CINXE.COM

<!doctype html><html lang="en"><head><title data-rh="true">Machine learning and product analytics: Navigating the hype | by Mixpanel | The Mixpanel Blog | Medium</title><meta data-rh="true" charset="utf-8"/><meta data-rh="true" name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,maximum-scale=1"/><meta data-rh="true" name="theme-color" content="#000000"/><meta data-rh="true" name="twitter:app:name:iphone" content="Medium"/><meta data-rh="true" name="twitter:app:id:iphone" content="828256236"/><meta data-rh="true" property="al:ios:app_name" content="Medium"/><meta data-rh="true" property="al:ios:app_store_id" content="828256236"/><meta data-rh="true" property="al:android:package" content="com.medium.reader"/><meta data-rh="true" property="fb:app_id" content="542599432471018"/><meta data-rh="true" property="og:site_name" content="Medium"/><meta data-rh="true" property="og:type" content="article"/><meta data-rh="true" property="article:published_time" content="2022-01-31T20:53:41.708Z"/><meta data-rh="true" name="title" content="Machine learning and product analytics: Navigating the hype | by Mixpanel | The Mixpanel Blog | Medium"/><meta data-rh="true" property="og:title" content="Machine learning and product analytics: Navigating the hype"/><meta data-rh="true" property="al:android:url" content="medium://p/c7c33335eddc"/><meta data-rh="true" property="al:ios:url" content="medium://p/c7c33335eddc"/><meta data-rh="true" property="al:android:app_name" content="Medium"/><meta data-rh="true" name="description" content="Machine learning and artificial intelligence have seen an explosion of real-world applications in the last decade. Applications such as targeting personalized content to users in real time have…"/><meta data-rh="true" property="og:description" content="By Adam Kinney, Head of Analytics @ Mixpanel"/><meta data-rh="true" property="og:url" content="https://medium.com/mixpanel-s-the-signal/machine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc"/><meta data-rh="true" property="al:web:url" content="https://medium.com/mixpanel-s-the-signal/machine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc"/><meta data-rh="true" property="og:image" content="https://miro.medium.com/v2/resize:fit:1200/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png"/><meta data-rh="true" property="article:author" content="https://medium.com/@Mixpanel"/><meta data-rh="true" name="author" content="Mixpanel"/><meta data-rh="true" name="robots" content="index,noarchive,follow,max-image-preview:large"/><meta data-rh="true" name="referrer" content="unsafe-url"/><meta data-rh="true" property="twitter:title" content="Machine learning and product analytics: Navigating the hype"/><meta data-rh="true" name="twitter:site" content="@mixpanel"/><meta data-rh="true" name="twitter:app:url:iphone" content="medium://p/c7c33335eddc"/><meta data-rh="true" property="twitter:description" content="By Adam Kinney, Head of Analytics @ Mixpanel"/><meta data-rh="true" name="twitter:image:src" content="https://miro.medium.com/v2/resize:fit:1200/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png"/><meta data-rh="true" name="twitter:card" content="summary_large_image"/><meta data-rh="true" name="twitter:creator" content="@mixpanel"/><meta data-rh="true" name="twitter:label1" content="Reading time"/><meta data-rh="true" name="twitter:data1" content="5 min read"/><link data-rh="true" rel="icon" href="https://miro.medium.com/v2/5d8de952517e8160e40ef9841c781cdc14a5db313057fa3c3de41c6f5b494b19"/><link data-rh="true" rel="search" type="application/opensearchdescription+xml" title="Medium" href="/osd.xml"/><link data-rh="true" rel="apple-touch-icon" sizes="152x152" href="https://miro.medium.com/v2/resize:fill:304:304/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="120x120" href="https://miro.medium.com/v2/resize:fill:240:240/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="76x76" href="https://miro.medium.com/v2/resize:fill:152:152/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="apple-touch-icon" sizes="60x60" href="https://miro.medium.com/v2/resize:fill:120:120/10fd5c419ac61637245384e7099e131627900034828f4f386bdaa47a74eae156"/><link data-rh="true" rel="mask-icon" href="https://miro.medium.com/v2/resize:fill:1000:1000/7*GAOKVe--MXbEJmV9230oOQ.png" color="#171717"/><link data-rh="true" rel="preconnect" href="https://glyph.medium.com" crossOrigin=""/><link data-rh="true" id="glyph_preload_link" rel="preload" as="style" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" id="glyph_link" rel="stylesheet" type="text/css" href="https://glyph.medium.com/css/unbound.css"/><link data-rh="true" rel="author" href="https://medium.com/@Mixpanel"/><link data-rh="true" rel="canonical" href="https://mixpanel.com/blog/machine-learning-and-product-analytics/"/><link data-rh="true" rel="alternate" href="android-app://com.medium.reader/https/medium.com/p/c7c33335eddc"/><script data-rh="true" type="application/ld+json">{"@context":"http:\u002F\u002Fschema.org","@type":"NewsArticle","image":["https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:1200\u002F1*3Xd9ztVo1RVUTE6V1Zo3Bw.png"],"url":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal\u002Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc","dateCreated":"2022-01-31T20:53:41.708Z","datePublished":"2022-01-31T20:53:41.708Z","dateModified":"2022-02-05T02:38:37.018Z","headline":"Machine learning and product analytics: Navigating the hype","name":"Machine learning and product analytics: Navigating the hype","description":"Machine learning and artificial intelligence have seen an explosion of real-world applications in the last decade. Applications such as targeting personalized content to users in real time have…","identifier":"c7c33335eddc","author":{"@type":"Person","name":"Mixpanel","url":"https:\u002F\u002Fmedium.com\u002F@Mixpanel"},"creator":["Mixpanel"],"publisher":{"@type":"Organization","name":"The Mixpanel Blog","url":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal","logo":{"@type":"ImageObject","width":294,"height":60,"url":"https:\u002F\u002Fmiro.medium.com\u002Fv2\u002Fresize:fit:588\u002F1*4xIuKpG9U_m3zLX76_6lyA.png"}},"mainEntityOfPage":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal\u002Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc"}</script><style type="text/css" data-fela-rehydration="540" data-fela-type="STATIC">html{box-sizing:border-box;-webkit-text-size-adjust:100%}*, *:before, *:after{box-sizing:inherit}body{margin:0;padding:0;text-rendering:optimizeLegibility;-webkit-font-smoothing:antialiased;color:rgba(0,0,0,0.8);position:relative;min-height:100vh}h1, h2, h3, h4, h5, h6, dl, dd, ol, ul, menu, figure, blockquote, p, pre, form{margin:0}menu, ol, ul{padding:0;list-style:none;list-style-image:none}main{display:block}a{color:inherit;text-decoration:none}a, button, input{-webkit-tap-highlight-color:transparent}img, svg{vertical-align:middle}button{background:transparent;overflow:visible}button, input, optgroup, select, textarea{margin:0}:root{--reach-tabs:1;--reach-menu-button:1}#speechify-root{font-family:Sohne, sans-serif}div[data-popper-reference-hidden="true"]{visibility:hidden;pointer-events:none}.grecaptcha-badge{visibility:hidden} /*XCode style (c) Angel Garcia <angelgarcia.mail@gmail.com>*/.hljs {background: #fff;color: black; }/* Gray DOCTYPE selectors like WebKit */ .xml .hljs-meta {color: #c0c0c0; }.hljs-comment, .hljs-quote {color: #007400; }.hljs-tag, .hljs-attribute, .hljs-keyword, .hljs-selector-tag, .hljs-literal, .hljs-name {color: #aa0d91; }.hljs-variable, .hljs-template-variable {color: #3F6E74; }.hljs-code, .hljs-string, .hljs-meta .hljs-string {color: #c41a16; }.hljs-regexp, .hljs-link {color: #0E0EFF; }.hljs-title, .hljs-symbol, .hljs-bullet, .hljs-number {color: #1c00cf; }.hljs-section, .hljs-meta {color: #643820; }.hljs-title.class_, .hljs-class .hljs-title, .hljs-type, .hljs-built_in, .hljs-params {color: #5c2699; }.hljs-attr {color: #836C28; }.hljs-subst {color: #000; }.hljs-formula {background-color: #eee;font-style: italic; }.hljs-addition {background-color: #baeeba; }.hljs-deletion {background-color: #ffc8bd; }.hljs-selector-id, .hljs-selector-class {color: #9b703f; }.hljs-doctag, .hljs-strong {font-weight: bold; }.hljs-emphasis {font-style: italic; } </style><style type="text/css" data-fela-rehydration="540" data-fela-type="KEYFRAME">@-webkit-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@-moz-keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}@keyframes k1{0%{opacity:0.8}50%{opacity:0.5}100%{opacity:0.8}}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE">.a{font-family:medium-content-sans-serif-font, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Oxygen, Ubuntu, Cantarell, "Open Sans", "Helvetica Neue", sans-serif}.b{font-weight:400}.c{background-color:rgba(255, 255, 255, 1)}.l{display:block}.m{position:sticky}.n{top:0}.o{z-index:500}.p{padding:0 24px}.q{align-items:center}.r{border-bottom:solid 1px #F2F2F2}.y{height:41px}.z{line-height:20px}.ab{display:flex}.ac{height:57px}.ae{flex:1 0 auto}.af{color:inherit}.ag{fill:inherit}.ah{font-size:inherit}.ai{border:inherit}.aj{font-family:inherit}.ak{letter-spacing:inherit}.al{font-weight:inherit}.am{padding:0}.an{margin:0}.ao{cursor:pointer}.ap:disabled{cursor:not-allowed}.aq:disabled{color:#6B6B6B}.ar:disabled{fill:#6B6B6B}.au{width:auto}.av path{fill:#242424}.aw{height:25px}.ax{margin-left:16px}.ay{border:none}.az{border-radius:20px}.ba{width:240px}.bb{background:#F9F9F9}.bc path{fill:#6B6B6B}.be{outline:none}.bf{font-family:sohne, "Helvetica Neue", Helvetica, Arial, sans-serif}.bg{font-size:14px}.bh{width:100%}.bi{padding:10px 20px 10px 0}.bj{background-color:transparent}.bk{color:#242424}.bl::placeholder{color:#6B6B6B}.bm{display:inline-block}.bn{margin-left:12px}.bo{margin-right:12px}.bp{border-radius:4px}.bq{margin-left:24px}.br{height:24px}.bx{background-color:#F9F9F9}.by{border-radius:50%}.bz{height:32px}.ca{width:32px}.cb{justify-content:center}.ch{max-width:680px}.ci{min-width:0}.cj{animation:k1 1.2s ease-in-out infinite}.ck{height:100vh}.cl{margin-bottom:16px}.cm{margin-top:48px}.cn{align-items:flex-start}.co{flex-direction:column}.cp{justify-content:space-between}.cq{margin-bottom:24px}.cw{width:80%}.cx{background-color:#F2F2F2}.dd{height:44px}.de{width:44px}.df{margin:auto 0}.dg{margin-bottom:4px}.dh{height:16px}.di{width:120px}.dj{width:80px}.dp{margin-bottom:8px}.dq{width:96%}.dr{width:98%}.ds{width:81%}.dt{margin-left:8px}.du{color:#6B6B6B}.dv{font-size:13px}.dw{height:100%}.ep{color:#FFFFFF}.eq{fill:#FFFFFF}.er{background:rgba(165, 109, 179, 1)}.es{border-color:rgba(165, 109, 179, 1)}.ew:disabled{cursor:inherit !important}.ex:disabled{opacity:0.3}.ey:disabled:hover{background:rgba(165, 109, 179, 1)}.ez:disabled:hover{border-color:rgba(165, 109, 179, 1)}.fa{border-radius:99em}.fb{border-width:1px}.fc{border-style:solid}.fd{box-sizing:border-box}.fe{text-decoration:none}.ff{text-align:center}.fi{margin-right:32px}.fj{position:relative}.fk{fill:#6B6B6B}.fn{background:transparent}.fo svg{margin-left:4px}.fp svg{fill:#6B6B6B}.fr{box-shadow:inset 0 0 0 1px rgba(0, 0, 0, 0.05)}.fs{position:absolute}.fz{margin:0 24px}.gd{background:rgba(255, 255, 255, 1)}.ge{border:1px solid #F2F2F2}.gf{box-shadow:0 1px 4px #F2F2F2}.gg{max-height:100vh}.gh{overflow-y:auto}.gi{left:0}.gj{top:calc(100vh + 100px)}.gk{bottom:calc(100vh + 100px)}.gl{width:10px}.gm{pointer-events:none}.gn{word-break:break-word}.go{word-wrap:break-word}.gp:after{display:block}.gq:after{content:""}.gr:after{clear:both}.gs{line-height:1.23}.gt{letter-spacing:0}.gu{font-style:normal}.gv{font-weight:700}.ia{align-items:baseline}.ib{width:48px}.ic{height:48px}.id{border:2px