CINXE.COM

Computational Organic Chemistry » Aromaticity

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head profile="http://gmpg.org/xfn/1"> <title>Computational Organic Chemistry &raquo; Aromaticity</title> <meta name="google-site-verification" content="g1Myv4tUVAmqRbwZeBi7IPuSZpP64RWjVJ6itIoouCo"> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <style type="text/css" media="screen">@import url( /blog/wp-content/themes/comporg/style.css);</style> <link rel="stylesheet" id="wp-block-library-css" href="/blog/wp-includes/css/dist/block-library/style.min.css?ver=5.6.1" type="text/css" media="all"> <script type="text/javascript"> <!-- function insertJmol(me,width,height,myMolecule) { document.getElementById(me).innerHTML = '<applet width="' +width+'" height="'+height+ '" code="JmolApplet" archive="/blog/wp-content/jmol/JmolApplet.jar">' +'<param name="progressbar" value="true">' +'<param name="bgcolor" value="#FFFFFF">' +'<param name="load" value="/blog/wp-content/' +myMolecule+'">'; } //--> </script> </head> <body> <div id="header"> <div id="header_img"></div> </div> <div id="link_section"> <div style="float:left"> <a href="/blog/about">About this Blog</a> | <a href="/">Book Homepage</a> | <a href="http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471713422.html">Purchase the Book</a> </div> </div> <div id="after_links"></div> <div id="content"> <div id="main"> <h2 class="post-title">Archive for the 'Aromaticity' Category</h2> <div class="box"> <h2><a href="/blog/archives/4312" rel="bookmark" title="Permanent Link: Planar ring in a nano-Saturn">Planar ring in a nano-Saturn</a></h2> <div class="post-content"> <p>For the past twelve years, I have avoided posting on any of my own papers, but I will stoop to some shameless promotion to mention my latest paper,<a href="#SaturnBach1"><sup>1</sup></a> since it touches on some themes I have discussed in the past.</p> <p>Back in 2011, Iwamoto, et al. prepared the complex of C<sub>60</sub> <strong>1</strong> surrounded by [10]cycloparaphenylene <strong>2</strong> to make the Saturn-like system <strong>3</strong>.<a href="#SaturnBach2"><sup>2</sup></a> Just last year, Yamamoto, et al prepared the Nano-Saturn <strong>5a</strong> as the complex of <strong>1</strong> with the macrocycle <strong>4a</strong>.<a href="#SaturnBach3"><sup>3</sup></a> The principle idea driving their synthesis was to utilize a ring that is flatter than <strong>2</strong>. The structures of <strong>3</strong> and <strong>5b</strong> (made with the parent macrocycle <strong>4b</strong>) are shown in side view in Figure 1, and clearly seen is the achievement of the flatter ring.</p> <p align="center"><img src="/blog/wp-content/BachrachImg1.png" alt=""></p> <table align="center"> <tbody> <tr align="center"> <td> <img src="/blog/wp-content/10cppC60_side.png"><br><strong>3</strong> </td> </tr> <tr align="center"> <td> <img src="/blog/wp-content/saturnC_side.png"> <br><strong>5b</strong> </td> </tr> <tr align="center"> <td> <img src="/blog/wp-content/saturnN1_side.png"> <br><strong>7</strong> </td> </tr> </tbody> </table> <p></p> <p align="center"><strong>Figure 1</strong>. Computed structures of <strong>3, 5</strong>, and <strong>7</strong>.</p> <p>However, the encompassing ring is not flat, with dihedral angles between the anthrenyl groups of 35°. This twisting is due to the steric interactions of the <em>ortho-ortho&#8217;</em> hydrogens. A few years ago, my undergraduate student David Stück and I suggested that selective substitution of a nitrogen for one of the C-H groups would remove the steric interaction,<a href="#SaturnBach4"><sup>4</sup></a> leading to a planar poly-aryl system, such as making twisted biphenyl into the planar 2-(2-pyridyl)-pyridine (Scheme 1)</p> <p></p> <p align="center"><strong>Scheme 1</strong>.</p> <p align="center"><img src="/blog/wp-content/BachrachImg2.png" alt=""></p> <p>Following this idea leads to four symmetrical nitrogen-substituted analogues of <strong>4b</strong>; and I’ll mention just one of them here, <strong>6</strong>. </p> <p align="center"><img src="/blog/wp-content/BachrachImg3.png" alt=""></p> <p>As expected, <strong>6</strong> is perfectly flat. The ring remains flat even when complexed with <strong>1 </strong>(as per B3LYP-D3(BJ)/6-31G(d) computations), see the structure of <strong>7</strong> in Figure 1.</p> <p>I also examined the complex of the flat macrocycle <strong>6</strong> (and its isomers) with a [5,5]-nanotube, <strong>7</strong>. The tube bends over to create better dispersion interaction with the ring, which also become somewhat non-planar to accommodate the tube. Though not mentioned in the paper, I like to refer to <strong>7</strong> as Beyoncene, in tribute to <em><a href="https://www.youtube.com/watch?v=4m1EFMoRFvY">All the Single Ladies</a></em>.</p> <p align="center"><img src="/blog/wp-content/saturnTubeNtype1.png" alt=""></p> <p align="center"><strong>Figure 2</strong>. Computed structure of <strong>7</strong>.</p> <p>My sister is a graphic designer and she made this terrific image for this work:</p> <p align="center"><img src="/blog/wp-content/saturnCover.jpg" alt=""></p> <h3>References</h3> <p>1. Bachrach, S. M., &#8220;Planar rings in nano-Saturns and related complexes.&#8221; <em>Chem. Commun.</em> <strong>2019</strong>, <em>55</em>, 3650-3653, DOI: <a href="http://dx.doi.org/10.1039/C9CC01234F">10.1039/C9CC01234F</a>.</p> <p>2. Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S., &#8220;Size-Selective Encapsulation of C<sub>60</sub> by [10]Cycloparaphenylene: Formation of the Shortest Fullerene-Peapod.&#8221; <em>Angew. Chem. Int. Ed.</em> <strong>2011</strong>, <em>50</em>, 8342-8344, DOI: <a href="http://dx.doi.org/10.1002/anie.201102302">10.1002/anie.201102302</a> </p> <p>3. Yamamoto, Y.; Tsurumaki, E.; Wakamatsu, K.; Toyota, S., &#8220;Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60.&#8221; <em>Angew. Chem. Int. Ed.</em> <strong>2018 </strong>, <em>57</em>, 8199-8202, DOI: <a href="http://dx.doi.org/10.1002/anie.201804430">10.1002/anie.201804430</a>.</p> <p>4. Bachrach, S. M.; Stück, D., &#8220;DFT Study of Cycloparaphenylenes and Heteroatom-Substituted Nanohoops.&#8221; <em>J. Org. Chem.</em> <strong>2010</strong>, <em>75</em>, 6595-6604, DOI: <a href="http://dx.doi.org/10.1021/jo101371m">10.1021/jo101371m</a> </p> <h3>InChIs</h3> <p><strong>4b</strong>: InChI=1S/C84H48/c1-13-61-25-62-15-3-51-33-75(62)43-73(61)31-49(1)50-2-14-63-26-64-16-4-52(34-76(64)44-74(63)32-50)54-6-18-66-28-68-20-8-56(38-80(68)46-78(66)36-54)58-10-22-70-30-72-24-12-60(42-84(72)48-82(70)40-58)59-11-23-71-29-69-21-9-57(39-81(69)47-83(71)41-59)55-7-19-67-27-65-17-5-53(51)35-77(65)45-79(67)37-55/h1-48H<br>InChIKey=ZYXXLAYETADMDM-UHFFFAOYSA-N</p> <p><strong>6</strong>: InChI=1S/C72H36N12/c1-2-38-14-44-20-45-25-67(73-31-50(45)13-37(1)44)57-9-4-39-15-51-32-74-68(26-46(51)21-61(39)80-57)58-10-5-40-16-52-33-75-69(27-47(52)22-62(40)81-58)59-11-6-41-17-53-34-76-70(28-48(53)23-63(41)82-59)60-12-7-42-18-54-35-77-71(29-49(54)24-64(42)83-60)72-78-36-55-19-43-3-8-56(38)79-65(43)30-66(55)84-72/h1-36H<br>InChIKey=NSSCKPFBHGOOIJ-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4312" dc:identifier="/archives/4312" dc:title="Planar ring in a nano-Saturn" trackback:ping="/archives/4312/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a> &amp;<a href="/blog/archives/category/host-guest" rel="category tag">host-guest</a></span> <span class="user">Steven Bachrach</span> <span class="date">26 Mar 2019</span> <span class="comments"><a href="/blog/archives/4312#comments">2 Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4302" rel="bookmark" title="Permanent Link: dodecaphenyltetracene">dodecaphenyltetracene</a></h2> <div class="post-content"> <p>The Pascal group has synthesized dodecaphenyltetracene <strong>1</strong>.<a href="#ph12tetR1"><sup>1</sup></a></p> <p align="center"><img src="/blog/wp-content/phTetraceneImg.png"></p> <p>While this paper has little computational work, it is of interest to readers of this blog since I have discussed many aspect of aromaticity. This new tetracene is notable for its large twisting along the tetracene axis: about 97° in the x-ray structure. I have optimized the structure of <strong>1</strong> at B3LYP-D3(BJ)/6-311G(d) and its structure is shown in Figure 1. It is twisted by about 94°. The computed and x-ray structures are quite similar, as seen in Figure 2. Here the x-ray structure is shown with red balls, the computed structure with gray balls, and hydrogens have been removed for clarity.</p> <p align="center"><img src="/blog/wp-content/phTetraceneB3LYP.png"></p> <p><strong>Figure 1</strong>. B3LYP-D3(BJ)/6-311G(d) optimized structure of <strong>1</strong>.</p> <p align="center"><img src="/blog/wp-content/phTetraceneNoH.png"></p> <p><strong>Figure 2</strong>. Comparison of the x-ray (red) and computed (gray) structures of <strong>1</strong>. (Hydrogens omitted for clarity.)