"Comparative\r\ngenomic analysis of dha regulon and related genes for anaerobic\r\nglycerol metabolism in bacteria,\" Biotechnol Prog, vol. 19, pp. 263-272,\r\n2003.\r\n[12] W. Fenghuan, Q. Huijin, H. He, T. Tan, \"High-level expression of the\r\n1,3-propanediol oxidoreductase from Klebsiella pneumoniae in\r\nEscherichia coli,\" Mol Biotechnol, vol. 31, pp. 211-219, 2005\r\n[13] L. A. Laffend and V. Nagarajan, \"Bioconversion of a fermentable\r\ncarbon source to 1,3-propanediol by a single microorganism,\" U.S.\r\npatent 6,025,184, 2000.\r\n[14] M. Rasch, \"The influence of temperature, salt and pH on the inhibitory\r\neffect of reuterin on Escherichia coli,\" Int J Food Microbiol, vol. 72,\r\npp. 225-231, 2002.\r\n[15] F. Barbirato, P. Soucaille, and A. Bories, \"Physiologic Mechanisms\r\ninvolved in accumulation of 3-hydroxypropionaldehyde during\r\nfermentation of glycerol by Enterobacter agglomerans,\" Appl Environ\r\nMicrobiol, vol. 62, pp. 4405-4409, 1996.\r\n[16] B. Zhuge, C. Zhang, H. Fang, J. Zhuge, and K. Permaul, \"Expression of\r\n1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella\r\npneumoniae for bioconversion of glycerol into 1,3-propanediol,\" Appl\r\nMicrobiol Biotechnol, vol. 87, pp. 2177-2184, 2010.\r\n[17] P. Zheng, K. Wereath, J. Sun, J.vd. Heuvel, and A.-P. Zeng,\r\n\"Overexpression of genes of the dha regulon and its effects on cell\r\ngrowth, glycerol fermentation to 1,3-propanediol and plasmid stability\r\nin Klebsiella pneumoniae,\" Process Biochem, vol. 41, pp. 2160-2169,\r\n2006.\r\n[18] C.E. Nakamura and G.M. Whited, \"Metabolic engineering for the\r\nmicrobial production of 1,3-propanediol,\" Curr Opin Biotechnol, vol.\r\n14, pp. 454-459, 2003.\r\n[19] M. Emptage, S.L. Haynie, L.A. Laffend, J.P. Pucci, and G. Whited,\r\n\"Process for biological of 1, 3-propanediol with high titer,\" U.S. Pat.\r\n6514733, 2003.\r\n[20] K. Arnold and L. Bordoli, \"The SWISS-MODEL workspace: a web\r\nbased environment for protein structure homology modeling,\"\r\nBioinformatics, vol. 22(2), 195-201, 2006.\r\n[21] R. A. Laskowski, \"PDBsum: summaries and analyses of PDB structures,\"\r\nNucleic Acids Res, vol. 29(1), pp. 221-222, 2001.\r\n[22] R. A. Laskowski and J.D. Watson, \"ProFunc: a server for predicting\r\nprotein function from 3D structure,\" Nucleic Acids Res, 33(Web Server\r\nissue): W89-93, 2005\r\n[23] J. Sambrook and D.W. Russel, \"Molecular cloning: A laboratory\r\nmanual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor\r\nLaboratory Press, 2001.\r\n[24] D. Riesenberg, V. Schulz, W.A. Knorre, H.D. Pohl, D. Korz, E.A.\r\nSanders, A. RoR, and W.D. Deckwer, \"High cell density cultivation of\r\nEscherichia coli at controlled specific growth rate,\" J Biotechnol, vol.\r\n20, pp. 17-28, 1999.\r\n[25] U. K. Laemmli, \"Cleavage of structural proteins during the assembly of\r\nthe head of bacteriophage T4,\" Nature, vol. 227, pp. 680-685, 1970.\r\n[26] R. Daniel, K. Stuertz, G. Gottschalk, \"Biochemical and molecular\r\ncharacterization of the oxidative branch of glycerol utilization by\r\nCitrobacter freundii,\" J Bacteriol, vol. 177, pp. 4392-401, 1995.\r\n[27] J. Hao, R. Lin, Z. Zheng, H. Liu, and D. Liu, \"Isolation and\r\ncharacterization of microorganisms able to produce 1,3-propanediol\r\nunder aerobic conditios,\" World J Microbiol Biotechnol, vol. 24,\r\npp.1731-40, 2008a.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 52, 2011"}