solid rgba(255, 255, 255, 1)}.ie{z-index:0}.if{box-shadow:none}.ig{border:1px solid rgba(0, 0, 0, 0.05)}.ih{margin-left:-12px}.ii{width:28px}.ij{height:28px}.ik{z-index:1}.il{width:24px}.im{margin-bottom:2px}.in{flex-wrap:nowrap}.io{font-size:16px}.ip{line-height:24px}.ir{margin:0 8px}.is{display:inline}.it{color:rgba(165, 109, 179, 1)}.iu{fill:rgba(165, 109, 179, 1)}.ix{flex:0 0 auto}.ja{flex-wrap:wrap}.jd{white-space:pre-wrap}.je{margin-right:4px}.jf{overflow:hidden}.jg{max-height:20px}.jh{text-overflow:ellipsis}.ji{display:-webkit-box}.jj{-webkit-line-clamp:1}.jk{-webkit-box-orient:vertical}.jl{word-break:break-all}.jn{padding-left:8px}.jo{padding-right:8px}.kp> *{flex-shrink:0}.kq{overflow-x:scroll}.kr::-webkit-scrollbar{display:none}.ks{scrollbar-width:none}.kt{-ms-overflow-style:none}.ku{width:74px}.kv{flex-direction:row}.kw{z-index:2}.kz{-webkit-user-select:none}.la{border:0}.lb{fill:rgba(117, 117, 117, 1)}.le{outline:0}.lf{user-select:none}.lg> svg{pointer-events:none}.lp{cursor:progress}.lq{opacity:1}.lr{padding:4px 0}.lu{margin-top:0px}.lv{width:16px}.lx{display:inline-flex}.md{max-width:100%}.me{padding:8px 2px}.mf svg{color:#6B6B6B}.mw{margin-left:auto}.mx{margin-right:auto}.my{max-width:1920px}.ne{clear:both}.ng{cursor:zoom-in}.nh{z-index:auto}.nj{height:auto}.nk{line-height:1.58}.nl{letter-spacing:-0.004em}.nm{font-family:source-serif-pro, Georgia, Cambria, "Times New Roman", Times, serif}.oh{margin-bottom:-0.46em}.oi{text-decoration:underline}.oj{font-style:italic}.ok{line-height:1.12}.ol{letter-spacing:-0.022em}.om{font-weight:600}.ph{margin-bottom:-0.28em}.pn{list-style-type:decimal}.po{margin-left:30px}.pp{padding-left:0px}.pv{margin-top:32px}.pw{margin-bottom:14px}.px{padding-top:24px}.py{padding-bottom:10px}.pz{background-color:#000000}.qa{height:3px}.qb{width:3px}.qc{margin-right:20px}.qd{margin-bottom:26px}.qe{margin-top:6px}.qf{margin-top:8px}.qg{margin-right:8px}.qh{padding:8px 16px}.qi{border-radius:100px}.qj{transition:background 300ms ease}.ql{white-space:nowrap}.qm{border-top:none}.qn{height:52px}.qo{max-height:52px}.qp{box-sizing:content-box}.qq{position:static}.qs{max-width:155px}.rd{height:0px}.re{margin-bottom:40px}.rf{margin-bottom:48px}.rt{border-radius:2px}.rv{height:64px}.rw{width:64px}.rx{align-self:flex-end}.ry{flex:1 1 auto}.se{padding-right:4px}.sf{font-weight:500}.ss{margin-top:16px}.st{color:rgba(255, 255, 255, 1)}.su{fill:rgba(255, 255, 255, 1)}.sv{background:rgba(25, 25, 25, 1)}.sw{border-color:rgba(25, 25, 25, 1)}.sz:disabled{opacity:0.1}.ta:disabled:hover{background:rgba(25, 25, 25, 1)}.tb:disabled:hover{border-color:rgba(25, 25, 25, 1)}.tc{margin-bottom:54px}.ti{gap:18px}.tj{fill:rgba(61, 61, 61, 1)}.tq{border-bottom:solid 1px #E5E5E5}.tr{margin-top:72px}.ts{padding:24px 0}.tt{margin-bottom:0px}.tu{margin-right:16px}.as:hover:not(:disabled){color:rgba(25, 25, 25, 1)}.at:hover:not(:disabled){fill:rgba(25, 25, 25, 1)}.et:hover{background:rgba(140, 95, 151, 1)}.eu:hover{border-color:rgba(140, 95, 151, 1)}.ev:hover{cursor:pointer}.fl:hover{color:#242424}.fm:hover{fill:#242424}.fq:hover svg{fill:#242424}.ft:hover{background-color:rgba(0, 0, 0, 0.1)}.iq:hover{text-decoration:underline}.iv:hover:not(:disabled){color:rgba(140, 95, 151, 1)}.iw:hover:not(:disabled){fill:rgba(140, 95, 151, 1)}.ld:hover{fill:rgba(8, 8, 8, 1)}.ls:hover{fill:#000000}.lt:hover p{color:#000000}.lw:hover{color:#000000}.mg:hover svg{color:#000000}.qk:hover{background-color:#F2F2F2}.ru:hover{background-color:none}.sx:hover{background:#000000}.sy:hover{border-color:#242424}.tk:hover{fill:rgba(25, 25, 25, 1)}.bd:focus-within path{fill:#242424}.lc:focus{fill:rgba(8, 8, 8, 1)}.mh:focus svg{color:#000000}.ni:focus{transform:scale(1.01)}.lh:active{border-style:none}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (min-width: 1080px)">.d{display:none}.bw{width:64px}.cg{margin:0 64px}.cv{height:48px}.dc{margin-bottom:52px}.do{margin-bottom:48px}.ef{font-size:14px}.eg{line-height:20px}.em{font-size:13px}.eo{padding:5px 12px}.fh{display:flex}.fy{margin-bottom:68px}.gc{max-width:680px}.hq{font-size:42px}.hr{margin-top:1.19em}.hs{margin-bottom:32px}.ht{line-height:52px}.hu{letter-spacing:-0.011em}.hz{align-items:center}.kb{border-top:solid 1px #F2F2F2}.kc{border-bottom:solid 1px #F2F2F2}.kd{margin:32px 0 0}.ke{padding:3px 8px}.kn> *{margin-right:24px}.ko> :last-child{margin-right:0}.lo{margin-top:0px}.mc{margin:0}.nd{margin-top:40px}.od{font-size:20px}.oe{margin-top:2.14em}.of{line-height:32px}.og{letter-spacing:-0.003em}.pd{font-size:24px}.pe{margin-top:1.95em}.pf{line-height:30px}.pg{letter-spacing:-0.016em}.pm{margin-top:0.94em}.pu{margin-top:1.14em}.qx{display:inline-block}.rc{margin-bottom:104px}.rg{flex-direction:row}.rj{margin-bottom:0}.rk{margin-right:20px}.rz{max-width:500px}.sq{line-height:24px}.sr{letter-spacing:0}.th{margin-bottom:72px}.tp{padding-top:72px}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (max-width: 1079.98px)">.e{display:none}.ln{margin-top:0px}.qw{display:inline-block}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (max-width: 903.98px)">.f{display:none}.lm{margin-top:0px}.qv{display:inline-block}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (max-width: 727.98px)">.g{display:none}.lk{margin-top:0px}.ll{margin-right:0px}.qu{display:inline-block}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (max-width: 551.98px)">.h{display:none}.s{display:flex}.t{justify-content:space-between}.bs{width:24px}.cc{margin:0 24px}.cr{height:40px}.cy{margin-bottom:44px}.dk{margin-bottom:32px}.dx{font-size:13px}.dy{line-height:20px}.eh{padding:0px 8px 1px}.fu{margin-bottom:4px}.gw{font-size:32px}.gx{margin-top:1.01em}.gy{margin-bottom:24px}.gz{line-height:38px}.ha{letter-spacing:-0.014em}.hv{align-items:flex-start}.iy{flex-direction:column}.jb{margin-bottom:2px}.jp{margin:24px -24px 0}.jq{padding:0}.kf> *{margin-right:8px}.kg> :last-child{margin-right:24px}.kx{margin-left:0px}.li{margin-top:0px}.lj{margin-right:0px}.ly{margin:0}.mi{border:1px solid #F2F2F2}.mj{border-radius:99em}.mk{padding:0px 16px 0px 12px}.ml{height:38px}.mm{align-items:center}.mo svg{margin-right:8px}.mz{margin-top:32px}.nn{font-size:18px}.no{margin-top:1.56em}.np{line-height:28px}.nq{letter-spacing:-0.003em}.on{font-size:20px}.oo{margin-top:1.2em}.op{line-height:24px}.oq{letter-spacing:0}.pi{margin-top:0.67em}.pq{margin-top:1.34em}.qt{display:inline-block}.qy{margin-bottom:96px}.rr{margin-bottom:20px}.rs{margin-right:0}.sd{max-width:100%}.sg{font-size:24px}.sh{line-height:30px}.si{letter-spacing:-0.016em}.td{margin-bottom:64px}.tl{padding-top:48px}.mn:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (min-width: 904px) and (max-width: 1079.98px)">.i{display:none}.bv{width:64px}.cf{margin:0 64px}.cu{height:48px}.db{margin-bottom:52px}.dn{margin-bottom:48px}.ed{font-size:14px}.ee{line-height:20px}.ek{font-size:13px}.el{padding:5px 12px}.fg{display:flex}.fx{margin-bottom:68px}.gb{max-width:680px}.hl{font-size:42px}.hm{margin-top:1.19em}.hn{margin-bottom:32px}.ho{line-height:52px}.hp{letter-spacing:-0.011em}.hy{align-items:center}.jx{border-top:solid 1px #F2F2F2}.jy{border-bottom:solid 1px #F2F2F2}.jz{margin:32px 0 0}.ka{padding:3px 8px}.kl> *{margin-right:24px}.km> :last-child{margin-right:0}.mb{margin:0}.nc{margin-top:40px}.nz{font-size:20px}.oa{margin-top:2.14em}.ob{line-height:32px}.oc{letter-spacing:-0.003em}.oz{font-size:24px}.pa{margin-top:1.95em}.pb{line-height:30px}.pc{letter-spacing:-0.016em}.pl{margin-top:0.94em}.pt{margin-top:1.14em}.rb{margin-bottom:104px}.rh{flex-direction:row}.rl{margin-bottom:0}.rm{margin-right:20px}.sa{max-width:500px}.so{line-height:24px}.sp{letter-spacing:0}.tg{margin-bottom:72px}.to{padding-top:72px}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (min-width: 728px) and (max-width: 903.98px)">.j{display:none}.w{display:flex}.x{justify-content:space-between}.bu{width:64px}.ce{margin:0 48px}.ct{height:48px}.da{margin-bottom:52px}.dm{margin-bottom:48px}.eb{font-size:13px}.ec{line-height:20px}.ej{padding:0px 8px 1px}.fw{margin-bottom:68px}.ga{max-width:680px}.hg{font-size:42px}.hh{margin-top:1.19em}.hi{margin-bottom:32px}.hj{line-height:52px}.hk{letter-spacing:-0.011em}.hx{align-items:center}.jt{border-top:solid 1px #F2F2F2}.ju{border-bottom:solid 1px #F2F2F2}.jv{margin:32px 0 0}.jw{padding:3px 8px}.kj> *{margin-right:24px}.kk> :last-child{margin-right:0}.ma{margin:0}.nb{margin-top:40px}.nv{font-size:20px}.nw{margin-top:2.14em}.nx{line-height:32px}.ny{letter-spacing:-0.003em}.ov{font-size:24px}.ow{margin-top:1.95em}.ox{line-height:30px}.oy{letter-spacing:-0.016em}.pk{margin-top:0.94em}.ps{margin-top:1.14em}.ra{margin-bottom:104px}.ri{flex-direction:row}.rn{margin-bottom:0}.ro{margin-right:20px}.sb{max-width:500px}.sm{line-height:24px}.sn{letter-spacing:0}.tf{margin-bottom:72px}.tn{padding-top:72px}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="all and (min-width: 552px) and (max-width: 727.98px)">.k{display:none}.u{display:flex}.v{justify-content:space-between}.bt{width:24px}.cd{margin:0 24px}.cs{height:40px}.cz{margin-bottom:44px}.dl{margin-bottom:32px}.dz{font-size:13px}.ea{line-height:20px}.ei{padding:0px 8px 1px}.fv{margin-bottom:4px}.hb{font-size:32px}.hc{margin-top:1.01em}.hd{margin-bottom:24px}.he{line-height:38px}.hf{letter-spacing:-0.014em}.hw{align-items:flex-start}.iz{flex-direction:column}.jc{margin-bottom:2px}.jr{margin:24px 0 0}.js{padding:0}.kh> *{margin-right:8px}.ki> :last-child{margin-right:8px}.ky{margin-left:0px}.lz{margin:0}.mp{border:1px solid #F2F2F2}.mq{border-radius:99em}.mr{padding:0px 16px 0px 12px}.ms{height:38px}.mt{align-items:center}.mv svg{margin-right:8px}.na{margin-top:32px}.nr{font-size:18px}.ns{margin-top:1.56em}.nt{line-height:28px}.nu{letter-spacing:-0.003em}.or{font-size:20px}.os{margin-top:1.2em}.ot{line-height:24px}.ou{letter-spacing:0}.pj{margin-top:0.67em}.pr{margin-top:1.34em}.qz{margin-bottom:96px}.rp{margin-bottom:20px}.rq{margin-right:0}.sc{max-width:100%}.sj{font-size:24px}.sk{line-height:30px}.sl{letter-spacing:-0.016em}.te{margin-bottom:64px}.tm{padding-top:48px}.mu:hover{border-color:#E5E5E5}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="print">.qr{display:none}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="(orientation: landscape) and (max-width: 903.98px)">.jm{max-height:none}</style><style type="text/css" data-fela-rehydration="540" data-fela-type="RULE" media="(prefers-reduced-motion: no-preference)">.nf{transition:transform 300ms cubic-bezier(0.2, 0, 0.2, 1)}</style></head><body><div id="root"><div class="a b c"><div class="d e f g h i j k"></div><script>document.domain = document.domain;</script><div class="l c"><div class="l m n o c"><div class="p q r s t u v w x i d y z"><a class="du ag dv bf ak b am an ao ap aq ar as at s u w i d q dw z" href="https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2Fc7c33335eddc&amp;%7Efeature=LoOpenInAppButton&amp;%7Echannel=ShowPostUnderCollection&amp;source=---top_nav_layout_nav----------------------------------" rel="noopener follow">Open in app<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" fill="none" viewBox="0 0 10 10" class="dt"><path fill="currentColor" d="M.985 8.485a.375.375 0 1 0 .53.53zM8.75 1.25h.375A.375.375 0 0 0 8.75.875zM8.375 6.5a.375.375 0 1 0 .75 0zM3.5.875a.375.375 0 1 0 0 .75zm-1.985 8.14 7.5-7.5-.53-.53-7.5 7.5zm6.86-7.765V6.5h.75V1.25zM3.5 1.625h5.25v-.75H3.5z"></path></svg></a><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;source=post_page---top_nav_layout_nav-----------------------global_nav-----------">Sign in</a></span></p></div></div></div><div class="p