</p> <p>The authors note that this molecule is chiral, having near <em>D<sub>2</sub></em> symmetry. (The optimized structure has <em>D<sub>2</sub></em> symmetry.) They performed AM1 computations to estimate a very low barrier for racemization of only 17.3 kcal mol<sup>-1</sup>, leading to a half-life of less than one second at RT.</p> <p>A notable aspect of the molecule is that aromaticity can adapt to significant twisting yet retain aromatic character. For example, the molecule is stable even surviving boiling off of chloroform (61 °C) to form crystals and the majority of the C-C bonds in the tetracene portion have distances typical of aromatic systems (~1.4 Å).</p> <h3>References</h3> <p>1) Xiao, Y.; Mague, J. T.; Schmehl, R. H.; Haque, F. M.; Pascal Jr., R. A., &#8220;Dodecaphenyltetracene.&#8221; <em>Angew. Chem. Int. Ed.</em> <strong>2019</strong>, <em>58</em>, 2831-2833, DOI: <a href="http://dx.doi.org/10.1002/anie.201812418">10.1002/anie.201812418</a>.</p> <h3>InChIs</h3> <p><strong>1</strong>: InChI=1S/C90H60/c1-13-37-61(38-14-1)73-74(62-39-15-2-16-40-62)78(66-47-23-6-24-48-66)86-82(70-55-31-10-32-56-70)90-84(72-59-35-12-36-60-72)88-80(68-51-27-8-28-52-68)76(64-43-19-4-20-44-64)75(63-41-17-3-18-42-63)79(67-49-25-7-26-50-67)87(88)83(71-57-33-11-34-58-71)89(90)81(69-53-29-9-30-54-69)85(86)77(73)65-45-21-5-22-46-65/h1-60H<br>InChIKey=NJQABVWYMCSFNE-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4302" dc:identifier="/archives/4302" dc:title="dodecaphenyltetracene" trackback:ping="/archives/4302/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">25 Feb 2019</span> <span class="comments"><a href="/blog/archives/4302#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4226" rel="bookmark" title="Permanent Link: C<sub>18</sub> carbomers">C<sub>18</sub> carbomers</a></h2> <div class="post-content"> <p>Interesting 18 &pi;-electron systems involving cyclooctadecanonenetriyne rings have been synthesized and examined by computations.<a href="#carbomer"><sup>1</sup></a> The mono-, di- and tri-C<sub>18</sub><br> ring compounds <b>1</b>, <b>2</b>, and <b>3</b> were prepared and the x-ray structure of <b>2</b> was obtained. The B3PW91/6-31G(d,p) optimized geometries of <b>1-3</b> and of the tetra ring <b>4</b> are shown in Figure 1.</p> <table align="center" border="o" cellspacing="0" cellpadding="5"> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomerImg1.png"></p> </td> </tr> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomerImg2.png"></p> </td> </tr> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomer1.png"><br><b>1</b></p> </td> </tr> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomer2.png"><br><b>2</b></p> </td> </tr> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomer3.png"><br><b>3</b></p> </td> </tr> <tr align="center"> <td> <p><img src="/blog/wp-content/carbomer4.png"><br><b>4</b></p> </td> </tr> </table> <p align="center"><b>Figure 1</b>. B3PW91/6-31G(d,p) optimized geometries of <b>1-4.</b></p> <p>Since the rings are composed of 18 &pi;-electrons in the &pi;-system perpendicular to the nearly planar ring, the natural question is to wonder if the ring is aromatic. The authors computed NICS(0) and NICS(1) values at the center of the C<sub>18</sub> rings. For all four compounds, both the NICS(0) and NICS(1) values are negative, ranging from -12.4 to -14.9 ppm, indicating that the rings are aromatic.</p> <h3>References</h3> <p><a name="carbomer"></a></p> <p>1) Chongwei, Z.; Albert, P.; Carine, D.; Brice, K.; Alix, S.; Valérie, M.; Remi, C., &quot;Carbo&#8208;biphenyls and Carbo&#8208;terphenyls: Oligo(phenylene ethynylene) Ring Carbo&#8208;mers.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2018</b>, <i>57</i>, 5640-5644, DOI: <a href="http://dx.doi.org/10.1002/anie.201713411">10.1002/anie.201713411</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C58H54/c1-3-5-7-9-11-17-27-49-37-41-55(51-29-19-13-20-30-51)45-47-57(53-33-23-15-24-34-53)43-39-50(28-18-12-10-8-6-4-2)40-44-58(54-35-25-16-26-36-54)48-46-56(42-38-49)52-31-21-14-22-32-52/h13-16,19-26,29-36H,3-12,17-18,27-28H2,1-2H3<br>InChIKey=KWXYBTWOEJBCQD-UHFFFAOYSA-N</p> <p><b>2</b>: InChI=1S/C102H74/c1-3-5-7-9-11-21-39-83-59-67-95(87-41-23-13-24-42-87)75-79-99(91-49-31-17-32-50-91)71-63-85(64-72-100(92-51-33-18-34-52-92)80-76-96(68-60-83)88-43-25-14-26-44-88)57-58-86-65-73-101(93-53-35-19-36-54-93)81-77-97(89-45-27-15-28-46-89)69-61-84(40-22-12-10-8-6-4-2)62-70-98(90-47-29-16-30-48-90)78-82-102(74-66-86)94-55-37-20-38-56-94/h13-20,23-38,41-56H,3-12,21-22,39-40H2,1-2H3<br>InChIKey=HHRPTZGYBIHFOL-UHFFFAOYSA-N</p> <p><b>3</b>: InChI=1S/C146H94/c1-3-5-7-9-11-25-51-117-81-93-135(123-53-27-13-28-54-123)105-109-139(127-61-35-17-36-62-127)97-85-119(86-98-140(128-63-37-18-38-64-128)110-106-136(94-82-117)124-55-29-14-30-56-124)77-79-121-89-101-143(131-69-43-21-44-70-131)113-115-145(133-73-47-23-48-74-133)103-91-122(92-104-146(134-75-49-24-50-76-134)116-114-144(102-90-121)132-71-45-22-46-72-132)80-78-120-87-99-141(129-65-39-19-40-66-129)111-107-137(125-57-31-15-32-58-125)95-83-118(52-26-12-10-8-6-4-2)84-96-138(126-59-33-16-34-60-126)108-112-142(100-88-120)130-67-41-20-42-68-130/h13-24,27-50,53-76H,3-12,25-26,51-52H2,1-2H3<br>InChIKey=WCBXPLIBHKYESX-UHFFFAOYSA-N</p> <p><b>4</b>: InChI=1S/C190H114/c1-3-5-7-9-11-29-63-151-103-119-175(159-65-31-13-32-66-159)135-139-179(163-73-39-17-40-74-163)123-107-153(108-124-180(164-75-41-18-42-76-164)140-136-176(120-104-151)160-67-33-14-34-68-160)97-99-155-111-127-183(167-81-47-21-48-82-167)143-147-187(171-89-55-25-56-90-171)131-115-157(116-132-188(172-91-57-26-58-92-172)148-144-184(128-112-155)168-83-49-22-50-84-168)101-102-158-117-133-189(173-93-59-27-60-94-173)149-145-185(169-85-51-23-52-86-169)129-113-156(114-130-186(170-87-53-24-54-88-170)146-150-190(134-118-158)174-95-61-28-62-96-174)100-98-154-109-125-181(165-77-43-19-44-78-165)141-137-177(161-69-35-15-36-70-161)121-105-152(64-30-12-10-8-6-4-2)106-122-178(162-71-37-16-38-72-162)138-142-182(126-110-154)166-79-45-20-46-80-166/h13-28,31-62,65-96H,3-12,29-30,63-64H2,1-2H3<br>InChIKey=LLVPDVPZEIYJGN-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4226" dc:identifier="/archives/4226" dc:title="C18 carbomers" trackback:ping="/archives/4226/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">12 Nov 2018</span> <span class="comments"><a href="/blog/archives/4226#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4246" rel="bookmark" title="Permanent Link: Curved Aromatic molecules &#8211; 4 new examples">Curved Aromatic molecules &#8211; 4 new examples</a></h2> <div class="post-content"> <p>I have recently been interested in curved aromatic systems – see my own paper on double helicenes.<a href="#curvedAromatics_1"><sup>1</sup></a> In this post, I cover four recent papers that discuss non-planar aromatic molecules.</p> <p>The first paper<a href="#curvedAromatics_2"><sup>2</sup></a> discusses the warped aromatic <b>1</b> built off of the scaffold of depleiadene <b>3</b>. The crystal structure of <b>1</b> shows the molecule to be a saddle with near <i>C<sub>2v</sub></i> symmetry. B3LYP/6-31G computations indicate that the saddle isomer is 10.5 kcal mol<sup>-1</sup> more stable than the twisted isomer, and the barrier between them is 16.0 kcal mol<sup>-1</sup>, with a twisted saddle intermediate as well.</p> <p align="center"><img src="/blog/wp-content/curvedAromI1.png"></p> <p>The PES is significantly simpler for the structure lacking the <i>t</i>-butyl groups, <b>2</b>. The B3LYP/6-31G PES of <b>2</b> has the saddle as the transition state interconverting mirror images of the twisted saddle isomer, and this barrier is only 1.8 kcal mol<sup>-1</sup>. Figure 1 displays the twisted saddle and the saddle transition state. Clearly, the <i>t</i>-butyl groups significantly alter the flexibility of this C<sub>86</sub> aromatic surface. One should be somewhat concerned about the small basis set employed here, especially lacking polarization functions, and a functional that lacks dispersion correction. However, the computed geometry of <b>1</b> is quite similar to that of the x-ray structure.</p> <table align="center" border="0" cellspacing="0" cellpadding="3"> <tr align="center" valign="bottom"> <td> <p><img src="/blog/wp-content/curvedAromI2.png"><br><b>2</b> twisted saddle (ground state)</p> </td> <td> <p><img src="/blog/wp-content/curvedAromI3.png"><br><b>2</b> saddle (transition state)</p> </td> </tr> </table> <p align="center"><b>Figure 1</b>. B3LYP/6-31G optimized geometries of the isomer of <b>2</b>.</p> <p>The second paper presents <b>4</b>, a non-planar aromatic based on [8]circulene <b>6</b>.<a href="#curvedAromatics_3"><sup>3</sup></a> (See this <a href="/blog/archives/73">post for a general study of circulenes</a>.) [8]circulene has a tub-shape, but is flexible and can undergo tub-to-tub inversion. The expanded aromatic <b>4</b> is found to have a twisted shape in the x-ray crystal structure. A simplified model <b>5</b> was computed at B3LYP/6-31G(d) and the twisted isomer is 4.1 kcal mol<sup>-1</sup> lower in energy than the saddle (tub) isomer (see Figure 2). The barrier for interconversion of the two isomers is only 6.2 kcal mol<sup>-1</sup>, indicating a quite labile structure.