q r ab ac"><div class="ab q ae"><a class="af ag ah ai aj ak al am an ao ap aq ar as at ab" aria-label="Homepage" data-testid="headerMediumLogo" rel="noopener follow" href="/?source=---top_nav_layout_nav----------------------------------"><svg xmlns="http://www.w3.org/2000/svg" width="719" height="160" fill="none" viewBox="0 0 719 160" class="au av aw"><path fill="#242424" d="m174.104 9.734.215-.047V8.02H130.39L89.6 103.89 48.81 8.021H1.472v1.666l.212.047c8.018 1.81 12.09 4.509 12.09 14.242V137.93c0 9.734-4.087 12.433-12.106 14.243l-.212.047v1.671h32.118v-1.665l-.213-.048c-8.018-1.809-12.089-4.509-12.089-14.242V30.586l52.399 123.305h2.972l53.925-126.743V140.75c-.687 7.688-4.721 10.062-11.982 11.701l-.215.05v1.652h55.948v-1.652l-.215-.05c-7.269-1.639-11.4-4.013-12.087-11.701l-.037-116.774h.037c0-9.733 4.071-12.432 12.087-14.242m25.555 75.488c.915-20.474 8.268-35.252 20.606-35.507 3.806.063 6.998 1.312 9.479 3.714 5.272 5.118 7.751 15.812 7.368 31.793zm-.553 5.77h65.573v-.275c-.186-15.656-4.721-27.834-13.466-36.196-7.559-7.227-18.751-11.203-30.507-11.203h-.263c-6.101 0-13.584 1.48-18.909 4.16-6.061 2.807-11.407 7.003-15.855 12.511-7.161 8.874-11.499 20.866-12.554 34.343q-.05.606-.092 1.212a50 50 0 0 0-.065 1.151 85.807 85.807 0 0 0-.094 5.689c.71 30.524 17.198 54.917 46.483 54.917 25.705 0 40.675-18.791 44.407-44.013l-1.886-.664c-6.557 13.556-18.334 21.771-31.738 20.769-18.297-1.369-32.314-19.922-31.042-42.395m139.722 41.359c-2.151 5.101-6.639 7.908-12.653 7.908s-11.513-4.129-15.418-11.63c-4.197-8.053-6.405-19.436-6.405-32.92 0-28.067 8.729-46.22 22.24-46.22 5.657 0 10.111 2.807 12.236 7.704zm43.499 20.008c-8.019-1.897-12.089-4.722-12.089-14.951V1.309l-48.716 14.353v1.757l.299-.024c6.72-.543 11.278.386 13.925 2.83 2.072 1.915 3.082 4.853 3.082 8.987v18.66c-4.803-3.067-10.516-4.56-17.448-4.56-14.059 0-26.909 5.92-36.176 16.672-9.66 11.205-14.767 26.518-14.767 44.278-.003 31.72 15.612 53.039 38.851 53.039 13.595 0 24.533-7.449 29.54-20.013v16.865h43.711v-1.746zM424.1 19.819c0-9.904-7.468-17.374-17.375-17.374-9.859 0-17.573 7.632-17.573 17.374s7.721 17.374 17.573 17.374c9.907 0 17.375-7.47 17.375-17.374m11.499 132.546c-8.019-1.897-12.089-4.722-12.089-14.951h-.035V43.635l-43.714 12.551v1.705l.263.024c9.458.842 12.047 4.1 12.047 15.152v81.086h43.751v-1.746zm112.013 0c-8.018-1.897-12.089-4.722-12.089-14.951V43.635l-41.621 12.137v1.71l.246.026c7.733.813 9.967 4.257 9.967 15.36v59.279c-2.578 5.102-7.415 8.131-13.274 8.336-9.503 0-14.736-6.419-14.736-18.073V43.638l-43.714 12.55v1.703l.262.024c9.459.84 12.05 4.097 12.05 15.152v50.17a56.3 56.3 0 0 0 .91 10.444l.787 3.423c3.701 13.262 13.398 20.197 28.59 20.197 12.868 0 24.147-7.966 29.115-20.43v17.311h43.714v-1.747zm169.818 1.788v-1.749l-.213-.05c-8.7-2.006-12.089-5.789-12.089-13.49v-63.79c0-19.89-11.171-31.761-29.883-31.761-13.64 0-25.141 7.882-29.569 20.16-3.517-13.01-13.639-20.16-28.606-20.16-13.146 0-23.449 6.938-27.869 18.657V43.643L545.487 55.68v1.715l.263.024c9.345.829 12.047 4.181 12.047 14.95v81.784h40.787v-1.746l-.215-.053c-6.941-1.631-9.181-4.606-9.181-12.239V66.998c1.836-4.289 5.537-9.37 12.853-9.37 9.086 0 13.692 6.296 13.692 18.697v77.828h40.797v-1.746l-.215-.053c-6.94-1.631-9.18-4.606-9.18-12.239V75.066a42 42 0 0 0-.578-7.26c1.947-4.661 5.86-10.177 13.475-10.177 9.214 0 13.691 6.114 13.691 18.696v77.828z"></path></svg></a><div class="ax h"><div class="ab ay az ba bb q bc bd"><div class="bm" aria-hidden="false" aria-describedby="searchResults" aria-labelledby="searchResults"></div><div class="bn bo ab"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div><input role="combobox" aria-controls="searchResults" aria-expanded="false" aria-label="search" data-testid="headerSearchInput" tabindex="0" class="ay be bf bg z bh bi bj bk bl" placeholder="Search" value=""/></div></div></div><div class="h k w fg fh"><div class="fi ab"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerWriteButton" rel="noopener follow" href="/m/signin?operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fnew-story&amp;source=---top_nav_layout_nav-----------------------new_post_topnav-----------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Write"><path fill="currentColor" d="M14 4a.5.5 0 0 0 0-1zm7 6a.5.5 0 0 0-1 0zm-7-7H4v1h10zM3 4v16h1V4zm1 17h16v-1H4zm17-1V10h-1v10zm-1 1a1 1 0 0 0 1-1h-1zM3 20a1 1 0 0 0 1 1v-1zM4 3a1 1 0 0 0-1 1h1z"></path><path stroke="currentColor" d="m17.5 4.5-8.458 8.458a.25.25 0 0 0-.06.098l-.824 2.47a.25.25 0 0 0 .316.316l2.47-.823a.25.25 0 0 0 .098-.06L19.5 6.5m-2-2 2.323-2.323a.25.25 0 0 1 .354 0l1.646 1.646a.25.25 0 0 1 0 .354L19.5 6.5m-2-2 2 2"></path></svg><div class="dt l">Write</div></div></a></span></div></div><div class="k j i d"><div class="fi ab"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSearchButton" rel="noopener follow" href="/search?source=---top_nav_layout_nav----------------------------------"><div class="bf b bg z du fj fk ab q fl fm"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24" aria-label="Search"><path fill="currentColor" fill-rule="evenodd" d="M4.092 11.06a6.95 6.95 0 1 1 13.9 0 6.95 6.95 0 0 1-13.9 0m6.95-8.05a8.05 8.05 0 1 0 5.13 14.26l3.75 3.75a.56.56 0 1 0 .79-.79l-3.73-3.73A8.05 8.05 0 0 0 11.042 3z" clip-rule="evenodd"></path></svg></div></a></div></div><div class="fi h k j"><div class="ab q"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><button class="bf b dx dy eh dz ea ei eb ec ej ek ee el em eg eo ep eq er es et eu ev ew ex ey ez fa fb fc fd bm fe ff" data-testid="headerSignUpButton">Sign up</button></span></p><div class="ax l"><p class="bf b dx dy dz ea eb ec ed ee ef eg du"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerSignInButton" rel="noopener follow" href="/m/signin?operation=login&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;source=post_page---top_nav_layout_nav-----------------------global_nav-----------">Sign in</a></span></p></div></div></div><div class="l" aria-hidden="false"><button class="ay fn am ab q ao fo fp fq" aria-label="user options menu" data-testid="headerUserIcon"><div class="l fj"><img alt="" class="l fd by bz ca cx" src="https://miro.medium.com/v2/resize:fill:64:64/1*dmbNkD5D-u45r44go_cf0g.png" width="32" height="32" loading="lazy" role="presentation"/><div class="fr by l bz ca fs n ay ft"></div></div></button></div></div></div><div class="l"><div class="fu fv fw fx fy l"><div class="ab cb"><div class="ci bh fz ga gb gc"></div></div><article><div class="l"><div class="l"><span class="l"></span><section><div><div class="fs gi gj gk gl gm"></div><div class="gn go gp gq gr"><div class="ab cb"><div class="ci bh fz ga gb gc"><div><h1 id="b7d6" class="pw-post-title gs gt gu bf gv gw gx gy gz ha hb hc hd he hf hg hh hi hj hk hl hm hn ho hp hq hr hs ht hu bk" data-testid="storyTitle">Machine learning and product analytics: Navigating the hype</h1><div><div class="speechify-ignore ab cp"><div class="speechify-ignore bh l"><div class="hv hw hx hy hz ab"><div><div class="ab ia"><div><div class="bm" aria-hidden="false"><a rel="noopener follow" href="/@Mixpanel?source=post_page---byline--c7c33335eddc--------------------------------"><div class="l ib ic by id ie"><div class="l fj"><img alt="Mixpanel" class="l fd by dd de cx" src="https://miro.medium.com/v2/resize:fill:88:88/1*ILXnVZy4YDjFCXVIwi2Zzw.png" width="44" height="44" loading="lazy" data-testid="authorPhoto"/><div class="if by l dd de fs n ig ft"></div></div></div></a></div></div><div class="ih ab fj"><div><div class="bm" aria-hidden="false"><a href="https://medium.com/mixpanel-s-the-signal?source=post_page---byline--c7c33335eddc--------------------------------" rel="noopener follow"><div class="l ii ij by id ik"><div class="l fj"><img alt="The Mixpanel Blog" class="l fd by br il cx" src="https://miro.medium.com/v2/resize:fill:48:48/1*OcnETLUeKYKHAy_jJw3EnQ@2x.png" width="24" height="24" loading="lazy" data-testid="publicationPhoto"/><div class="if by l br il fs n ig ft"></div></div></div></a></div></div></div></div></div><div class="bn bh l"><div class="ab"><div style="flex:1"><span class="bf b bg z bk"><div class="im ab q"><div class="ab q in"><div class="ab q"><div><div class="bm" aria-hidden="false"><p class="bf b io ip bk"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" data-testid="authorName" rel="noopener follow" href="/@Mixpanel?source=post_page---byline--c7c33335eddc--------------------------------">Mixpanel</a></p></div></div></div><span class="ir is" aria-hidden="true"><span class="bf b bg z du">·</span></span><p class="bf b io ip du"><span><a class="it iu ah ai aj ak al am an ao ap aq ar ex iv iw" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2Fd9ce9f6dba3e&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;user=Mixpanel&amp;userId=d9ce9f6dba3e&amp;source=post_page-d9ce9f6dba3e--byline--c7c33335eddc---------------------post_header-----------">Follow</a></span></p></div></div></span></div></div><div class="l ix"><span class="bf b bg z du"><div class="ab cn iy iz ja"><div class="jb jc ab"><div class="bf b bg z du ab jd"><span class="je l ix">Published in</span><div><div class="l" aria-hidden="false"><a class="af ag ah ai aj ak al am an ao ap aq ar iq ab q" data-testid="publicationName" href="https://medium.com/mixpanel-s-the-signal?source=post_page---byline--c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b bg z jf jg jh ji jj jk jl jm bk">The Mixpanel Blog</p></a></div></div></div><div class="h k"><span class="ir is" aria-hidden="true"><span class="bf b bg z du">·</span></span></div></div><span class="bf b bg z du"><div class="ab ae"><span data-testid="storyReadTime">5 min read</span><div class="jn jo l" aria-hidden="true"><span class="l" aria-hidden="true"><span class="bf b bg z du">·</span></span></div><span data-testid="storyPublishDate">Jan 31, 2022</span></div></span></div></span></div></div></div><div class="ab cp jp jq jr js jt ju jv jw jx jy jz ka kb kc kd ke"><div class="h k w fg fh q"><div class="ku l"><div class="ab q kv kw"><div class="pw-multi-vote-icon fj je kx ky kz"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fmixpanel-s-the-signal%2Fc7c33335eddc&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;user=Mixpanel&amp;userId=d9ce9f6dba3e&amp;source=---header_actions--c7c33335eddc---------------------clap_footer-----------"><div><div class="bm" aria-hidden="false"><div class="la ao lb lc ld le am lf lg lh kz"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l li lj lk ll lm ln lo"><p class="bf b dv z du"><span class="lp">--</span></p></div></div></div><div><div class="bm" aria-hidden="false"><button class="ao la lq lr ab q fk ls lt" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="lu"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div><div class="ab q kf kg kh ki kj kk kl km kn ko kp kq kr ks kt"><div class="lv k j i d"></div><div class="h k"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="headerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fc7c33335eddc&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;source=---header_actions--c7c33335eddc---------------------bookmark_footer-----------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lw" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="fd lx cn"><div class="l ae"><div class="ab cb"><div class="ly lz ma mb mc md ci bh"><div class="ab"><div class="bm bh" aria-hidden="false"><div><div class="bm" aria-hidden="false"><button aria-label="Listen" data-testid="audioPlayButton" class="af fk ah ai aj ak al me an ao ap ex mf mg lt mh mi mj mk ml s mm mn mo mp mq mr ms u mt mu mv"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M3 12a9 9 0 1 1 18 0 9 9 0 0 1-18 0m9-10C6.477 2 2 6.477 2 12s4.477 10 10 10 10-4.477 10-10S17.523 2 12 2m3.376 10.416-4.599 3.066a.5.5 0 0 1-.777-.416V8.934a.5.5 0 0 1 .777-.416l4.599 3.066a.5.5 0 0 1 0 .832" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Listen</p></div></button></div></div></div></div></div></div></div></div><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="headerSocialShareButton" class="af fk ah ai aj ak al me an ao ap ex mf mg lt mh mi mj mk ml s mm mn mo mp mq mr ms u mt mu mv"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg><div class="j i d"><p class="bf b bg z du">Share</p></div></button></div></div></div></div></div></div></div></div></div><figure class="mz na nb nc nd ne mw mx paragraph-image"><div role="button" tabindex="0" class="nf ng fj nh bh ni"><div class="mw mx my"><picture><source srcSet="https://miro.medium.com/v2/resize:fit:640/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 640w, https://miro.medium.com/v2/resize:fit:720/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 720w, https://miro.medium.com/v2/resize:fit:750/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 750w, https://miro.medium.com/v2/resize:fit:786/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 786w, https://miro.medium.com/v2/resize:fit:828/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 828w, https://miro.medium.com/v2/resize:fit:1100/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 1100w, https://miro.medium.com/v2/resize:fit:1400/format:webp/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px" type="image/webp"/><source data-testid="og" srcSet="https://miro.medium.com/v2/resize:fit:640/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 640w, https://miro.medium.com/v2/resize:fit:720/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 720w, https://miro.medium.com/v2/resize:fit:750/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 750w, https://miro.medium.com/v2/resize:fit:786/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 786w, https://miro.medium.com/v2/resize:fit:828/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 828w, https://miro.medium.com/v2/resize:fit:1100/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 1100w, https://miro.medium.com/v2/resize:fit:1400/1*3Xd9ztVo1RVUTE6V1Zo3Bw.png 1400w" sizes="(min-resolution: 4dppx) and (max-width: 700px) 50vw, (-webkit-min-device-pixel-ratio: 4) and (max-width: 700px) 50vw, (min-resolution: 3dppx) and (max-width: 700px) 67vw, (-webkit-min-device-pixel-ratio: 3) and (max-width: 700px) 65vw, (min-resolution: 2.5dppx) and (max-width: 700px) 80vw, (-webkit-min-device-pixel-ratio: 2.5) and (max-width: 700px) 80vw, (min-resolution: 2dppx) and (max-width: 700px) 100vw, (-webkit-min-device-pixel-ratio: 2) and (max-width: 700px) 100vw, 700px"/><img alt="" class="bh md nj c" width="700" height="394" loading="eager" role="presentation"/></picture></div></div></figure><p id="ed45" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk"><a class="af oi" href="https://mixpanel.com/blog/machine-learning-and-product-analytics/" rel="noopener ugc nofollow" target="_blank"><em class="oj">By Adam Kinney, Head of Analytics @ Mixpanel</em></a></p><p id="bed9" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">Machine learning and artificial intelligence have seen an explosion of real-world applications in the last decade. Applications such as targeting personalized content to users in real time have demonstrated impressive results. And more and more we are even seeing ML/AI features deployed in product analytics contexts.</p><p id="f6fc" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">Indeed, Mixpanel was very early in building ML features in our product. However, after a lot of experimentation, we have purposefully deemphasized building new ML features and have even deprecated some we used to have. While these features promise a lot and can show impressive results in a demo, most of them come with serious downsides, like lack of transparency and confusing or even misleading results. In this post, we will run through the most common ML features in analytics products and show how non-ML methods actually offer superior results.</p><h1 id="1c34" class="ok ol gu bf om on oo op oq or os ot ou ov ow ox oy oz pa pb pc pd pe pf pg ph bk">Scenario 1: Predicting user outcomes</h1><p id="5c53" class="pw-post-body-paragraph nk nl gu nm b nn pi np nq nr pj nt nu nv pk nx ny nz pl ob oc od pm of og oh gn bk">In this scenario, you have a product-based outcome you want to influence, like retention or purchases, and your goal is to determine what user behaviors are likely to lead to improvement in the outcome. Predictive models are sometimes presented as a solution here. The idea is that if you can predict user outcomes based on their prior behavior, then the behaviors that are most predictive of positive outcomes are the ones that you should try to drive in order to improve the outcome metric across all users.</p><p id="dd2d" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">For example, let’s say you care about subscriber retention. A predictive model could look at all the things subscribers did in your app in one month and then look to see who is still a subscriber one month later. The behaviors most predictive of still being a subscriber would be the ones to focus on if you want to increase subscriber retention.</p><p id="4d65" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">Unfortunately, using predictive models in this way misunderstands what predictive models are for. Predictive models like this are designed to provide accurate predictions of the future. User-level predictions of the future are useful for personalizing your product but not for understanding what behaviors drive outcomes. Predictive models essentially isolate correlations over time. Certain behaviors will be correlated with other future behaviors, but they will not necessarily cause those behaviors.</p><p id="f2c4" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">Another problem with using predictive models to find behavioral inputs is that the most predictive behaviors are often not actionable. For example, if you want to determine who will have the most sessions next month, the most predictive behavior will almost certainly be the number of sessions this month since past performance is often the best predictor of the future. But then the model is essentially telling you: “If you want to increase the number of sessions, you should focus on increasing the number of sessions.” This is just circular and not useful for driving the outcome you care about.</p><p id="c350" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">So what should you do if you want to isolate the causal drivers of an outcome? The following steps will lead you in the right direciton:</p><ol class=""><li id="525f" class="nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh pn po pp bk">Look for correlations: Rather than predicting outcomes, skip the complexity and look for behaviors that are correlated with subsequent outcomes. <a class="af oi" href="https://mixpanel.com/blog/product-analytics-predict-retention/" rel="noopener ugc nofollow" target="_blank">Mixpanel’s Signal report</a> is designed to help you find these correlations.</li><li id="c780" class="nk nl gu nm b nn pq np nq nr pr nt nu nv ps nx ny nz pt ob oc od pu of og oh pn po pp bk">Form a hypothesis: Among the correlations you find, some may be actionable and some may not. Zero in on one or two correlations that seem actionable (ie, you think you could influence the behavior in question). These are your hypotheses: “I hypothesize that if we increase [behavior x], we will improve [outcome y].”</li><li id="44a8" class="nk nl gu nm b nn pq np nq nr pr nt nu nv ps nx ny nz pt ob oc od pu of og oh pn po pp bk">Test your hypotheses: The gold standard for testing product hypotheses is a well-designed A/B test. An alternative is to use a causal analysis like <a class="af oi" href="https://mixpanel.com/blog/on-measuring-product-impact/" rel="noopener ugc nofollow" target="_blank">Mixpanel’s Impact report</a>.</li></ol><h1 id="f1e9" class="ok ol gu bf om on oo op oq or os ot ou ov ow ox oy oz pa pb pc pd pe pf pg ph bk">Scenario 2: Segmenting users</h1><p id="5eb6" class="pw-post-body-paragraph nk nl gu nm b nn pi np nq nr pj nt nu nv pk nx ny nz pl ob oc od pm of og oh gn bk">In the clustering scenario, you want to understand the different types of users of your product. The idea is usually that you want to categorize users into a set of personas and then see how different outcomes differ from persona to persona to ensure that all your different types of users are well served.</p><p id="0946" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">ML features that purport to solve this use case are typically based on cluster analysis. The idea behind cluster analysis is it will identify distinct groups of users that behave similarly to one another. Clustering features typically require the user to specify a number of clusters to find and then look across all events, or sometimes just the most popular events, to find the requested number of clusters. These features will also typically ask you to provide one or more outcomes so you can see how the clusters differ from one another.</p><p id="43ef" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">There are several problems with doing cluster analysis in this kind of setup. The first problem is that the clustering algorithm is blind to the product and business context of your app. It is scanning simple event counts, and it is therefore missing out on features from user profiles or any kind of complex features. For example, maybe the ratio of two events is what is important rather than the counts. Maybe geographic region is a key part of the clusters. The resulting clustering is likely to be noisy as a result of missing these.</p><p id="9d11" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">Another problem is that you need to guess how many clusters are in the data. The only way to do this is to guess by trial and error until you find something that “looks good”. And this leads us to the final problem: There is no objective way for you to assess whether the resulting clusters are good or even represent anything resembling actual clusters. A clustering algorithm will divide your users into the requested number of clusters even if all of your users just fall along a continuum rather than clustering into distinct behaviors.</p><p id="a9c7" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">All of these problems add up to a clustering analysis that is more often than not partitioning your users into an arbitrary number of clusters based on an arbitrary collection of events. There is no safeguard to ensure that these clusters represent anything real, and whether they differ on the outcomes you select is up to random chance.</p><p id="3012" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk">If you want to segment your users into reusable clusters or personas, there are two alternatives:</p><ol class=""><li id="6471" class="nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh pn po pp bk">High-investment path: To have an enduring set of user personas you can trust, you should start with qualitative user research where you interview users to understand the different modes or use cases your users fall into. This qualitative analysis should then be synthesized into a set of behavioral features that capture the different kinds of groups of users. This set of features can then be used in cluster analysis.