</p> <p align="center"><img src="/blog/wp-content/curvedAromI4.png"></p> <table align="center" border="0" cellspacing="0" cellpadding="3"> <tr align="center" valign="bottom"> <td> <p><img src="/blog/wp-content/curvedAromI5.png"><br><b>5</b> <b>twisted</b><br>0.0</p> </td> </tr> <tr align="center" valign="bottom"> <td> <p><img src="/blog/wp-content/curvedAromI6.png"><br><b>5 TS</b><br>6.2</p> </td> </tr> <tr align="center" valign="bottom"> <td> <p><img src="/blog/wp-content/curvedAromI7.png"><br><b>5 saddle</b><br>4.1</p> </td> </tr> </table> <p align="center"><b>Figure 2</b>. B3LYP/6-31G(d) optimized geometries and relative energies (kcal mol<sup>-1</sup>) of the isomers of <b>5</b>.</p> <p>The third paper presents a geodesic molecule based on 1,3,5-trisubstitued phenyl repeat units.<a href="#curvedAromatics_4"><sup>4</sup></a> The authors prepared <b>7</b>, and its x-ray structure shows a saddle-shape. The NMR indicate a molecule that undergoes considerable conformational dynamics. To address this, they did some computations on the methyl analogue <b>8</b>. The <i>D<sub>7h</sub></i> structure is 309 kcal mol<sup>-1</sup> above the local energy minimum structure, which is way too high to be accessed at room temperature. PM6 computations identified a TS only 0.6 kcal mol<sup>-1</sup> above the saddle ground state. (I performed a PM6 optimization starting from the x-ray structure, which is highly disordered, and the structure obtained is shown in Figure 3. Unfortunately, the authors did not report the optimized coordinates of any structure!)</p> <p align="center"><img src="/blog/wp-content/curvedAromI8.png"></p> <p align="center"><img src="/blog/wp-content/curvedAromI9.png"></p> <p align="center"><b>Figure 3</b>. PM6 optimized structure of <b>8</b>.</p> <p>The fourth and last paper describes the aza-buckybowl <b>9</b>.<a href="#curvedAromatics_5"><sup>5</sup></a> The x-ray crystal structure shows a curved bowl shape with <i>C<sub>s</sub></i> symmetry. NICS(0) values were computed for the parent molecule <b>10</b> B3LYP/6-31G(d). These values are shown in Scheme 1 and the geometry is shown in Figure 4. The 6-member rings that surround the azacylopentadienyl ring all have NICS(0) near zero, which suggests significant bond localization.</p> <p><b>Scheme 1</b>. NICS(0) values of <b>10</b></p> <p align="center"><img src="/blog/wp-content/curvedAromI10.png"></p> <p align="center"><img src="/blog/wp-content/curvedAromI11.png"></p> <p align="center"><b>Figure 4</b>. B3LYP/6-31G(d) optimized structure of <b>10</b>.</p> <p>Our understanding of what <i>aromaticity</i> really means is constantly being challenged!</p> <h3>References</h3> <p><a name="curvedAromatics_1"></a></p> <p>1. Bachrach, S. M., &quot;Double helicenes.&quot; <i>Chem. Phys. Lett.</i> <b>2016</b>, <i>666</i>, 13-18, DOI: <a href="https://doi.org/10.1016/j.cplett.2016.10.070">10.1016/j.cplett.2016.10.070</a>.</p> <p><a name="curvedAromatics_2"></a></p> <p>2. Ho, P. S.; Kit, C. C.; Jiye, L.; Zhifeng, L.; Qian, M., &quot;A Dipleiadiene-Embedded Aromatic Saddle Consisting<br> of 86 Carbon Atoms.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2018</b>, <i>57</i>, 1581-1586, DOI: <a href="http://dx.doi.org/10.1002/anie.201711437">10.1002/anie.201711437</a>.</p> <p><a name="curvedAromatics_3"></a></p> <p>3. Yin, C. K.; Kit, C. C.; Zhifeng, L.; Qian, M., &quot;A Twisted Nanographene Consisting of 96 Carbon Atoms.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2017</b>, <i>56</i>, 9003-9007, DOI: <a href="http://dx.doi.org/10.1002/anie.201703754">10.1002/anie.201703754</a>.</p> <p><a name="curvedAromatics_4"></a></p> <p>4. Koki, I.; Jennie, L.; Ryo, K.; Sota, S.; Hiroyuki, I., &quot;Fluctuating Carbonaceous Networks with a Persistent<br> Molecular Shape: A Saddle-Shaped Geodesic Framework of 1,3,5-Trisubstituted Benzene (Phenine).&quot; <i>Angew. Chem. Int. Ed.</i> <b>2018</b>, <i>57</i>, 8555-8559, DOI: <a href="http://dx.doi.org/10.1002/anie.201803984">10.1002/anie.201803984</a>.</p> <p><a name="curvedAromatics_5"></a></p> <p>5. Yuki, T.; Shingo, I.; Kyoko, N., &quot;A Hybrid of Corannulene and Azacorannulene: Synthesis of a Highly Curved Nitrogen-Containing Buckybowl.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2018</b>, <i>57</i>, 9818-9822, DOI: <a href="http://dx.doi.org/10.1002/anie.201805678">10.1002/anie.201805678</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C134H128/c1-123(2,3)57-37-65-66-38-58(124(4,5)6)42-70-74-46-62(128(16,17)18)50-82-94(74)110-106(90(66)70)105-89(65)69(41-57)73-45-61(127(13,14)15)49-81-93(73)109(105)119-113-97(81)85(131(25,26)27)53-77-78-54-87(133(31,32)33)99-83-51-63(129(19,20)21)47-75-71-43-59(125(7,8)9)39-67-68-40-60(126(10,11)12)44-72-76-48-64(130(22,23)24)52-84-96(76)112-108(92(68)72)107(91(67)71)111(95(75)83)121-115(99)103(78)118-104-80(56-88(134(34,35)36)100(84)116(104)122(112)121)79-55-86(132(28,29)30)98(82)114(120(110)119)102(79)117(118)101(77)113/h37-56H,1-36H3<br>InChIKey=GKUTUWMASUJSFD-UHFFFAOYSA-N</p> <p><b>2</b>: InChI=1S/C86H32/c1-9-33-34-10-2-14-38-42-18-6-22-46-50-26-30-55-56-32-28-52-48-24-8-20-44-40-16-4-12-36-35-11-3-15-39-43-19-7-23-47-51-27-31-54-53-29-25-49-45-21-5-17-41-37(13-1)57(33)73-74(58(34)38)78(62(42)46)84-70(50)66(55)81(65(53)69(49)83(84)77(73)61(41)45)82-67(54)71(51)85-79(63(43)47)75(59(35)39)76(60(36)40)80(64(44)48)86(85)72(52)68(56)82/h1-32H<br>InChIKey=MXCDWJZMTKLBDM-UHFFFAOYSA-N</p> <p><b>3</b>: InChI=1S/C18H12/c1-2-6-14-11-12-16-8-4-3-7-15-10-9-13(5-1)17(14)18(15)16/h1-12H<br>InChIKey=KVJJNMIHWIRGRP-UHFFFAOYSA-N</p> <p><b>4</b>: InChI=1S/C132H108O4/c1-125(2,3)53-29-65-66-30-54(126(4,5)6)34-70-74-38-58(130(16,17)18)42-78-86-46-82-63-51-91(135-27)92(136-28)52-64(63)84-48-88-80-44-60(132(22,23)24)40-76-72-36-56(128(10,11)12)32-68-67-31-55(127(7,8)9)35-71-75-39-59(131(19,20)21)43-79-87-47-83-62-50-90(134-26)89(133-25)49-61(62)81-45-85-77-41-57(129(13,14)15)37-73-69(33-53)93(65)109-110(94(66)70)114(98(74)78)122-106(86)118-103(82)104(84)120-108(88)124-116(100(76)80)112(96(68)72)111(95(67)71)115(99(75)79)123(124)107(87)119(120)102(83)101(81)117(118)105(85)121(122)113(109)97(73)77/h29-52H,1-28H3<br>InChIKey=ZLPRACZKLACDHX-UHFFFAOYSA-N</p> <p><b>5</b>: InChI=1S/C108H60O4/c1-37-13-49-50-14-38(2)18-54-58-22-42(6)26-62-70-30-66-47-35-75(111-11)76(112-12)36-48(47)68-32-72-64-28-44(8)24-60-56-20-40(4)16-52-51-15-39(3)19-55-59-23-43(7)27-63-71-31-67-46-34-74(110-10)73(109-9)33-45(46)65-29-69-61-25-41(5)21-57-53(17-37)77(49)93-94(78(50)54)98(82(58)62)106-90(70)102-87(66)88(68)104-92(72)108-100(84(60)64)96(80(52)56)95(79(51)55)99(83(59)63)107(108)91(71)103(104)86(67)85(65)101(102)89(69)105(106)97(93)81(57)61/h13-36H,1-12H3<br>InChIKey=ZSIVUKSPPZUSQL-UHFFFAOYSA-N</p> <p><b>6</b>: InChI=1S/C32H16/c1-2-18-5-6-20-9-11-22-13-15-24-16-14-23-12-10-21-8-7-19-4-3-17(1)25-26(18)28(20)30(22)32(24)31(23)29(21)27(19)25/h1-16H<br>InChIkey=BASWMOIVIHXTRC-UHFFFAOYSA-N</p> <p><b>7</b>: InChI=1S/C224H210/c1-211(2,3)197-99-169-85-183(113-197)184-86-170(100-198(114-184)212(4,5)6)157-66-149-67-158(79-157)172-88-187(117-200(102-172)214(10,11)12)188-90-174(104-202(118-188)216(16,17)18)161-70-151-71-162(81-161)176-92-191(121-204(106-176)218(22,23)24)193-95-179(109-207(123-193)221(31,32)33)165-74-153-75-166(83-165)180-96-195(125-208(110-180)222(34,35)36)196-98-182(112-210(126-196)224(40,41)42)168-77-154-76-167(84-168)181-97-194(124-209(111-181)223(37,38)39)192-94-178(108-206(122-192)220(28,29)30)164-73-152-72-163(82-164)177-93-190(120-205(107-177)219(25,26)27)189-91-175(105-203(119-189)217(19,20)21)160-69-150-68-159(80-160)173-89-186(116-201(103-173)215(13,14)15)185-87-171(101-199(115-185)213(7,8)9)156-65-148(64-155(169)78-156)141-50-127-43-128(51-141)130-45-132(55-143(150)53-130)134-47-136(59-145(152)57-134)138-49-140(63-147(154)61-138)139-48-137(60-146(153)62-139)135-46-133(56-144(151)58-135)131-44-129(127)52-142(149)54-131/h43-126H,1-42H3<br>InChIKey=ZDDKJXIESSWTIA-UHFFFAOYSA-N</p> <p><b>8</b>: InChI=1S/C182H126/c1-99-15-113-43-127(29-99)141-57-142-65-155(64-141)162-78-169-92-170(79-162)172-82-164-83-174(94-172)176-85-166-87-178(96-176)180-89-168-91-182(98-180)181-90-167-88-179(97-181)177-86-165-84-175(95-177)173-81-163(80-171(169)93-173)156-66-143(128-30-100(2)16-114(113)44-128)58-144(67-156)130-32-103(5)19-117(47-130)118-20-104(6)34-132(48-118)147-60-148(71-158(165)70-147)134-36-107(9)23-121(51-134)123-25-109(11)39-137(53-123)151-62-152(75-160(167)74-151)138-40-111(13)27-125(55-138)126-28-112(14)42-140(56-126)154-63-153(76-161(168)77-154)139-41-110(12)26-124(54-139)122-24-108(10)38-136(52-122)150-61-149(72-159(166)73-150)135-37-106(8)22-120(50-135)119-21-105(7)35-133(49-119)146-59-145(68-157(164)69-146)131-33-102(4)18-116(46-131)115-17-101(3)31-129(142)45-115/h15-98H,1-14H3<br>InChIKey=FJHGGHOTCCNJNI-UHFFFAOYSA-N</p> <p><b>9</b>: InChI=1S/C44H23N/c1-44(2,3)21-16-28-24-8-4-6-22-26-14-19-12-10-18-11-13-20-15-27-23-7-5-9-25-29(17-21)41(28)45-42(33(22)24)39-35(26)37-31(19)30(18)32(20)38(37)36(27)40(39)43(45)34(23)25/h4-17H,1-3H3<br>InChIKey=QHBWEZKXFSKCSM-UHFFFAOYSA-N</p> <p><b>10</b>: InChI=1S/C40H15N/c1-4-19-23-8-3-9-24-20-5-2-7-22-26-15-18-13-11-16-10-12-17-14-25-21(6-1)30(19)39-36-32(25)34-28(17)27(16)29(18)35(34)33(26)37(36)40(31(20)22)41(39)38(23)24/h1-15H<br>InChIKey=XWSUADIIRLXSBY-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4246" dc:identifier="/archives/4246" dc:title="Curved Aromatic molecules &#8211; 4 new examples" trackback:ping="/archives/4246/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">24 Sep 2018</span> <span class="comments"><a href="/blog/archives/4246#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4236" rel="bookmark" title="Permanent Link: nano-Saturn">nano-Saturn</a></h2> <div class="post-content"> <p>It never hurts to promote one’s science through clever names – think cubane, buckminsterfullerene, bullvalene, etc. Host-guest chemistry is not immune to this cliché too, and this post discusses the latest synthesis and computations of a nano-Saturn; nano-Saturns are a spherical guest molecule captured inside a ring host molecule. I discussed an example of this a number of years ago – <a href="/blog/archives/1819">the nano-Saturn comprised of C<sub>60</sub> fullerene surrounded by [10]cycloparaphenylene</a>.