</li><li id="56a2" class="nk nl gu nm b nn pq np nq nr pr nt nu nv ps nx ny nz pt ob oc od pu of og oh pn po pp bk">Pragmatic path: For most companies we work with, the methodology above is overkill. Most often what you are looking for is the segments of users that are converting well or not converting well on a particular outcome. For example, what segments of users are most likely to successfully purchase after adding an item to a cart? And what segments of users are least likely to do so? These kinds of questions can be answered most directly in Funnels and Retention. Within Funnels, Mixpanel has a <a class="af oi" href="https://help.mixpanel.com/hc/en-us/articles/360031788492-Find-Interesting-Segments" rel="noopener ugc nofollow" target="_blank">Find Interesting Segments</a> feature that will even look through all the ways to segment your users and surface the ones most and least likely to convert.</li></ol></div></div></div><div class="ab cb pv pw px py" role="separator"><span class="pz by bm qa qb qc"></span><span class="pz by bm qa qb qc"></span><span class="pz by bm qa qb"></span></div><div class="gn go gp gq gr"><div class="ab cb"><div class="ci bh fz ga gb gc"><p id="fa3f" class="pw-post-body-paragraph nk nl gu nm b nn no np nq nr ns nt nu nv nw nx ny nz oa ob oc od oe of og oh gn bk"><em class="oj">Gain insights into how best to convert, engage, and retain your users with Mixpanel’s powerful product analytics. </em><a class="af oi" href="https://mixpanel.com/" rel="noopener ugc nofollow" target="_blank"><em class="oj">Try it free</em></a><em class="oj">.</em></p></div></div></div></div></section></div></div></article></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="qd qe ab ja"><div class="qf ab"><a class="qg ay am ao" rel="noopener follow" href="/tag/product-management?source=post_page-----c7c33335eddc--------------------------------"><div class="qh fj cx qi ge qj qk bf b bg z bk ql">Product Management</div></a></div><div class="qf ab"><a class="qg ay am ao" rel="noopener follow" href="/tag/product-analytics?source=post_page-----c7c33335eddc--------------------------------"><div class="qh fj cx qi ge qj qk bf b bg z bk ql">Product Analytics</div></a></div><div class="qf ab"><a class="qg ay am ao" rel="noopener follow" href="/tag/metrics?source=post_page-----c7c33335eddc--------------------------------"><div class="qh fj cx qi ge qj qk bf b bg z bk ql">Metrics</div></a></div><div class="qf ab"><a class="qg ay am ao" rel="noopener follow" href="/tag/machine-learning?source=post_page-----c7c33335eddc--------------------------------"><div class="qh fj cx qi ge qj qk bf b bg z bk ql">Machine Learning</div></a></div></div></div></div><div class="l"></div><footer class="qm pw qn qo qp ab q qq ik c"><div class="l ae"><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab cp qr"><div class="ab q kv"><div class="qs l"><span class="l qt qu qv e d"><div class="ab q kv kw"><div class="pw-multi-vote-icon fj je kx ky kz"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fmixpanel-s-the-signal%2Fc7c33335eddc&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;user=Mixpanel&amp;userId=d9ce9f6dba3e&amp;source=---footer_actions--c7c33335eddc---------------------clap_footer-----------"><div><div class="bm" aria-hidden="false"><div class="la ao lb lc ld le am lf lg lh kz"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l li lj lk ll lm ln lo"><p class="bf b dv z du"><span class="lp">--</span></p></div></div></span><span class="l h g f qw qx"><div class="ab q kv kw"><div class="pw-multi-vote-icon fj je kx ky kz"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerClapButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fvote%2Fmixpanel-s-the-signal%2Fc7c33335eddc&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;user=Mixpanel&amp;userId=d9ce9f6dba3e&amp;source=---footer_actions--c7c33335eddc---------------------clap_footer-----------"><div><div class="bm" aria-hidden="false"><div class="la ao lb lc ld le am lf lg lh kz"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" aria-label="clap"><path fill-rule="evenodd" d="M11.37.828 12 3.282l.63-2.454zM13.916 3.953l1.523-2.112-1.184-.39zM8.589 1.84l1.522 2.112-.337-2.501zM18.523 18.92c-.86.86-1.75 1.246-2.62 1.33a6 6 0 0 0 .407-.372c2.388-2.389 2.86-4.951 1.399-7.623l-.912-1.603-.79-1.672c-.26-.56-.194-.98.203-1.288a.7.7 0 0 1 .546-.132c.283.046.546.231.728.5l2.363 4.157c.976 1.624 1.141 4.237-1.324 6.702m-10.999-.438L3.37 14.328a.828.828 0 0 1 .585-1.408.83.83 0 0 1 .585.242l2.158 2.157a.365.365 0 0 0 .516-.516l-2.157-2.158-1.449-1.449a.826.826 0 0 1 1.167-1.17l3.438 3.44a.363.363 0 0 0 .516 0 .364.364 0 0 0 0-.516L5.293 9.513l-.97-.97a.826.826 0 0 1 0-1.166.84.84 0 0 1 1.167 0l.97.968 3.437 3.436a.36.36 0 0 0 .517 0 .366.366 0 0 0 0-.516L6.977 7.83a.82.82 0 0 1-.241-.584.82.82 0 0 1 .824-.826c.219 0 .43.087.584.242l5.787 5.787a.366.366 0 0 0 .587-.415l-1.117-2.363c-.26-.56-.194-.98.204-1.289a.7.7 0 0 1 .546-.132c.283.046.545.232.727.501l2.193 3.86c1.302 2.38.883 4.59-1.277 6.75-1.156 1.156-2.602 1.627-4.19 1.367-1.418-.236-2.866-1.033-4.079-2.246M10.75 5.971l2.12 2.12c-.41.502-.465 1.17-.128 1.89l.22.465-3.523-3.523a.8.8 0 0 1-.097-.368c0-.22.086-.428.241-.584a.847.847 0 0 1 1.167 0m7.355 1.705c-.31-.461-.746-.758-1.23-.837a1.44 1.44 0 0 0-1.11.275c-.312.24-.505.543-.59.881a1.74 1.74 0 0 0-.906-.465 1.47 1.47 0 0 0-.82.106l-2.182-2.182a1.56 1.56 0 0 0-2.2 0 1.54 1.54 0 0 0-.396.701 1.56 1.56 0 0 0-2.21-.01 1.55 1.55 0 0 0-.416.753c-.624-.624-1.649-.624-2.237-.037a1.557 1.557 0 0 0 0 2.2c-.239.1-.501.238-.715.453a1.56 1.56 0 0 0 0 2.2l.516.515a1.556 1.556 0 0 0-.753 2.615L7.01 19c1.32 1.319 2.909 2.189 4.475 2.449q.482.08.971.08c.85 0 1.653-.198 2.393-.579.231.033.46.054.686.054 1.266 0 2.457-.52 3.505-1.567 2.763-2.763 2.552-5.734 1.439-7.586z" clip-rule="evenodd"></path></svg></div></div></div></a></span></div><div class="pw-multi-vote-count l li lj lk ll lm ln lo"><p class="bf b dv z du"><span class="lp">--</span></p></div></div></span></div><div class="bq ab"><div><div class="bm" aria-hidden="false"><button class="ao la lq lr ab q fk ls lt" aria-label="responses"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" class="lu"><path d="M18.006 16.803c1.533-1.456 2.234-3.325 2.234-5.321C20.24 7.357 16.709 4 12.191 4S4 7.357 4 11.482c0 4.126 3.674 7.482 8.191 7.482.817 0 1.622-.111 2.393-.327.231.2.48.391.744.559 1.06.693 2.203 1.044 3.399 1.044.224-.008.4-.112.486-.287a.49.49 0 0 0-.042-.518c-.495-.67-.845-1.364-1.04-2.057a4 4 0 0 1-.125-.598zm-3.122 1.055-.067-.223-.315.096a8 8 0 0 1-2.311.338c-4.023 0-7.292-2.955-7.292-6.587 0-3.633 3.269-6.588 7.292-6.588 4.014 0 7.112 2.958 7.112 6.593 0 1.794-.608 3.469-2.027 4.72l-.195.168v.255c0 .056 0 .151.016.295.025.231.081.478.154.733.154.558.398 1.117.722 1.659a5.3 5.3 0 0 1-2.165-.845c-.276-.176-.714-.383-.941-.59z"></path></svg></button></div></div></div></div><div class="ab q"><div class="qc l ix"><div><div class="bm" aria-hidden="false"><span><a class="af ag ah ai aj ak al am an ao ap aq ar as at" data-testid="footerBookmarkButton" rel="noopener follow" href="/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fbookmark%2Fp%2Fc7c33335eddc&amp;operation=register&amp;redirect=https%3A%2F%2Fmedium.com%2Fmixpanel-s-the-signal%2Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc&amp;source=---footer_actions--c7c33335eddc---------------------bookmark_footer-----------"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" fill="none" viewBox="0 0 25 25" class="du lw" aria-label="Add to list bookmark button"><path fill="currentColor" d="M18 2.5a.5.5 0 0 1 1 0V5h2.5a.5.5 0 0 1 0 1H19v2.5a.5.5 0 1 1-1 0V6h-2.5a.5.5 0 0 1 0-1H18zM7 7a1 1 0 0 1 1-1h3.5a.5.5 0 0 0 0-1H8a2 2 0 0 0-2 2v14a.5.5 0 0 0 .805.396L12.5 17l5.695 4.396A.5.5 0 0 0 19 21v-8.5a.5.5 0 0 0-1 0v7.485l-5.195-4.012a.5.5 0 0 0-.61 0L7 19.985z"></path></svg></a></span></div></div></div><div class="qc l ix"><div class="bm" aria-hidden="false" aria-describedby="postFooterSocialMenu" aria-labelledby="postFooterSocialMenu"><div><div class="bm" aria-hidden="false"><button aria-controls="postFooterSocialMenu" aria-expanded="false" aria-label="Share Post" data-testid="footerSocialShareButton" class="af fk ah ai aj ak al me an ao ap ex mf mg lt mh"><svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path fill="currentColor" fill-rule="evenodd" d="M15.218 4.931a.4.4 0 0 1-.118.132l.012.006a.45.45 0 0 1-.292.074.5.5 0 0 1-.3-.13l-2.02-2.02v7.07c0 .28-.23.5-.5.5s-.5-.22-.5-.5v-7.04l-2 2a.45.45 0 0 1-.57.04h-.02a.4.4 0 0 1-.16-.3.4.4 0 0 1 .1-.32l2.8-2.8a.5.5 0 0 1 .7 0l2.8 2.79a.42.42 0 0 1 .068.498m-.106.138.008.004v-.01zM16 7.063h1.5a2 2 0 0 1 2 2v10a2 2 0 0 1-2 2h-11c-1.1 0-2-.9-2-2v-10a2 2 0 0 1 2-2H8a.5.5 0 0 1 .35.15.5.5 0 0 1 .15.35.5.5 0 0 1-.15.35.5.5 0 0 1-.35.15H6.4c-.5 0-.9.4-.9.9v10.2a.9.9 0 0 0 .9.9h11.2c.5 0 .9-.4.9-.9v-10.2c0-.5-.4-.9-.9-.9H16a.5.5 0 0 1 0-1" clip-rule="evenodd"></path></svg></button></div></div></div></div></div></div></div></div></div></footer><div class="qy qz ra rb rc l"><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="rd bh r re"></div><div class="rf l"><div class="ab rg rh ri iz iy"><div class="rj rk rl rm rn ro rp rq rr rs ab cp"><div class="h k"><a href="https://medium.com/mixpanel-s-the-signal?source=post_page---post_publication_info--c7c33335eddc--------------------------------" rel="noopener follow"><div class="fj ab"><img alt="The Mixpanel Blog" class="rt ib ic cx" src="https://miro.medium.com/v2/resize:fill:96:96/1*OcnETLUeKYKHAy_jJw3EnQ@2x.png" width="48" height="48" loading="lazy"/><div class="rt l ic ib fs n fr ru"></div></div></a></div><div class="j i d"><a href="https://medium.com/mixpanel-s-the-signal?source=post_page---post_publication_info--c7c33335eddc--------------------------------" rel="noopener follow"><div class="fj ab"><img alt="The Mixpanel Blog" class="rt rw rv cx" src="https://miro.medium.com/v2/resize:fill:128:128/1*OcnETLUeKYKHAy_jJw3EnQ@2x.png" width="64" height="64" loading="lazy"/><div class="rt l rv rw fs n fr ru"></div></div></a></div><div class="j i d rx ix"><div class="ab"></div></div></div><div class="ab co ry"><div class="rz sa sb sc sd l"><a class="af ag ah aj ak al am an ao ap aq ar as at ab q" href="https://medium.com/mixpanel-s-the-signal?source=post_page---post_publication_info--c7c33335eddc--------------------------------" rel="noopener follow"><h2 class="pw-author-name bf sf sg sh si sj sk sl nv sm sn nz so sp od sq sr bk"><span class="gn se">Published in <!-- -->The Mixpanel Blog</span></h2></a><div class="qf ab ia"><div class="l ix"><span class="pw-follower-count bf b bg z du"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/mixpanel-s-the-signal/followers?source=post_page---post_publication_info--c7c33335eddc--------------------------------">5.6K Followers</a></span></div><div class="bf b bg z du ab jd"><span class="ir l" aria-hidden="true"><span class="bf b bg z du">·</span></span><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/mixpanel-s-the-signal/why-i-joined-mixpanel-4e6b038e637c?source=post_page---post_publication_info--c7c33335eddc--------------------------------">Last published <span>May 3, 2022</span></a></div></div><div class="ss l"><p class="bf b bg z bk"><span class="gn">The latest from Mixpanel and the world of data-informed building</span></p></div></div></div><div class="h k"><div class="ab"></div></div></div></div><div class="ab rg rh ri iz iy"><div class="rj rk rl rm rn ro rp rq rr rs ab cp"><div class="h k"><a tabindex="0" rel="noopener follow" href="/@Mixpanel?source=post_page---post_author_info--c7c33335eddc--------------------------------"><div class="l fj"><img alt="Mixpanel" class="l fd by ic ib cx" src="https://miro.medium.com/v2/resize:fill:96:96/1*ILXnVZy4YDjFCXVIwi2Zzw.png" width="48" height="48" loading="lazy"/><div class="fr by l ic ib fs n ay ru"></div></div></a></div><div class="j i d"><a tabindex="0" rel="noopener follow" href="/@Mixpanel?source=post_page---post_author_info--c7c33335eddc--------------------------------"><div class="l fj"><img alt="Mixpanel" class="l fd by rv rw cx" src="https://miro.medium.com/v2/resize:fill:128:128/1*ILXnVZy4YDjFCXVIwi2Zzw.png" width="64" height="64" loading="lazy"/><div class="fr by l rv rw fs n ay ru"></div></div></a></div><div class="j i d rx ix"><div class="ab"><span><button class="bf b bg z st qh su sv sw sx sy ev ew sz ta tb fa fb fc fd bm fe ff">Follow</button></span></div></div></div><div class="ab co ry"><div class="rz sa sb sc sd l"><a class="af ag ah aj ak al am an ao ap aq ar as at ab q" rel="noopener follow" href="/@Mixpanel?source=post_page---post_author_info--c7c33335eddc--------------------------------"><h2 class="pw-author-name bf sf sg sh si sj sk sl nv sm sn nz so sp od sq sr bk"><span class="gn se">Written by <!-- -->Mixpanel</span></h2></a><div class="qf ab ia"><div class="l ix"><span class="pw-follower-count bf b bg z du"><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/@Mixpanel/followers?source=post_page---post_author_info--c7c33335eddc--------------------------------">4K Followers</a></span></div><div class="bf b bg z du ab jd"><span class="ir l" aria-hidden="true"><span class="bf b bg z du">·</span></span><a class="af ag ah ai aj ak al am an ao ap aq ar iq" rel="noopener follow" href="/@Mixpanel/following?source=post_page---post_author_info--c7c33335eddc--------------------------------">682 Following</a></div></div><div class="ss l"><p class="bf b bg z bk"><span class="gn">Helping the world learn from its data with event analytics everyone can use. Let&#x27;s build.</span></p></div></div></div><div class="h k"><div class="ab"><span><button class="bf b bg z st qh su sv sw sx sy ev ew sz ta tb fa fb fc fd bm fe ff">Follow</button></span></div></div></div></div></div></div><div class="tc l"><div class="rd bh r td te tf tg th"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ab q cp"><h2 class="bf sf on op oq or ot ou ov ox oy oz pb pc pd pf pg bk">No responses yet</h2><div class="ab ti"><div><div class="bm" aria-hidden="false"><a class="tj tk" href="https://policy.medium.com/medium-rules-30e5502c4eb4?source=post_page---post_responses--c7c33335eddc--------------------------------" rel="noopener follow" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" width="25" height="25" viewBox="0 0 25 25"><path fill-rule="evenodd" d="M11.987 5.036a.754.754 0 0 1 .914-.01c.972.721 1.767 1.218 2.6 1.543.828.322 1.719.485 2.887.505a.755.755 0 0 1 .741.757c-.018 3.623-.43 6.256-1.449 8.21-1.034 1.984-2.662 3.209-4.966 4.083a.75.75 0 0 1-.537-.003c-2.243-.874-3.858-2.095-4.897-4.074-1.024-1.951-1.457-4.583-1.476-8.216a.755.755 0 0 1 .741-.757c1.195-.02 2.1-.182 2.923-.503.827-.322 1.6-.815 2.519-1.535m.468.903c-.897.69-1.717 1.21-2.623 1.564-.898.35-1.856.527-3.026.565.037 3.45.469 5.817 1.36 7.515.884 1.684 2.25 2.762 4.284 3.571 2.092-.81 3.465-1.89 4.344-3.575.886-1.698 1.299-4.065 1.334-7.512-1.149-.039-2.091-.217-2.99-.567-.906-.353-1.745-.873-2.683-1.561m-.009 9.155a2.672 2.672 0 1 0 0-5.344 2.672 2.672 0 0 0 0 5.344m0 1a3.672 3.672 0 1 0 0-7.344 3.672 3.672 0 0 0 0 7.344m-1.813-3.777.525-.526.916.917 1.623-1.625.526.526-2.149 2.152z" clip-rule="evenodd"></path></svg></a></div></div></div></div></div></div></div><div class="tl tm tn to tp l bx"><div class="h k j"><div class="rd bh tq tr"></div><div class="ab cb"><div class="ci bh fz ga gb gc"><div class="ts ab kv ja"><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://help.medium.com/hc/en-us?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Help</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://medium.statuspage.io/?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Status</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/about?autoplay=1&amp;source=post_page-----c7c33335eddc--------------------------------"><p class="bf b dv z du">About</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/jobs-at-medium/work-at-medium-959d1a85284e?source=post_page-----c7c33335eddc--------------------------------"><p class="bf b dv z du">Careers</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="pressinquiries@medium.com?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Press</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://blog.medium.com/?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Blog</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-privacy-policy-f03bf92035c9?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Privacy</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Terms</p></a></div><div class="tt tu l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" href="https://speechify.com/medium?source=post_page-----c7c33335eddc--------------------------------" rel="noopener follow"><p class="bf b dv z du">Text to speech</p></a></div><div class="tt l"><a class="af ag ah ai aj ak al am an ao ap aq ar as at" rel="noopener follow" href="/business?source=post_page-----c7c33335eddc--------------------------------"><p class="bf b dv z du">Teams</p></a></div></div></div></div></div></div></div></div></div></div><script>window.__BUILD_ID__="main-20241126-181518-0cb59a020f"</script><script>window.__GRAPHQL_URI__ = "https://medium.com/_/graphql"</script><script>window.__PRELOADED_STATE__ = {"algolia":{"queries":{}},"cache":{"experimentGroupSet":true,"reason":"","group":"enabled","tags":["group-edgeCachePosts","post-c7c33335eddc","user-d9ce9f6dba3e","collection-42f014f901ad"],"serverVariantState":"44136fa355b3678a1146ad16f7e8649e94fb4fc21fe77e8310c060f61caaff8a","middlewareEnabled":true,"cacheStatus":"DYNAMIC","shouldUseCache":true,"vary":[],"lohpSummerUpsellEnabled":false,"publicationHierarchyEnabledWeb":false,"postBottomResponsesEnabled":false},"client":{"hydrated":false,"isUs":false,"isNativeMedium":false,"isSafariMobile":false,"isSafari":false,"isFirefox":false,"routingEntity":{"type":"DEFAULT","explicit":false},"viewerIsBot":false},"debug":{"requestId":"6c603893-0c7e-424d-9226-93e5a2bf8202","hybridDevServices":[],"originalSpanCarrier":{"traceparent":"00-03089aaa3d10e83d386abe5f3e4212f4-50a502f6ef798919-01"}},"multiVote":{"clapsPerPost":{}},"navigation":{"branch":{"show":null,"hasRendered":null,"blockedByCTA":false},"hideGoogleOneTap":false,"hasRenderedAlternateUserBanner":null,"currentLocation":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal\u002Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc","host":"medium.com","hostname":"medium.com","referrer":"","hasSetReferrer":false,"susiModal":{"step":null,"operation":"register"},"postRead":false,"partnerProgram":{"selectedCountryCode":null},"queryString":"","currentHash":""},"config":{"nodeEnv":"production","version":"main-20241126-181518-0cb59a020f","target":"production","productName":"Medium","publicUrl":"https:\u002F\u002Fcdn-client.medium.com\u002Flite","authDomain":"medium.com","authGoogleClientId":"216296035834-k1k6qe060s2tp2a2jam4ljdcms00sttg.apps.googleusercontent.com","favicon":"production","glyphUrl":"https:\u002F\u002Fglyph.medium.com","branchKey":"key_live_ofxXr2qTrrU9NqURK8ZwEhknBxiI6KBm","algolia":{"appId":"MQ57UUUQZ2","apiKeySearch":"394474ced050e3911ae2249ecc774921","indexPrefix":"medium_","host":"-dsn.algolia.net"},"recaptchaKey":"6Lfc37IUAAAAAKGGtC6rLS13R1Hrw_BqADfS1LRk","recaptcha3Key":"6Lf8R9wUAAAAABMI_85Wb8melS7Zj6ziuf99Yot5","recaptchaEnterpriseKeyId":"6Le-uGgpAAAAAPprRaokM8AKthQ9KNGdoxaGUvVp","datadog":{"applicationId":"6702d87d-a7e0-42fe-bbcb-95b469547ea0","clientToken":"pub853ea8d17ad6821d9f8f11861d23dfed","rumToken":"pubf9cc52896502b9413b68ba36fc0c7162","context":{"deployment":{"target":"production","tag":"main-20241126-181518-0cb59a020f","commit":"0cb59a020f4453d0900f671f1a6576feecc55e74"}},"datacenter":"us"},"googleAnalyticsCode":"G-7JY7T788PK","googlePay":{"apiVersion":"2","apiVersionMinor":"0","merchantId":"BCR2DN6TV7EMTGBM","merchantName":"Medium","instanceMerchantId":"13685562959212738550"},"applePay":{"version":3},"signInWallCustomDomainCollectionIds":["3a8144eabfe3","336d898217ee","61061eb0c96b","138adf9c44c","819cc2aaeee0"],"mediumMastodonDomainName":"me.dm","mediumOwnedAndOperatedCollectionIds":["8a9336e5bb4","b7e45b22fec3","193b68bd4fba","8d6b8a439e32","54c98c43354d","3f6ecf56618","d944778ce714","92d2092dc598","ae2a65f35510","1285ba81cada","544c7006046e","fc8964313712","40187e704f1c","88d9857e584e","7b6769f2748b","bcc38c8f6edf","cef6983b292","cb8577c9149e","444d13b52878","713d7dbc99b0","ef8e90590e66","191186aaafa0","55760f21cdc5","9dc80918cc93","bdc4052bbdba","8ccfed20cbb2"],"tierOneDomains":["medium.com","thebolditalic.com","arcdigital.media","towardsdatascience.com","uxdesign.cc","codeburst.io","psiloveyou.xyz","writingcooperative.com","entrepreneurshandbook.co","prototypr.io","betterhumans.coach.me","theascent.pub"],"topicsToFollow":["d61cf867d93f","8a146bc21b28","1eca0103fff3","4d562ee63426","aef1078a3ef5","e15e46793f8d","6158eb913466","55f1c20aba7a","3d18b94f6858","4861fee224fd","63c6f1f93ee","1d98b3a9a871","decb52b64abf","ae5d4995e225","830cded25262"],"topicToTagMappings":{"accessibility":"accessibility","addiction":"addiction","android-development":"android-development","art":"art","artificial-intelligence":"artificial-intelligence","astrology":"astrology","basic-income":"basic-income","beauty":"beauty","biotech":"biotech","blockchain":"blockchain","books":"books","business":"business","cannabis":"cannabis","cities":"cities","climate-change":"climate-change","comics":"comics","coronavirus":"coronavirus","creativity":"creativity","cryptocurrency":"cryptocurrency","culture":"culture","cybersecurity":"cybersecurity","data-science":"data-science","design":"design","digital-life":"digital-life","disability":"disability","economy":"economy","education":"education","equality":"equality","family":"family","feminism":"feminism","fiction":"fiction","film":"film","fitness":"fitness","food":"food","freelancing":"freelancing","future":"future","gadgets":"gadgets","gaming":"gaming","gun-control":"gun-control","health":"health","history":"history","humor":"humor","immigration":"immigration","ios-development":"ios-development","javascript":"javascript","justice":"justice","language":"language","leadership":"leadership","lgbtqia":"lgbtqia","lifestyle":"lifestyle","machine-learning":"machine-learning","makers":"makers","marketing":"marketing","math":"math","media":"media","mental-health":"mental-health","mindfulness":"mindfulness","money":"money","music":"music","neuroscience":"neuroscience","nonfiction":"nonfiction","outdoors":"outdoors","parenting":"parenting","pets":"pets","philosophy":"philosophy","photography":"photography","podcasts":"podcast","poetry":"poetry","politics":"politics","privacy":"privacy","product-management":"product-management","productivity":"productivity","programming":"programming","psychedelics":"psychedelics","psychology":"psychology","race":"race","relationships":"relationships","religion":"religion","remote-work":"remote-work","san-francisco":"san-francisco","science":"science","self":"self","self-driving-cars":"self-driving-cars","sexuality":"sexuality","social-media":"social-media","society":"society","software-engineering":"software-engineering","space":"space","spirituality":"spirituality","sports":"sports","startups":"startup","style":"style","technology":"technology","transportation":"transportation","travel":"travel","true-crime":"true-crime","