</p> <p>Yamamoto, Tsurumaki, Wakamatsu, and Toyota have prepared a nano-Saturn complex with the goal of making a flatter ring component.<a href="#nanoSaturn1"><sup>1</sup></a> The inner planet is modeled again by C<sub>60</sub> and the ring is the [24]circulene analogue <b>1</b>. The x-ray crystal structure of this nano-Saturn complex is shown in Figure 1.</p> <p align="center"><img src="/blog/wp-content/saturnImg.png"><br><b>1</b>: R = 2,4,6-tri-iso-propylphenyl<br><b>2</b>: R = H</p> <p align="center"><img src="/blog/wp-content/saturn.png"></p> <p align="center"><b>Figure 1</b>. X-ray crystal structure of the nano-Saturn complex of <b>1</b> with C<sub>60</sub>.</p> <p>Variable temperature NMR experiments gave the binding values of &Delta;<i>H</i> = -18.1 &plusmn; 2.3 kJ mol<sup>-1</sup> and T&Delta;<i>S</i> = 0.8 &plusmn; 2.2 kJ mol<sup>-1</sup> at 298 K. To gauge this binding energy, they computed the complex of C<sub>60</sub> with the parent compound <b>2</b> at B3LYP/6-1G(d)//M05-2X/6-31G(d), unfortunately without publishing the coordinates in the supporting materials. The computed binding enthalpy is &Delta;<i>H</i> = -50.6 kJ mol<sup>-1</sup>, but this computation is for the gas phase. The computed structure shows close contacts of 0.29 nm between the fullerene and the C<sub>9</sub>-proton of the anthracenyl groups, in excellent agreement with the x-ray structure. These weak C-H<sup>…</sup>&pi; interactions undoubtedly help stabilize the complex, especially given that the fullerene carries a very tiny Mulliken charge of +0.08 e.</p> <h3>References</h3> <p><a name="nanoSaturn1"></a></p> <p>1) Yuta, Y.; Eiji, T.; Kan, W.; Shinji, T., &quot;Nano-Saturn: Experimental Evidence of Complex Formation of an Anthracene Cyclic Ring with C60.&quot; <i>Angew. Chem. Int. Ed. </i><b>2018,</b> <i>57</i>, 8199-8202, DOI: <a href="https://dx.doi.org/10.1002/anie.201804430">10.1002/anie.201804430</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C174H180/c1-91(2)121-78-150(97(13)14)164(151(79-121)98(15)16)163-90-128-71-139-70-127-59-109(37-38-120(127)77-162(139)163)110-39-49-140-129(60-110)72-130-61-111(40-50-141(130)165(140)170-152(99(17)18)80-122(92(3)4)81-153(170)100(19)20)112-41-51-142-131(62-112)73-132-63-113(42-52-143(132)166(142)171-154(101(21)22)82-123(93(5)6)83-155(171)102(23)24)114-43-53-144-133(64-114)74-134-65-115(44-54-145(134)167(144)172-156(103(25)26)84-124(94(7)8)85-157(172)104(27)28)116-45-55-146-135(66-116)75-136-67-117(46-56-147(136)168(146)173-158(105(29)30)86-125(95(9)10)87-159(173)106(31)32)118-47-57-148-137(68-118)76-138-69-119(128)48-58-149(138)169(148)174-160(107(33)34)88-126(96(11)12)89-161(174)108(35)36/h37-108H,1-36H3<br>InChIKey=AMDNULXMAMDTMX-UHFFFAOYSA-N</p> <p><b>2</b>: InChI=1S/C84H48/c1-13-61-25-62-15-3-51-33-75(62)43-73(61)31-49(1)50-2-14-63-26-64-16-4-52(34-76(64)44-74(63)32-50)54-6-18-66-28-68-20-8-56(38-80(68)46-78(66)36-54)58-10-22-70-30-72-24-12-60(42-84(72)48-82(70)40-58)59-11-23-71-29-69-21-9-57(39-81(69)47-83(71)41-59)55-7-19-67-27-65-17-5-53(51)35-77(65)45-79(67)37-55/h1-48H<br>InChIKey=ZYXXLAYETADMDM-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4236" dc:identifier="/archives/4236" dc:title="nano-Saturn" trackback:ping="/archives/4236/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a> &amp;<a href="/blog/archives/category/host-guest" rel="category tag">host-guest</a></span> <span class="user">Steven Bachrach</span> <span class="date">28 Aug 2018</span> <span class="comments"><a href="/blog/archives/4236#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4162" rel="bookmark" title="Permanent Link: quintuple helicene fused corannulene">quintuple helicene fused corannulene</a></h2> <div class="post-content"> <p>Corannulene <b>1</b> is an interesting aromatic compound because it is nonplanar, having a bowl shape. [6]helicene is an interesting aromatic compound because it is nonplanar, having the shape of a helix. Kato, Segawa, Scott and Itami have joined these together to synthesize the interesting quintuple helicene compound <b>3</b>.<a href="#corranHelix"><sup>1</sup></a></p> <p align="center"><img src="/blog/wp-content/corranHelixImg.png"></p> <p>The optimized structure of <b>3</b> is shown in Figure 1. They utilized computations to corroborate two experimental findings. First, the NMR spectra of <b>3</b> shows a small number of signals indicating that the bowl inversion should be rapid. The molecule has <i>C<sub>5</sub></i> symmetry due to the bowl shape of the corannulene core. Rapid inversion makes the molecule effectively <i>D<sub>5</sub></i>. (The inversion transition state is of <i>D<sub>5</sub></i> symmetry, and would be a nice quiz question for those looking for molecules of unusual point groups.) The B3LYP/6-31G(d) computed bowl inversion barrier is only 1.9 kcal mol<sup>-1</sup>, significantly less that the bowl inversion barrier of <b>1</b>: 10.4 kcal mol<sup>-1</sup>. This reduction is partly due to the shallower bowl depth of <b>3</b> (0.572 &Aring; in the x-ray structure, 0.325 &Aring; in the computed structure) than in <b>1</b> (0.87 &Aring;).</p> <p align="center"><img src="/blog/wp-content/corranHelix.png"></p> <p align="center"><b>Figure 1</b>. Optimized structure of <b>3</b>.</p> <p>Second, they took the enhanced <i>MMMMM</i>-isomer and heated it to obtain the thermodynamic properties for the inversion to the <i>PPPPP</i>-isomer. (The <i>PPPPP</i>-isomer is shown in the top scheme.) The experimental values are &Delta;<i>H<sup>&ddagger;</sup></i> = 36.8 kcal mol<sup>-1</sup>, &Delta;<i>S<sup>&ddagger;</sup></i> = 8.7 cal mol<sup>-1</sup> K<sup>-1</sup>, and &Delta;<i>G<sup>&ddagger;</sup></i> = 34.2 kcal mol<sup>-1</sup> at 298 K. They computed all of the stereoisomers of <b>3</b> along with the transition states connecting them. The largest barrier is found in going from <i>MMMMM</i>&#8211;<b>3</b> to <i>MMMMP</i>&#8211;<b>3</b> with a computed barrier of 34.5 kcal mol<sup>-1</sup>, in nice agreement with experiment.</p> <h3>References</h3> <p><a name="corranHelix"></a></p> <p>1. Kato, K.; Segawa, Y.; Scott, L. T.; Itami, K., &quot;A Quintuple [6]Helicene with a Corannulene Core as a <i>C<sub>5</sub></i>-Symmetric Propeller-Shaped &#960;-System.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2018</b>, <i>57</i>, 1337-1341, DOI: <a href="http://dx.doi.org/10.1002/anie.201711985">10.1002/anie.201711985</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C20H10/c1-2-12-5-6-14-9-10-15-8-7-13-4-3-11(1)16-17(12)19(14)20(15)18(13)16/h1-10H<br>InChIKey=VXRUJZQPKRBJKH-UHFFFAOYSA-N</p> <p><b>2</b>: InChI=1S/C26H16/c1-3-7-22-17(5-1)9-11-19-13-15-21-16-14-20-12-10-18-6-2-4-8-23(18)25(20)26(21)24(19)22/h1-16H<br>InChIKey=UOYPNWSDSPYOSN-UHFFFAOYSA-N</p> <p><b>3</b>: InChI=1S/C80H40/c1-11-31-51-41(21-1)42-22-2-12-32-52(42)62-61(51)71-63-53-33-13-3-23-43(53)44-24-4-14-34-54(44)64(63)73-67-57-37-17-7-27-47(57)48-28-8-18-38-58(48)68(67)75-70-60-40-20-10-30-50(60)49-29-9-19-39-59(49)69(70)74-66-56-36-16-6-26-46(56)45-25-5-15-35-55(45)65(66)72(62)77-76(71)78(73)80(75)79(74)77/h1-40H<br>InChIKey=XYUIBQJVZTYREY-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4162" dc:identifier="/archives/4162" dc:title="quintuple helicene fused corannulene" trackback:ping="/archives/4162/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">09 Apr 2018</span> <span class="comments"><a href="/blog/archives/4162#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4110" rel="bookmark" title="Permanent Link: Antiaromatic compounds stabilized by benzenoid fusion">Antiaromatic compounds stabilized by benzenoid fusion</a></h2> <div class="post-content"> <p>Antiaromatic compounds by definition are unstable and so difficult to prepare. One approach to increase their stability is to fuse aromatic ring(s) onto the antiaromatic system. I discuss in this blog post two different scaffolds where this approach has been successful in preparing molecules that express some degree of antiaromaticity. In addition, I mention a technique to aid in evaluating the aromatic/antiaromatic character.