tv":"tv","ux":"ux","venture-capital":"venture-capital","visual-design":"visual-design","work":"work","world":"world","writing":"writing"},"defaultImages":{"avatar":{"imageId":"1*dmbNkD5D-u45r44go_cf0g.png","height":150,"width":150},"orgLogo":{"imageId":"7*V1_7XP4snlmqrc_0Njontw.png","height":110,"width":500},"postLogo":{"imageId":"bd978bb536350a710e8efb012513429cabdc4c28700604261aeda246d0f980b7","height":810,"width":1440},"postPreviewImage":{"imageId":"1*hn4v1tCaJy7cWMyb0bpNpQ.png","height":386,"width":579}},"collectionStructuredData":{"8d6b8a439e32":{"name":"Elemental","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F980\u002F1*9ygdqoKprhwuTVKUM0DLPA@2x.png","width":980,"height":159}}},"3f6ecf56618":{"name":"Forge","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F596\u002F1*uULpIlImcO5TDuBZ6lm7Lg@2x.png","width":596,"height":183}}},"ae2a65f35510":{"name":"GEN","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F264\u002F1*RdVZMdvfV3YiZTw6mX7yWA.png","width":264,"height":140}}},"88d9857e584e":{"name":"LEVEL","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*JqYMhNX6KNNb2UlqGqO2WQ.png","width":540,"height":108}}},"7b6769f2748b":{"name":"Marker","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fcdn-images-1.medium.com\u002Fmax\u002F383\u002F1*haCUs0wF6TgOOvfoY-jEoQ@2x.png","width":383,"height":92}}},"444d13b52878":{"name":"OneZero","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*cw32fIqCbRWzwJaoQw6BUg.png","width":540,"height":123}}},"8ccfed20cbb2":{"name":"Zora","data":{"@type":"NewsMediaOrganization","ethicsPolicy":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Farticles\u002F360043290473","logo":{"@type":"ImageObject","url":"https:\u002F\u002Fmiro.medium.com\u002Fmax\u002F540\u002F1*tZUQqRcCCZDXjjiZ4bDvgQ.png","width":540,"height":106}}}},"embeddedPostIds":{"coronavirus":"cd3010f9d81f"},"sharedCdcMessaging":{"COVID_APPLICABLE_TAG_SLUGS":[],"COVID_APPLICABLE_TOPIC_NAMES":[],"COVID_APPLICABLE_TOPIC_NAMES_FOR_TOPIC_PAGE":[],"COVID_MESSAGES":{"tierA":{"text":"For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":66,"end":73,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"tierB":{"text":"Anyone can publish on Medium per our Policies, but we don’t fact-check every story. For more info about the coronavirus, see cdc.gov.","markups":[{"start":37,"end":45,"href":"https:\u002F\u002Fhelp.medium.com\u002Fhc\u002Fen-us\u002Fcategories\u002F201931128-Policies-Safety"},{"start":125,"end":132,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"paywall":{"text":"This article has been made free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":56,"end":70,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":138,"end":145,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]},"unbound":{"text":"This article is free for everyone, thanks to Medium Members. For more information on the novel coronavirus and Covid-19, visit cdc.gov.","markups":[{"start":45,"end":59,"href":"https:\u002F\u002Fmedium.com\u002Fmembership"},{"start":127,"end":134,"href":"https:\u002F\u002Fwww.cdc.gov\u002Fcoronavirus\u002F2019-nCoV"}]}},"COVID_BANNER_POST_ID_OVERRIDE_WHITELIST":["3b31a67bff4a"]},"sharedVoteMessaging":{"TAGS":["politics","election-2020","government","us-politics","election","2020-presidential-race","trump","donald-trump","democrats","republicans","congress","republican-party","democratic-party","biden","joe-biden","maga"],"TOPICS":["politics","election"],"MESSAGE":{"text":"Find out more about the U.S. election results here.","markups":[{"start":46,"end":50,"href":"https:\u002F\u002Fcookpolitical.com\u002F2020-national-popular-vote-tracker"}]},"EXCLUDE_POSTS":["397ef29e3ca5"]},"embedPostRules":[],"recircOptions":{"v1":{"limit":3},"v2":{"limit":8}},"braintreeClientKey":"production_zjkj96jm_m56f8fqpf7ngnrd4","braintree":{"enabled":true,"merchantId":"m56f8fqpf7ngnrd4","merchantAccountId":{"usd":"AMediumCorporation_instant","eur":"amediumcorporation_EUR","cad":"amediumcorporation_CAD"},"publicKey":"ds2nn34bg2z7j5gd","braintreeEnvironment":"production","dashboardUrl":"https:\u002F\u002Fwww.braintreegateway.com\u002Fmerchants","gracePeriodDurationInDays":14,"mediumMembershipPlanId":{"monthly":"ce105f8c57a3","monthlyV2":"e8a5e126-792b-4ee6-8fba-d574c1b02fc5","monthlyWithTrial":"d5ee3dbe3db8","monthlyPremium":"fa741a9b47a2","yearly":"a40ad4a43185","yearlyV2":"3815d7d6-b8ca-4224-9b8c-182f9047866e","yearlyStaff":"d74fb811198a","yearlyWithTrial":"b3bc7350e5c7","yearlyPremium":"e21bd2c12166","monthlyOneYearFree":"e6c0637a-2bad-4171-ab4f-3c268633d83c","monthly25PercentOffFirstYear":"235ecc62-0cdb-49ae-9378-726cd21c504b","monthly20PercentOffFirstYear":"ba518864-9c13-4a99-91ca-411bf0cac756","monthly15PercentOffFirstYear":"594c029b-9f89-43d5-88f8-8173af4e070e","monthly10PercentOffFirstYear":"c6c7bc9a-40f2-4b51-8126-e28511d5bdb0","monthlyForStudents":"629ebe51-da7d-41fd-8293-34cd2f2030a8","yearlyOneYearFree":"78ba7be9-0d9f-4ece-aa3e-b54b826f2bf1","yearly25PercentOffFirstYear":"2dbb010d-bb8f-4eeb-ad5c-a08509f42d34","yearly20PercentOffFirstYear":"47565488-435b-47f8-bf93-40d5fbe0ebc8","yearly15PercentOffFirstYear":"8259809b-0881-47d9-acf7-6c001c7f720f","yearly10PercentOffFirstYear":"9dd694fb-96e1-472c-8d9e-3c868d5c1506","yearlyForStudents":"e29345ef-ab1c-4234-95c5-70e50fe6bc23","monthlyCad":"p52orjkaceei","yearlyCad":"h4q9g2up9ktt"},"braintreeDiscountId":{"oneMonthFree":"MONTHS_FREE_01","threeMonthsFree":"MONTHS_FREE_03","sixMonthsFree":"MONTHS_FREE_06","fiftyPercentOffOneYear":"FIFTY_PERCENT_OFF_ONE_YEAR"},"3DSecureVersion":"2","defaultCurrency":"usd","providerPlanIdCurrency":{"4ycw":"usd","rz3b":"usd","3kqm":"usd","jzw6":"usd","c2q2":"usd","nnsw":"usd","q8qw":"usd","d9y6":"usd","fx7w":"cad","nwf2":"cad"}},"paypalClientId":"AXj1G4fotC2GE8KzWX9mSxCH1wmPE3nJglf4Z2ig_amnhvlMVX87otaq58niAg9iuLktVNF_1WCMnN7v","paypal":{"host":"https:\u002F\u002Fapi.paypal.com:443","clientMode":"production","serverMode":"live","webhookId":"4G466076A0294510S","monthlyPlan":{"planId":"P-9WR0658853113943TMU5FDQA","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlan":{"planId":"P-7N8963881P8875835MU5JOPQ","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oneYearGift":{"name":"Medium Membership (1 Year, Digital Gift Code)","description":"Unlimited access to the best and brightest stories on Medium. Gift codes can be redeemed at medium.com\u002Fredeem.","price":"50.00","currency":"USD","sku":"membership-gift-1-yr"},"oldMonthlyPlan":{"planId":"P-96U02458LM656772MJZUVH2Y","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlan":{"planId":"P-59P80963JF186412JJZU3SMI","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"monthlyPlanWithTrial":{"planId":"P-66C21969LR178604GJPVKUKY","name":"Medium Membership (Monthly) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"yearlyPlanWithTrial":{"planId":"P-6XW32684EX226940VKCT2MFA","name":"Medium Membership (Annual) with setup fee","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"oldMonthlyPlanNoSetupFee":{"planId":"P-4N046520HR188054PCJC7LJI","name":"Medium Membership (Monthly)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed monthly."},"oldYearlyPlanNoSetupFee":{"planId":"P-7A4913502Y5181304CJEJMXQ","name":"Medium Membership (Annual)","description":"Unlimited access to the best and brightest stories on Medium. Membership billed annually."},"sdkUrl":"https:\u002F\u002Fwww.paypal.com\u002Fsdk\u002Fjs"},"stripePublishableKey":"pk_live_7FReX44VnNIInZwrIIx6ghjl","log":{"json":true,"level":"info"},"imageUploadMaxSizeMb":25,"staffPicks":{"title":"Staff Picks","catalogId":"c7bc6e1ee00f"}},"session":{"xsrf":""}}</script><script>window.__APOLLO_STATE__ = {"ROOT_QUERY":{"__typename":"Query","viewer":null,"collectionByDomainOrSlug({\"domainOrSlug\":\"mixpanel-s-the-signal\"})":{"__ref":"Collection:42f014f901ad"},"postResult({\"id\":\"c7c33335eddc\"})":{"__ref":"Post:c7c33335eddc"}},"ImageMetadata:":{"__typename":"ImageMetadata","id":""},"Collection:42f014f901ad":{"__typename":"Collection","id":"42f014f901ad","favicon":{"__ref":"ImageMetadata:"},"customStyleSheet":{"__ref":"CustomStyleSheet:7b5b29fa44b"},"colorPalette":{"__typename":"ColorPalette","highlightSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FFFFECFF","point":0},{"__typename":"ColorPoint","color":"#FFFFE9FF","point":0.1},{"__typename":"ColorPoint","color":"#FFFFE6FF","point":0.2},{"__typename":"ColorPoint","color":"#FFFFE3FF","point":0.3},{"__typename":"ColorPoint","color":"#FFFFE0FF","point":0.4},{"__typename":"ColorPoint","color":"#FFFFDDFF","point":0.5},{"__typename":"ColorPoint","color":"#FFFEDAFF","point":0.6},{"__typename":"ColorPoint","color":"#FFFED6FF","point":0.7},{"__typename":"ColorPoint","color":"#FFFED3FF","point":0.8},{"__typename":"ColorPoint","color":"#FFFED0FF","point":0.9},{"__typename":"ColorPoint","color":"#FFFECDFF","point":1}]},"defaultBackgroundSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FFA56DB3","point":0},{"__typename":"ColorPoint","color":"#FF9966A5","point":0.1},{"__typename":"ColorPoint","color":"#FF8C5F97","point":0.2},{"__typename":"ColorPoint","color":"#FF805889","point":0.3},{"__typename":"ColorPoint","color":"#FF73507B","point":0.4},{"__typename":"ColorPoint","color":"#FF66486D","point":0.5},{"__typename":"ColorPoint","color":"#FF59405E","point":0.6},{"__typename":"ColorPoint","color":"#FF4B3750","point":0.7},{"__typename":"ColorPoint","color":"#FF3D2D41","point":0.8},{"__typename":"ColorPoint","color":"#FF2F2231","point":0.9},{"__typename":"ColorPoint","color":"#FF1F1721","point":1}]},"tintBackgroundSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FF90599E","colorPoints":[{"__typename":"ColorPoint","color":"#FF90599E","point":0},{"__typename":"ColorPoint","color":"#FF9F6BAB","point":0.1},{"__typename":"ColorPoint","color":"#FFAC7DB7","point":0.2},{"__typename":"ColorPoint","color":"#FFB98EC3","point":0.3},{"__typename":"ColorPoint","color":"#FFC69ECE","point":0.4},{"__typename":"ColorPoint","color":"#FFD2AED8","point":0.5},{"__typename":"ColorPoint","color":"#FFDEBEE3","point":0.6},{"__typename":"ColorPoint","color":"#FFE9CDED","point":0.7},{"__typename":"ColorPoint","color":"#FFF4DCF6","point":0.8},{"__typename":"ColorPoint","color":"#FFFFEBFF","point":0.9},{"__typename":"ColorPoint","color":"#FFFFFAFF","point":1}]}},"domain":null,"slug":"mixpanel-s-the-signal","googleAnalyticsId":null,"editors":[{"__typename":"CollectionMastheadUserItem","user":{"__ref":"User:d9ce9f6dba3e"}},{"__typename":"CollectionMastheadUserItem","user":{"__ref":"User:374831ae1ce4"}}],"name":"The Mixpanel Blog","avatar":{"__ref":"ImageMetadata:1*OcnETLUeKYKHAy_jJw3EnQ@2x.png"},"description":"The latest from Mixpanel and the world of data-informed