</p> <p>Pentalene <b>1</b> is a formal 8-&pi; electron system and would be antiaromatic. To avoid this antiaromatic character, the double bonds are localized. Fusing benzenoid rings to pentalene to give dibenzo[<i>a,e</i>]penatalene <b>2</b> has been done, but the central rings avoid antiaromatic character by expressing the Kekule structure shown below.</p> <p align="center"><img src="/blog/wp-content/NaphPentImg1.png"></p> <p>Yasuda and coworkers report the preparation of mesityl-substituted dibenzo[<i>a,f</i>]penatalene<br> <b>3</b>.<a href="#NaphPent1"><sup>1</sup></a> Resonance structures of <b>3</b>¸ shown below, either have only one aromatic ring, or have two aromatic rings along with a trimethylenemethane (TMM) diradical component. Thus, one might expect <b>3</b> to express more antiaromatic character than <b>2</b>.</p> <p align="center"><img src="/blog/wp-content/NaphPentImg2.png"></p> <p>NICS(1) values, computed at B3LYP/6-31G**, for <b>2</b> are -6.23 for the 6-member ring and +5.87 ppm for the 5-member ring, showing reduced aromaticity of the former ring. In sharp contrast, the NICS(1) values for <b>3</b> are +7.48 for the 6-member ring and +25.5 ppm for the 5-member ring, indicating substantial antiaromatic character for both rings. The calculated spin density distribution shows largest unpaired density on the expected carbon atoms based on the resonance structures involving the TMM fragment.</p> <p>Xia and coworkers have prepared substituted analogues of the three structural isomers whereby three naphthylene units are fused together creating two cyclobutadienoid rings.<a href="#NaphPent2"><sup>2</sup></a> These three frameworks are molecules <b>4-6</b>. The 4-member rings are formally antiaromatic, tempered by the fused aromatic naphthylene groups. The question is then how does the different attachment geometry manifest in aromatic and/or antiaromatic character?</p> <p align="center"><img src="/blog/wp-content/NaphPentImg3.png"></p> <p>The computations take advantage of the NICS-XY method – well, a variation of this method. I had meant to write a post about the NICS-XY method when Stanger published it,<a href="#NaphPent3"><sup>3</sup></a> but I just never got around to it. The idea is that NICS is evaluated typically at a single point, and just which point to use has been the subject of some discussion. Instead, Stanger proposes the NICS-XY method as a grid of points perpendicular to the plane of the molecule, typically in the plane bisecting the molecule. Trends in the values as one moves across the ring and perpendicular to the ring could assist in identifying aromatic/antiaromatic behavior.</p> <p>Xia computed the NICS<sub>&pi;ZZ</sub> along a line in the molecular plane bisecting the rings. This is shown in the figure below, which I have reproduced from the article. For example, for <b>4</b>, which is compound <b>1</b> in the Xia paper and the figure below, the NICS values are taken along the line that horizontally bisects the molecule. In ring A, the values are negative, indicative of an aromatic ring. Across ring B, the values are still negative, but not as negative as for ring A, indicating a diminished aromaticity. In ring C, the values are positive, as one would expect for the antiaromatic cyclobutadienoid ring.</p> <p align="center"><img src="/blog/wp-content/NaphPentImg4.png"><br>Figure taken from <i>J. Am. Chem. Soc.</i> <b>2017</b>, <i>139</i>, 15933-15939.</p> <p>The authors highlight two trends. First, in the linear fusion (see the inset above), the aromatic ring fused to the cyclobutadienoid ring expresses diminished aromaticity. This can be understood in the following way. In naphthalene, the C2-C3 bond is longer than the C1-C2 bond. When the cyclobutadienoid is fused at the C2-C3 bond, it can lengthen even more to weaken the antiaaromaticity of the 4-member ring, and this consequently reduces the aromaticity of the 6-member ring. Fusion of the cyclobutadienoid ring at C1-C2, the shorter bond, causes a higher degree of antiaromaticity in the 4-member ring. The lengthening of this C1-C2 bond to try to reduce the antiromaticity of the 4-member ring leads to greater bond equalization in the 6-member ring, and its consequently greater aromatic character.</p> <h3>References</h3> <p><a name="NaphPent1"></a></p> <p>1. Konishi, A.; Okada, Y.; Nakano, M.; Sugisaki, K.; Sato, K.; Takui, T.; Yasuda, M., &quot;Synthesis and Characterization of Dibenzo[a,f]pentalene: Harmonization of the Antiaromatic and Singlet Biradical Character.&quot; <i>J. Am. Chem. Soc.</i> <b>2017</b>, <i>139</i>, 15284-15287, DOI: <a href="http://dx.doi.org/10.1021/jacs.7b05709">10.1021/jacs.7b05709</a>.</p> <p><a name="NaphPent2"></a></p> <p>2. Jin, Z.; Teo, Y. C.; Teat, S. J.; Xia, Y., &quot;Regioselective Synthesis of [3]Naphthylenes and Tuning of Their Antiaromaticity.&quot; <i>J. Am. Chem. Soc.</i> <b>2017</b>, <i>139</i>, 15933-15939, DOI: <a href="http://dx.doi.org/10.1021/jacs.7b09222">10.1021/jacs.7b09222</a>.</p> <p><a name="NaphPent3"></a></p> <p>3. Gershoni-Poranne, R.; Stanger, A., &quot;The NICS-XY-Scan: Identification of Local and Global Ring Currents in Multi-Ring Systems.&quot; <i>Chem. Eur. J.</i> <b>2014</b>, <i>20</i>, 5673-5688, DOI: <a href="http://dx.doi.org/10.1002/chem.201304307">10.1002/chem.201304307</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C8H6/c1-3-7-5-2-6-8(7)4-1/h1-6H<br>InChIKey=GUVXZFRDPCKWEM-UHFFFAOYSA-N</p> <p><b>2</b>: InChI=1S/C16H10/c1-3-7-13-11(5-1)9-15-14-8-4-2-6-12(14)10-16(13)15/h1-10H<br>InChIKey=OZEPXROCWSMGGM-UHFFFAOYSA-N</p> <p><b>3</b>: InChI=1S/C16H10/c1-3-7-14-11(5-1)9-13-10-12-6-2-4-8-15(12)16(13)14/h1-10H<br>InChIKey=XOERMEAUYMRNNZ-UHFFFAOYSA-N</p> <p><b>4</b>: InChI=1S/C30H16/c1-2-6-18-10-24-23(9-17(18)5-1)27-13-21-15-29-25-11-19-7-3-4-8-20(19)12-26(25)30(29)16-22(21)14-28(24)27/h1-16H<br>InChIKey=CHDMCKMZQIHGAH-UHFFFAOYSA-N</p> <p><b>5</b>: InChI=1S/C30H16/c1-3-7-19-15-27-25(13-17(19)5-1)23-11-9-22-21(29(23)27)10-12-24-26-14-18-6-2-4-8-20(18)16-28(26)30(22)24/h1-16H<br>InChIKey=LPXGODOTGXTPRU-UHFFFAOYSA-N</p> <p><b>6</b>: InChI=1S/C30H16/c1-2-7-19-13-26-25(12-18(19)6-1)27-15-21-9-10-22-24-11-17-5-3-4-8-20(17)14-29(24)30(22)23(21)16-28(26)27/h1-16H<br>InChIKey=BKMGPFRQJXDFJQ-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4110" dc:identifier="/archives/4110" dc:title="Antiaromatic compounds stabilized by benzenoid fusion" trackback:ping="/archives/4110/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">08 Jan 2018</span> <span class="comments"><a href="/blog/archives/4110#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4092" rel="bookmark" title="Permanent Link: azatriquinacene, a novel aromatic">azatriquinacene, a novel aromatic</a></h2> <div class="post-content"> <p>The range of aromatic compounds seems limitless. Mascal and co-workers have prepared the azatriquinacene <b>1</b> in a remarkably simple fashion.<a href="#aromZwit1"><sup>1</sup></a> The molecule is a zwitterion, with the carbon atoms forming a 9-center, but 10 &pi;-electron ring, and the quaternary nitrogen sitting above it. The carbon ring satisfies H&uuml;ckel’s rule (4<i>n</i>+2) and so should be aromatic. The capping nitrogen should help to keep the carbon ring fixed in a shallow bowl.</p> <p align="center"><img src="/blog/wp-content/AromZwitImg.png"></p> <p>As expected, the molecule in fact turns out to possess an aromatic 10 &pi;-electron ring. The B3LYP/6-311++G(d,p) geometry is shown in Figure 1. There is little bond alternation among the C-C distances: the mean deviation is only 0.015 &Aring; with the largest difference only 0.024 &#038;Aring. The x-ray crystal structure shows the same trends. The NICS(1) value is -12.31 ppm, larger even than that of benzene (-10.22 ppm).</p> <table align="center"> <tr align="center"> <td> <div class="jmol" id="AromZwit"> <a onclick="return false"><br> <img src="/blog/wp-content/AromZwit.png" onclick="insertJmol('AromZwit',300,300,'AromZwit.xyz')"></a> </div> </td> </tr> </table> <p align="center"><b>Figure 1</b>. B3LYP/6-311++G(d,p) geometry of <b>1</b>.</p> <h3>References</h3> <p><a name="aromZwit1"></a></p> <p>1) Hafezi, N.; Shewa, W. T.; Fettinger, J. C.; Mascal, M., &quot;A Zwitterionic, 10 &#960; Aromatic Hemisphere.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2017</b>, <i>56</i>, 14141-14144, DOI: <a href="http://dx.doi.org/10.1002/anie.201708521">10.1002/anie.201708521</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C10H9N/c1-11-8-2-3-9(11)6-7-10(11)5-4-8/h2-7H,1H3<br>InChIKey=ZXZPLDVSQUVKTH-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4092" dc:identifier="/archives/4092" dc:title="azatriquinacene, a novel aromatic" trackback:ping="/archives/4092/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a></span> <span class="user">Steven Bachrach</span> <span class="date">11 Dec 2017</span> <span class="comments"><a href="/blog/archives/4092#respond">No Comments</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/4059" rel="bookmark" title="Permanent Link: Triplet cyclobutadiene">Triplet cyclobutadiene</a></h2> <div class="post-content"> <p>Cyclobutadiene has long fascinated organic chemists. It is the 4e analogue of the 6e benzene molecule, yet it could hardly be more different. Despite nearly a century of effort, cyclobutadiene analogues were only first prepared in the 1970s, reflecting its strong antiaromatic character.</p> <p>Per-trimethylsilylcyclobutadiene <b>1</b> offers opportunities to probe the properties of the cyclobutadiene ring as the bulky substituents diminish dimerization and polymerization of the reactive &pi;-bonds. Kostenko and coworkers have now reported on the triplet state of <b>1</b>.<a href="#cybutTrip"><sup>1</sup></a> They observe three EPR signals of <b>1</b> at temperatures above 350 K, and these signals increase in area with increasing temperature. This is strong evidence for the existence of triplet <b>1</b> in equilibrium with the lower energy singlet. Using the variable temperature EPR spectra, the singlet triplet gap is 13.9 &plusmn; 0.8 kcal mol<sup>-1</sup>.</p> <p align="center"><img src="/blog/wp-content/cybutTMSimg.png"></p> <p>The structures of singlet and triplet <b>1</b> were optimized at B3LYP-D3/6-311+G(d,p) and shown in Figure 1. The singlet is the expected rectangle, with distinctly different C-C distance around the ring. The triplet is a square, with equivalent C-C distances. Since both the singlet and triplet states are likely to have multireference character, the energies of both states were obtained at RI-MRDDCI2-CASSCF(4,4)/def2-SVP//B3LYPD3/6-311+G(d,p) and give a singlet-triplet gap of 11.8 kcal mol<sup>-1</sup>, in quite reasonable agreement with experiment.</p> <table align="center" border="0" cellspacing="0" cellpadding="4"> <tr align="center" valign="bottom"> <td> <p></p> <div class="jmol" id="cybutTMSs"> <a onclick="return false"><br> <img src="/blog/wp-content/cybutTMSs.png" onclick="insertJmol('cybutTMSs',300,300,'cybutTMSs.xyz')"></a> </div> <p>singlet</p> </td> <td> <p></p> <div class="jmol" id="cybutTMSt"> <a onclick="return false"><br> <img src="/blog/wp-content/cybutTMSt.png" onclick="insertJmol('cybutTMSt',300,300,'cybutTMSt.xyz')"></a> </div> <p>triplet</p> </td> </tr> </table> <p align="center"><b>Figure 1</b>. Optimized geometries of singlet and triplet <b>1</b>.</p> <h3>References</h3> <p><a name="cybutTrip"></a></p> <p>1. Kostenko, A.; Tumanskii, B.; Kobayashi, Y.; Nakamoto, M.; Sekiguchi, A.; Apeloig, Y., &quot;Spectroscopic Observation of the Triplet Diradical State of a Cyclobutadiene.&quot; <i>Angew. Chem. Int. Ed.</i> <b>2017</b>, <i>56</i>, 10183-10187, DOI: <a href="http://dx.doi.org/10.1002/anie.201705228">10.1002/anie.201705228</a>.</p> <h3>InChIs</h3> <p><b>1</b>: InChI=1S/C16H36Si4/c1-17(2,3)13-14(18(4,5)6)16(20(10,11)12)15(13)19(7,8)9/h1-12H3<br>InChIkey=AYOHYRSQVCLGKR-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/4059" dc:identifier="/archives/4059" dc:title="Triplet cyclobutadiene" trackback:ping="/archives/4059/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a> &amp;<a href="/blog/archives/category/molecules/cyclobutadiene" rel="category tag">cyclobutadiene</a></span> <span class="user">Steven Bachrach</span> <span class="date">11 Sep 2017</span> <span class="comments"><a href="/blog/archives/4059#comments">1 Comment</a></span> </p> </div> <div class="box"> <h2><a href="/blog/archives/3985" rel="bookmark" title="Permanent Link: Nanobelt">Nanobelt</a></h2> <div class="post-content"> <p>The synthesis of components of nanostructures (like fullerenes and nanotubes) has dramatically matured over the past few years. I have blogged about <a href="/blog/?s=nanohoop">nanohoops before</a>, and this post presents the recent work of the Itami group in preparing the nanobelt <b>1</b>.<a href="#nanobelt1"><sup>1</sup></a></p> <table align="center" border="0" cellspacing="0" cellpadding="0"> <tr align="center"> <td> <p><img border="0" src="/blog/wp-content/nanobeltImg.png"><br><b>1</b></p> </td> </tr> </table> <p>The synthesis is accomplished through a series of Wittig reactions with an aryl-aryl coupling to stitch together the final rings. The molecule is characterized by NMR and x-ray crystallography. The authors have also computed the structure of <b>1</b> at B3LYP/6-31G(d), shown in Figure 1. The computed C-C distances match up very well with the experimental distances. The strain energy of <b>1</b>, presumably estimated by Reaction 1,<a href="#nanobelt2"><sup>2</sup></a> is computed to be about 119 kcal mol<sup>-1</sup>.</p> <table align="center" border="0" cellspacing="0" cellpadding="0"> <tr align="center"> <td> <p></p> <div class="jmol" id="nanobelt"> <a onclick="return false"><br> <img src="/blog/wp-content/nanobelt.png" onclick="insertJmol('nanobelt',330,330,'nanobelt.xyz')"></a> </div> <p><b>1</b></p> </td> </tr> </table> <p align="center"><b>Figure 1</b>. B3LYP/6-31G(d) optimized structure of <b>1</b>.</p> <table align="center" border="0" cellspacing="0" cellpadding="0"> <tr align="center" valign="middle"> <td> <p><img src="/blog/wp-content/nanobeltRSE.png"></p> </td> <td> <p>Rxn 1</p> </td> </tr> </table> <p>NICS(0) values were obtained at B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d); the rings along the middle of the belt have values of -7.44ppm and are indicative of normal aromatic 6-member rings, while the other rings have values of -2.00ppm. This suggests the dominant resonance structure shown below:</p> <p align="center"><img src="/blog/wp-content/nanobeltNICS.png"></p> <h3>References</h3> <p><a name="nanobelt1"></a></p> <p>1) Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K., &quot;Synthesis of a carbon nanobelt.&quot; <i>Science </i><b>2017,</b> <i>356</i>, 172-175, DOI: <a href="http://dx.doi.org/10.1126/science.aam8158">10.1126/science.aam8158</a>.</p> <p><a name="nanobelt2"></a></p> <p>2) Segawa, Y.; Yagi, A.; Ito, H.; Itami, K., &quot;A Theoretical Study on the Strain Energy of Carbon Nanobelts.&quot; <i>Org. Letters </i><b>2016,</b> <i>18</i>, 1430-1433, DOI: <a href="http://dx.doi.org/10.1021/acs.orglett.6b00365">10.1021/acs.orglett.6b00365</a>.</p> <h3>InChIs:</h3> <p><b>1</b>: InChI=1S/C48H24/c1-2-26-14-40-28-5-6-31-20-44-32(19-42(31)40)9-10-34-24-48-36(23-46(34)44)12-11-35-21-45-33(22-47(35)48)8-7-30-17-41-29(18-43(30)45)4-3-27-15-37(39(26)16-28)25(1)13-38(27)41/h1-24H<br>InChIKey=KJWRWEMHJRCQKK-UHFFFAOYSA-N</p> <!-- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:trackback="http://madskills.com/public/xml/rss/module/trackback/"> <rdf:Description rdf:about="/archives/3985" dc:identifier="/archives/3985" dc:title="Nanobelt" trackback:ping="/archives/3985/trackback" /> </rdf:RDF> --> </div> <p class="bottom"> <span class="cat"><a href="/blog/archives/category/aromaticity" rel="category tag">Aromaticity</a> &amp;<a href="/blog/archives/category/molecules/nanohoops" rel="category tag">nanohoops</a></span> <span class="user">Steven Bachrach</span> <span class="date">22 May 2017</span> <span class="comments"><a href="/blog/archives/3985#respond">No Comments</a></span> </p> </div> <p align="center"><a href="/blog/archives/category/aromaticity/page/2">Next Page &raquo;</a></p> </div> <div id="sidebar"> <ul> <li class="box"> <h2> Categories </h2> <ul> <li class="cat-item cat-item-25"> <a href="/blog/archives/category/acidity">Acidity</a> (12) </li> <li class="cat-item cat-item-3 current-cat"> <a aria-current="page" href="/blog/archives/category/aromaticity">Aromaticity</a> (91) </li> <li class="cat-item cat-item-53"> <a href="/blog/archives/category/authors">Authors</a> (153) <ul class="children"> <li class="cat-item cat-item-42"> <a href="/blog/archives/category/authors/borden">Borden</a> (12) </li> <li class="cat-item cat-item-12"> <a href="/blog/archives/category/authors/cramer">Cramer</a> (11) </li> <li class="cat-item cat-item-83"> <a href="/blog/archives/category/authors/grimme">Grimme</a> (17) </li> <li class="cat-item cat-item-9"> <a href="/blog/archives/category/authors/houk">Houk</a> (40) </li> <li class="cat-item cat-item-29"> <a href="/blog/archives/category/authors/jorgensen">Jorgensen</a> (3) </li> <li class="cat-item cat-item-16"> <a href="/blog/archives/category/authors/kass">Kass</a> (9) </li> <li class="cat-item cat-item-30"> <a href="/blog/archives/category/authors/schaefer">Schaefer</a> (13) </li> <li class="cat-item cat-item-17"> <a href="/blog/archives/category/authors/schleyer">Schleyer</a> (24) </li> <li class="cat-item cat-item-73"> <a href="/blog/archives/category/authors/schreiner">Schreiner</a> (29) </li> <li class="cat-item cat-item-6"> <a href="/blog/archives/category/authors/singleton">Singleton</a> (11) </li> <li class="cat-item cat-item-18"> <a href="/blog/archives/category/authors/truhlar">Truhlar</a> (8) </li> </ul> </li> <li class="cat-item cat-item-15"> <a href="/blog/archives/category/bond-dissociation-energy">Bond Dissociation Energy</a> (6) </li> <li class="cat-item cat-item-81"> <a href="/blog/archives/category/bsse">BSSE</a> (1) </li> <li class="cat-item cat-item-88"> <a href="/blog/archives/category/cyclophane">cyclophane</a> (0) </li> <li class="cat-item cat-item-4"> <a href="/blog/archives/category/dynamics">Dynamics</a> (35) </li> <li class="cat-item cat-item-57"> <a href="/blog/archives/category/e-publishing">E-publishing</a> (7) </li> <li class="cat-item cat-item-65"> <a href="/blog/archives/category/enzyme">Enzyme</a> (4) </li> <li class="cat-item cat-item-95"> <a href="/blog/archives/category/fep">FEP</a> (1) </li> <li class="cat-item cat-item-86"> <a href="/blog/archives/category/host-guest">host-guest</a> (6) </li> <li class="cat-item cat-item-84"> <a href="/blog/archives/category/hydrogen-bond">Hydrogen bond</a> (5) </li> <li class="cat-item cat-item-91"> <a href="/blog/archives/category/ion-pairs">Ion Pairs</a> (1) </li> <li class="cat-item cat-item-74"> <a href="/blog/archives/category/isotope-effects">Isotope Effects</a> (5) </li> <li class="cat-item cat-item-67"> <a href="/blog/archives/category/keto-enol-tautomerization">Keto-enol tautomerization</a> (3) </li> <li class="cat-item cat-item-54"> <a href="/blog/archives/category/molecules">Molecules</a> (100) <ul class="children"> <li class="cat-item cat-item-48"> <a href="/blog/archives/category/molecules/adamantane">adamantane</a> (3) </li> <li class="cat-item cat-item-26"> <a href="/blog/archives/category/molecules/amino-acids">amino acids</a> (13) </li> <li class="cat-item cat-item-19"> <a href="/blog/archives/category/molecules/annulenes">annulenes</a> (8) </li> <li class="cat-item cat-item-27"> <a href="/blog/archives/category/molecules/benzynes">benzynes</a> (4) </li> <li class="cat-item cat-item-46"> <a href="/blog/archives/category/molecules/biphenyl">biphenyl</a> (1) </li> <li class="cat-item cat-item-70"> <a href="/blog/archives/category/molecules/calixarenes">calixarenes</a> (1) </li> <li class="cat-item cat-item-33"> <a href="/blog/archives/category/molecules/carbenes">carbenes</a> (13) </li> <li class="cat-item cat-item-72"> <a href="/blog/archives/category/molecules/cyclobutadiene">cyclobutadiene</a> (4) </li> <li class="cat-item cat-item-62"> <a href="/blog/archives/category/molecules/dendralenes">dendralenes</a> (1) </li> <li class="cat-item cat-item-66"> <a href="/blog/archives/category/molecules/dewar-benzene">Dewar benzene</a> (1) </li> <li class="cat-item cat-item-39"> <a href="/blog/archives/category/molecules/diradicals">diradicals</a> (8) </li> <li class="cat-item cat-item-59"> <a href="/blog/archives/category/molecules/ephedrine">ephedrine</a> (1) </li> <li class="cat-item cat-item-37"> <a href="/blog/archives/category/molecules/ethyl-cation">ethyl cation</a> (2) </li> <li class="cat-item cat-item-90"> <a href="/blog/archives/category/molecules/fullerene">fullerene</a> (6) </li> <li class="cat-item cat-item-51"> <a href="/blog/archives/category/molecules/fulvalenes">fulvalenes</a> (1) </li> <li class="cat-item cat-item-21"> <a href="/blog/archives/category/molecules/hexacyclinol">hexacyclinol</a> (2) </li> <li class="cat-item cat-item-78"> <a href="/blog/archives/category/molecules/nanohoops">nanohoops</a> (4) </li> <li class="cat-item cat-item-41"> <a href="/blog/archives/category/molecules/non-classical">non-classical</a> (4) </li> <li class="cat-item cat-item-34"> <a href="/blog/archives/category/molecules/norbornyl-cation">norbornyl cation</a> (2) </li> <li class="cat-item cat-item-49"> <a href="/blog/archives/category/molecules/nucleic-acids">nucleic acids</a> (4) </li> <li class="cat-item cat-item-36"> <a href="/blog/archives/category/molecules/oximes">oximes</a> (1) </li> <li class="cat-item cat-item-75"> <a href="/blog/archives/category/molecules/phenyloxenium">phenyloxenium</a> (1) </li> <li class="cat-item cat-item-8"> <a href="/blog/archives/category/molecules/polycyclic-aromatics">polycyclic aromatics</a> (7) </li> <li class="cat-item cat-item-50"> <a href="/blog/archives/category/molecules/propellane">propellane</a> (2) </li> <li class="cat-item cat-item-79"> <a href="/blog/archives/category/molecules/stilbene">stilbene</a> (1) </li> <li class="cat-item cat-item-80"> <a href="/blog/archives/category/molecules/sugars">sugars</a> (5) </li> <li class="cat-item cat-item-85"> <a href="/blog/archives/category/molecules/terpenes">terpenes</a> (2) </li> <li class="cat-item cat-item-89"> <a href="/blog/archives/category/molecules/twistane">twistane</a> (1) </li> </ul> </li> <li class="cat-item cat-item-22"> <a href="/blog/archives/category/nmr">NMR</a> (40) </li> <li class="cat-item cat-item-31"> <a href="/blog/archives/category/optical-rotation">Optical Rotation</a> (16) </li> <li class="cat-item cat-item-28"> <a href="/blog/archives/category/qm-method">QM Method</a> (96) <ul class="children"> <li class="cat-item cat-item-20"> <a href="/blog/archives/category/qm-method/caspt2">CASPT2</a> (1) </li> <li class="cat-item cat-item-7"> <a href="/blog/archives/category/qm-method/dft">DFT</a> (71) </li> <li class="cat-item cat-item-45"> <a href="/blog/archives/category/qm-method/focal-point">focal point</a> (7) </li> <li class="cat-item cat-item-14"> <a href="/blog/archives/category/qm-method/g3">G3</a> (3) </li> <li class="cat-item cat-item-60"> <a href="/blog/archives/category/qm-method/mp">MP</a> (11) </li> </ul> </li> <li class="cat-item cat-item-56"> <a href="/blog/archives/category/reactions">Reactions</a> (83) <ul class="children"> <li class="cat-item cat-item-13"> <a href="/blog/archives/category/reactions/12-addition">1,2-addition</a> (1) </li> <li class="cat-item cat-item-35"> <a href="/blog/archives/category/reactions/aldol">aldol</a> (4) </li> <li class="cat-item cat-item-32"> <a href="/blog/archives/category/reactions/bergman-cyclization">Bergman cyclization</a> (6) </li> <li class="cat-item cat-item-44"> <a href="/blog/archives/category/reactions/claisen-rearrangement">Claisen rearrangement</a> (2) </li> <li class="cat-item cat-item-10"> <a href="/blog/archives/category/reactions/cope-rearrangement">Cope Rearrangement</a> (5) </li> <li class="cat-item cat-item-69"> <a href="/blog/archives/category/reactions/cycloadditions">cycloadditions</a> (12) </li> <li class="cat-item cat-item-23"> <a href="/blog/archives/category/reactions/diels-alder">Diels-Alder</a> (26) </li> <li class="cat-item cat-item-47"> <a href="/blog/archives/category/reactions/electrocyclization">electrocyclization</a> (11) </li> <li class="cat-item cat-item-76"> <a href="/blog/archives/category/reactions/electrophilic-aromatic-substitution">electrophilic aromatic substitution</a> (1) </li> <li class="cat-item cat-item-5"> <a href="/blog/archives/category/reactions/ene-reaction">ene reaction</a> (1) </li> <li class="cat-item cat-item-52"> <a href="/blog/archives/category/reactions/hajos-parrish-reaction">Hajos-Parrish Reaction</a> (1) </li> <li class="cat-item cat-item-61"> <a href="/blog/archives/category/reactions/mannich">Mannich</a> (2) </li> <li class="cat-item cat-item-64"> <a href="/blog/archives/category/reactions/michael-addition">Michael addition</a> (5) </li> <li class="cat-item cat-item-40"> <a href="/blog/archives/category/reactions/ozonolysis">ozonolysis</a> (1) </li> <li class="cat-item cat-item-43"> <a href="/blog/archives/category/reactions/proton-transfer">proton transfer</a> (1) </li> <li class="cat-item cat-item-38"> <a href="/blog/archives/category/reactions/pseudopericyclic">pseudopericyclic</a> (4) </li> <li class="cat-item cat-item-63"> <a href="/blog/archives/category/reactions/strecker">Strecker</a> (1) </li> <li class="cat-item cat-item-24"> <a href="/blog/archives/category/reactions/substitution">Substitution</a> (6) </li> <li class="cat-item cat-item-93"> <a href="/blog/archives/category/reactions/wittig">Wittig</a> (1) </li> </ul> </li> <li class="cat-item cat-item-87"> <a href="/blog/archives/category/second-edition">Second Edition</a> (3) </li> <li class="cat-item cat-item-11"> <a href="/blog/archives/category/solvation">Solvation</a> (17) </li> <li class="cat-item cat-item-77"> <a href="/blog/archives/category/stereochemistry">Stereochemistry</a> (2) </li> <li class="cat-item cat-item-68"> <a href="/blog/archives/category/stereoinduction">stereoinduction</a> (4) </li> <li class="cat-item cat-item-71"> <a href="/blog/archives/category/tunneling">Tunneling</a> (26) </li> <li class="cat-item cat-item-1"> <a href="/blog/archives/category/uncategorized">Uncategorized</a> (57) </li> <li class="cat-item cat-item-82"> <a href="/blog/archives/category/vibrational-frequencies">vibrational frequencies</a> (3) </li> </ul> </li> <li class="box"> <h2> Monthly </h2> <ul> <li><a href="/blog/archives/date/2019/06">June 2019</a></li> <li><a href="/blog/archives/date/2019/04">April 2019</a></li> <li><a href="/blog/archives/date/2019/03">March 2019</a></li> <li><a href="/blog/archives/date/2019/02">February 2019</a></li> <li><a href="/blog/archives/date/2019/01">January 2019</a></li> <li><a href="/blog/archives/date/2018/12">December 2018</a></li> <li><a href="/blog/archives/date/2018/11">November 2018</a></li> <li><a href="/blog/archives/date/2018/10">October 2018</a></li> <li><a href="/blog/archives/date/2018/09">September 2018</a></li> <li><a href="/blog/archives/date/2018/08">August 2018</a></li> <li><a href="/blog/archives/date/2018/07">July 2018</a></li> <li><a href="/blog/archives/date/2018/06">June 2018</a></li> <li><a href="/blog/archives/date/2018/05">May 2018</a></li> <li><a href="/blog/archives/date/2018/04">April 2018</a></li> <li><a href="/blog/archives/date/2018/03">March 2018</a></li> <li><a href="/blog/archives/date/2018/02">February 2018</a></li> <li><a href="/blog/archives/date/2018/01">January 2018</a></li> <li><a href="/blog/archives/date/2017/12">December 2017</a></li> <li><a href="/blog/archives/date/2017/11">November 2017</a></li> <li><a href="/blog/archives/date/2017/10">October 2017</a></li> <li><a href="/blog/archives/date/2017/09">September 2017</a></li> <li><a href="/blog/archives/date/2017/08">August 2017</a></li> <li><a href="/blog/archives/date/2017/07">July 2017</a></li> <li><a href="/blog/archives/date/2017/06">June 2017</a></li> <li><a href="/blog/archives/date/2017/05">May 2017</a></li> <li><a href="/blog/archives/date/2017/04">April 2017</a></li> <li><a href="/blog/archives/date/2017/03">March 2017</a></li> <li><a href="/blog/archives/date/2017/02">February 2017</a></li> <li><a href="/blog/archives/date/2017/01">January 2017</a></li> <li><a href="/blog/archives/date/2016/12">December 2016</a></li> <li><a href="/blog/archives/date/2016/11">November 2016</a></li> <li><a href="/blog/archives/date/2016/10">October 2016</a></li> <li><a href="/blog/archives/date/2016/09">September 2016</a></li> <li><a href="/blog/archives/date/2016/08">August 2016</a></li> <li><a href="/blog/archives/date/2016/07">July 2016</a></li> <li><a href="/blog/archives/date/2016/06">June 2016</a></li> <li><a href="/blog/archives/date/2016/05">May 2016</a></li> <li><a href="/blog/archives/date/2016/04">April 2016</a></li> <li><a href="/blog/archives/date/2016/03">March 2016</a></li> <li><a href="/blog/archives/date/2016/02">February 2016</a></li> <li><a href="/blog/archives/date/2016/01">January 2016</a></li> <li><a href="/blog/archives/date/2015/12">December 2015</a></li> <li><a href="/blog/archives/date/2015/11">November 2015</a></li> <li><a href="/blog/archives/date/2015/10">October 2015</a></li> <li><a href="/blog/archives/date/2015/09">September 2015</a></li> <li><a href="/blog/archives/date/2015/08">August 2015</a></li> <li><a href="/blog/archives/date/2015/07">July 2015</a></li> <li><a href="/blog/archives/date/2015/06">June 2015</a></li> <li><a href="/blog/archives/date/2015/05">May 2015</a></li> <li><a href="/blog/archives/date/2015/04">April 2015</a></li> <li><a href="/blog/archives/date/2015/03">March 2015</a></li> <li><a href="/blog/archives/date/2015/02">February 2015</a></li> <li><a href="/blog/archives/date/2015/01">January 2015</a></li> <li><a href="/blog/archives/date/2014/12">December 2014</a></li> <li><a href="/blog/archives/date/2014/11">November 2014</a></li> <li><a href="/blog/archives/date/2014/10">October 2014</a></li> <li><a href="/blog/archives/date/2014/09">September 2014</a></li> <li><a href="/blog/archives/date/2014/08">August 2014</a></li> <li><a href="/blog/archives/date/2014/07">July 2014</a></li> <li><a href="/blog/archives/date/2014/06">June 2014</a></li> <li><a href="/blog/archives/date/2014/05">May 2014</a></li> <li><a href="/blog/archives/date/2014/04">April 2014</a></li> <li><a href="/blog/archives/date/2014/03">March 2014</a></li> <li><a href="/blog/archives/date/2014/02">February 2014</a></li> <li><a href="/blog/archives/date/2014/01">January 2014</a></li> <li><a href="/blog/archives/date/2013/12">December 2013</a></li> <li><a href="/blog/archives/date/2013/11">November 2013</a></li> <li><a href="/blog/archives/date/2013/10">October 2013</a></li> <li><a href="/blog/archives/date/2013/09">September 2013</a></li> <li><a href="/blog/archives/date/2013/08">August 2013</a></li> <li><a href="/blog/archives/date/2013/07">July 2013</a></li> <li><a href="/blog/archives/date/2013/06">June 2013</a></li> <li><a href="/blog/archives/date/2013/05">May 2013</a></li> <li><a href="/blog/archives/date/2013/04">April 2013</a></li> <li><a href="/blog/archives/date/2013/03">March 2013</a></li> <li><a href="/blog/archives/date/2013/02">February 2013</a></li> <li><a href="/blog/archives/date/2013/01">January 2013</a></li> <li><a href="/blog/archives/date/2012/12">December 2012</a></li> <li><a href="/blog/archives/date/2012/11">November 2012</a></li> <li><a href="/blog/archives/date/2012/10">October 2012</a></li> <li><a href="/blog/archives/date/2012/09">September 2012</a></li> <li><a href="/blog/archives/date/2012/08">August 2012</a></li> <li><a href="/blog/archives/date/2012/07">July 2012</a></li> <li><a href="/blog/archives/date/2012/06">June 2012</a></li> <li><a href="/blog/archives/date/2012/05">May 2012</a></li> <li><a href="/blog/archives/date/2012/04">April 2012</a></li> <li><a href="/blog/archives/date/2012/03">March 2012</a></li> <li><a href="/blog/archives/date/2012/02">February 2012</a></li> <li><a href="/blog/archives/date/2012/01">January 2012</a></li> <li><a href="/blog/archives/date/2011/12">December 2011</a></li> <li><a href="/blog/archives/date/2011/11">November 2011</a></li> <li><a href="/blog/archives/date/2011/10">October 2011</a></li> <li><a href="/blog/archives/date/2011/09">September 2011</a></li> <li><a href="/blog/archives/date/2011/08">August 2011</a></li> <li><a href="/blog/archives/date/2011/07">July 2011</a></li> <li><a href="/blog/archives/date/2011/06">June 2011</a></li> <li><a href="/blog/archives/date/2011/05">May 2011</a></li> <li><a href="/blog/archives/date/2011/04">April 2011</a></li> <li><a href="/blog/archives/date/2011/03">March 2011</a></li> <li><a href="/blog/archives/date/2011/02">February 2011</a></li> <li><a href="/blog/archives/date/2011/01">January 2011</a></li> <li><a href="/blog/archives/date/2010/12">December 2010</a></li> <li><a href="/blog/archives/date/2010/11">November 2010</a></li> <li><a href="/blog/archives/date/2010/10">October 2010</a></li> <li><a href="/blog/archives/date/2010/09">September 2010</a></li> <li><a href="/blog/archives/date/2010/08">August 2010</a></li> <li><a href="/blog/archives/date/2010/07">July 2010</a></li> <li><a href="/blog/archives/date/2010/06">June 2010</a></li> <li><a href="/blog/archives/date/2010/05">May 2010</a></li> <li><a href="/blog/archives/date/2010/04">April 2010</a></li> <li><a href="/blog/archives/date/2010/03">March 2010</a></li> <li><a href="/blog/archives/date/2010/02">February 2010</a></li> <li><a href="/blog/archives/date/2010/01">January 2010</a></li> <li><a href="/blog/archives/date/2009/12">December 2009</a></li> <li><a href="/blog/archives/date/2009/11">November 2009</a></li> <li><a href="/blog/archives/date/2009/10">October 2009</a></li> <li><a href="/blog/archives/date/2009/09">September 2009</a></li> <li><a href="/blog/archives/date/2009/08">August 2009</a></li> <li><a href="/blog/archives/date/2009/07">July 2009</a></li> <li><a href="/blog/archives/date/2009/06">June 2009</a></li> <li><a href="/blog/archives/date/2009/05">May 2009</a></li> <li><a href="/blog/archives/date/2009/04">April 2009</a></li> <li><a href="/blog/archives/date/2009/03">March 2009</a></li> <li><a href="/blog/archives/date/2009/02">February 2009</a></li> <li><a href="/blog/archives/date/2009/01">January 2009</a></li> <li><a href="/blog/archives/date/2008/12">December 2008</a></li> <li><a href="/blog/archives/date/2008/11">November 2008</a></li> <li><a href="/blog/archives/date/2008/10">October 2008</a></li> <li><a href="/blog/archives/date/2008/09">September 2008</a></li> <li><a href="/blog/archives/date/2008/08">August 2008</a></li> <li><a href="/blog/archives/date/2008/07">July 2008</a></li> <li><a href="/blog/archives/date/2008/06">June 2008</a></li> <li><a href="/blog/archives/date/2008/05">May 2008</a></li> <li><a href="/blog/archives/date/2008/04">April 2008</a></li> <li><a href="/blog/archives/date/2008/03">March 2008</a></li> <li><a href="/blog/archives/date/2008/02">February 2008</a></li> <li><a href="/blog/archives/date/2008/01">January 2008</a></li> <li><a href="/blog/archives/date/2007/12">December 2007</a></li> <li><a href="/blog/archives/date/2007/11">November 2007</a></li> <li><a href="/blog/archives/date/2007/10">October 2007</a></li> <li><a href="/blog/archives/date/2007/09">September 2007</a></li> <li><a href="/blog/archives/date/2007/08">August 2007</a></li> <li><a href="/blog/archives/date/2007/07">July 2007</a></li> </ul> </li> </ul> <a rel="license" href="https://creativecommons.org/licenses/by-nd/3.0/"> <img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nd/3.0/88x31.png"> </a> <br>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-nd/3.0/">Creative Commons Attribution-No Derivative Works 3.0 Unported License</a>. </div> <!-- CLOSE sidebar--> <div class="clear"></div> </div> <!-- CLOSE content--> <div id="footer"> <p>Copyright &copy; 2021 <strong>Computational Organic Chemistry</strong>. </p> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10