building","subscriberCount":5603,"latestPostsConnection({\"paging\":{\"limit\":1}})":{"__typename":"PostConnection","posts":[{"__ref":"Post:4e6b038e637c"}]},"viewerEdge":{"__ref":"CollectionViewerEdge:collectionId:42f014f901ad-viewerId:lo_c6bc865b090d"},"twitterUsername":"mixpanel","facebookPageId":null,"logo":{"__ref":"ImageMetadata:1*4xIuKpG9U_m3zLX76_6lyA.png"}},"CustomStyleSheet:7b5b29fa44b":{"__typename":"CustomStyleSheet","id":"7b5b29fa44b","global":{"__typename":"GlobalStyles","colorPalette":{"__typename":"StyleSheetColorPalette","primary":{"__typename":"ColorValue","colorPalette":{"__typename":"ColorPalette","highlightSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FFFFECFF","point":0},{"__typename":"ColorPoint","color":"#FFFFE9FF","point":0.1},{"__typename":"ColorPoint","color":"#FFFFE6FF","point":0.2},{"__typename":"ColorPoint","color":"#FFFFE3FF","point":0.3},{"__typename":"ColorPoint","color":"#FFFFE0FF","point":0.4},{"__typename":"ColorPoint","color":"#FFFFDDFF","point":0.5},{"__typename":"ColorPoint","color":"#FFFEDAFF","point":0.6},{"__typename":"ColorPoint","color":"#FFFED6FF","point":0.7},{"__typename":"ColorPoint","color":"#FFFED3FF","point":0.8},{"__typename":"ColorPoint","color":"#FFFED0FF","point":0.9},{"__typename":"ColorPoint","color":"#FFFECDFF","point":1}]},"defaultBackgroundSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FFFFFFFF","colorPoints":[{"__typename":"ColorPoint","color":"#FFA56DB3","point":0},{"__typename":"ColorPoint","color":"#FF9966A5","point":0.1},{"__typename":"ColorPoint","color":"#FF8C5F97","point":0.2},{"__typename":"ColorPoint","color":"#FF805889","point":0.3},{"__typename":"ColorPoint","color":"#FF73507B","point":0.4},{"__typename":"ColorPoint","color":"#FF66486D","point":0.5},{"__typename":"ColorPoint","color":"#FF59405E","point":0.6},{"__typename":"ColorPoint","color":"#FF4B3750","point":0.7},{"__typename":"ColorPoint","color":"#FF3D2D41","point":0.8},{"__typename":"ColorPoint","color":"#FF2F2231","point":0.9},{"__typename":"ColorPoint","color":"#FF1F1721","point":1}]},"tintBackgroundSpectrum":{"__typename":"ColorSpectrum","backgroundColor":"#FF90599E","colorPoints":[{"__typename":"ColorPoint","color":"#FF90599E","point":0},{"__typename":"ColorPoint","color":"#FF9F6BAB","point":0.1},{"__typename":"ColorPoint","color":"#FFAC7DB7","point":0.2},{"__typename":"ColorPoint","color":"#FFB98EC3","point":0.3},{"__typename":"ColorPoint","color":"#FFC69ECE","point":0.4},{"__typename":"ColorPoint","color":"#FFD2AED8","point":0.5},{"__typename":"ColorPoint","color":"#FFDEBEE3","point":0.6},{"__typename":"ColorPoint","color":"#FFE9CDED","point":0.7},{"__typename":"ColorPoint","color":"#FFF4DCF6","point":0.8},{"__typename":"ColorPoint","color":"#FFFFEBFF","point":0.9},{"__typename":"ColorPoint","color":"#FFFFFAFF","point":1}]}}},"background":null},"fonts":{"__typename":"StyleSheetFonts","font1":{"__typename":"StyleSheetFont","name":"SANS_SERIF_1"},"font2":{"__typename":"StyleSheetFont","name":"SANS_SERIF_1"},"font3":{"__typename":"StyleSheetFont","name":"SERIF_2"}}},"header":{"__typename":"HeaderStyles","backgroundImage":null}},"User:d9ce9f6dba3e":{"__typename":"User","id":"d9ce9f6dba3e","name":"Mixpanel","username":"Mixpanel","newsletterV3":{"__ref":"NewsletterV3:b20135c27103"},"linkedAccounts":{"__ref":"LinkedAccounts:d9ce9f6dba3e"},"isSuspended":false,"imageId":"1*ILXnVZy4YDjFCXVIwi2Zzw.png","mediumMemberAt":0,"verifications":{"__typename":"VerifiedInfo","isBookAuthor":false},"socialStats":{"__typename":"SocialStats","followerCount":4075,"followingCount":676,"collectionFollowingCount":6},"customDomainState":null,"hasSubdomain":false,"bio":"Helping the world learn from its data with event analytics everyone can use. Let's build.","isPartnerProgramEnrolled":false,"viewerEdge":{"__ref":"UserViewerEdge:userId:d9ce9f6dba3e-viewerId:lo_c6bc865b090d"},"viewerIsUser":false,"postSubscribeMembershipUpsellShownAt":0,"membership":null,"allowNotes":true,"twitterScreenName":"mixpanel"},"User:374831ae1ce4":{"__typename":"User","id":"374831ae1ce4"},"ImageMetadata:1*OcnETLUeKYKHAy_jJw3EnQ@2x.png":{"__typename":"ImageMetadata","id":"1*OcnETLUeKYKHAy_jJw3EnQ@2x.png"},"User:48019dcf180b":{"__typename":"User","id":"48019dcf180b","customDomainState":null,"hasSubdomain":false,"username":"alita.edelman"},"Post:4e6b038e637c":{"__typename":"Post","id":"4e6b038e637c","firstPublishedAt":1651599417621,"creator":{"__ref":"User:48019dcf180b"},"collection":{"__ref":"Collection:42f014f901ad"},"isSeries":false,"mediumUrl":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal\u002Fwhy-i-joined-mixpanel-4e6b038e637c","sequence":null,"uniqueSlug":"why-i-joined-mixpanel-4e6b038e637c"},"LinkedAccounts:d9ce9f6dba3e":{"__typename":"LinkedAccounts","mastodon":null,"id":"d9ce9f6dba3e"},"UserViewerEdge:userId:d9ce9f6dba3e-viewerId:lo_c6bc865b090d":{"__typename":"UserViewerEdge","id":"userId:d9ce9f6dba3e-viewerId:lo_c6bc865b090d","isFollowing":false,"isUser":false,"isMuting":false},"NewsletterV3:b20135c27103":{"__typename":"NewsletterV3","id":"b20135c27103","type":"NEWSLETTER_TYPE_AUTHOR","slug":"d9ce9f6dba3e","name":"d9ce9f6dba3e","collection":null,"user":{"__ref":"User:d9ce9f6dba3e"}},"Topic:ae5d4995e225":{"__typename":"Topic","slug":"data-science","id":"ae5d4995e225","name":"Data Science"},"Paragraph:14db477f1edd_0":{"__typename":"Paragraph","id":"14db477f1edd_0","name":"b7d6","type":"H3","href":null,"layout":null,"metadata":null,"text":"Machine learning and product analytics: Navigating the hype","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"ImageMetadata:1*3Xd9ztVo1RVUTE6V1Zo3Bw.png":{"__typename":"ImageMetadata","id":"1*3Xd9ztVo1RVUTE6V1Zo3Bw.png","originalHeight":1080,"originalWidth":1920,"focusPercentX":null,"focusPercentY":null,"alt":null},"Paragraph:14db477f1edd_1":{"__typename":"Paragraph","id":"14db477f1edd_1","name":"050c","type":"IMG","href":null,"layout":"INSET_CENTER","metadata":{"__ref":"ImageMetadata:1*3Xd9ztVo1RVUTE6V1Zo3Bw.png"},"text":"","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_2":{"__typename":"Paragraph","id":"14db477f1edd_2","name":"ed45","type":"P","href":null,"layout":null,"metadata":null,"text":"By Adam Kinney, Head of Analytics @ Mixpanel","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":0,"end":44,"href":"https:\u002F\u002Fmixpanel.com\u002Fblog\u002Fmachine-learning-and-product-analytics\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":44,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_3":{"__typename":"Paragraph","id":"14db477f1edd_3","name":"bed9","type":"P","href":null,"layout":null,"metadata":null,"text":"Machine learning and artificial intelligence have seen an explosion of real-world applications in the last decade. Applications such as targeting personalized content to users in real time have demonstrated impressive results. And more and more we are even seeing ML\u002FAI features deployed in product analytics contexts.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_4":{"__typename":"Paragraph","id":"14db477f1edd_4","name":"f6fc","type":"P","href":null,"layout":null,"metadata":null,"text":"Indeed, Mixpanel was very early in building ML features in our product. However, after a lot of experimentation, we have purposefully deemphasized building new ML features and have even deprecated some we used to have. While these features promise a lot and can show impressive results in a demo, most of them come with serious downsides, like lack of transparency and confusing or even misleading results. In this post, we will run through the most common ML features in analytics products and show how non-ML methods actually offer superior results.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_5":{"__typename":"Paragraph","id":"14db477f1edd_5","name":"1c34","type":"H3","href":null,"layout":null,"metadata":null,"text":"Scenario 1: Predicting user outcomes","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_6":{"__typename":"Paragraph","id":"14db477f1edd_6","name":"5c53","type":"P","href":null,"layout":null,"metadata":null,"text":"In this scenario, you have a product-based outcome you want to influence, like retention or purchases, and your goal is to determine what user behaviors are likely to lead to improvement in the outcome. Predictive models are sometimes presented as a solution here. The idea is that if you can predict user outcomes based on their prior behavior, then the behaviors that are most predictive of positive outcomes are the ones that you should try to drive in order to improve the outcome metric across all users.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_7":{"__typename":"Paragraph","id":"14db477f1edd_7","name":"dd2d","type":"P","href":null,"layout":null,"metadata":null,"text":"For example, let’s say you care about subscriber retention. A predictive model could look at all the things subscribers did in your app in one month and then look to see who is still a subscriber one month later. The behaviors most predictive of still being a subscriber would be the ones to focus on if you want to increase subscriber retention.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_8":{"__typename":"Paragraph","id":"14db477f1edd_8","name":"4d65","type":"P","href":null,"layout":null,"metadata":null,"text":"Unfortunately, using predictive models in this way misunderstands what predictive models are for. Predictive models like this are designed to provide accurate predictions of the future. User-level predictions of the future are useful for personalizing your product but not for understanding what behaviors drive outcomes. Predictive models essentially isolate correlations over time. Certain behaviors will be correlated with other future behaviors, but they will not necessarily cause those behaviors.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_9":{"__typename":"Paragraph","id":"14db477f1edd_9","name":"f2c4","type":"P","href":null,"layout":null,"metadata":null,"text":"Another problem with using predictive models to find behavioral inputs is that the most predictive behaviors are often not actionable. For example, if you want to determine who will have the most sessions next month, the most predictive behavior will almost certainly be the number of sessions this month since past performance is often the best predictor of the future. But then the model is essentially telling you: “If you want to increase the number of sessions, you should focus on increasing the number of sessions.” This is just circular and not useful for driving the outcome you care about.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_10":{"__typename":"Paragraph","id":"14db477f1edd_10","name":"c350","type":"P","href":null,"layout":null,"metadata":null,"text":"So what should you do if you want to isolate the causal drivers of an outcome? The following steps will lead you in the right direciton:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_11":{"__typename":"Paragraph","id":"14db477f1edd_11","name":"525f","type":"OLI","href":null,"layout":null,"metadata":null,"text":"Look for correlations: Rather than predicting outcomes, skip the complexity and look for behaviors that are correlated with subsequent outcomes. Mixpanel’s Signal report is designed to help you find these correlations.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":145,"end":169,"href":"https:\u002F\u002Fmixpanel.com\u002Fblog\u002Fproduct-analytics-predict-retention\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_12":{"__typename":"Paragraph","id":"14db477f1edd_12","name":"c780","type":"OLI","href":null,"layout":null,"metadata":null,"text":"Form a hypothesis: Among the correlations you find, some may be actionable and some may not. Zero in on one or two correlations that seem actionable (ie, you think you could influence the behavior in question). These are your hypotheses: “I hypothesize that if we increase [behavior x], we will improve [outcome y].”","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_13":{"__typename":"Paragraph","id":"14db477f1edd_13","name":"44a8","type":"OLI","href":null,"layout":null,"metadata":null,"text":"Test your hypotheses: The gold standard for testing product hypotheses is a well-designed A\u002FB test. An alternative is to use a causal analysis like Mixpanel’s Impact report.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":148,"end":172,"href":"https:\u002F\u002Fmixpanel.com\u002Fblog\u002Fon-measuring-product-impact\u002F","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_14":{"__typename":"Paragraph","id":"14db477f1edd_14","name":"f1e9","type":"H3","href":null,"layout":null,"metadata":null,"text":"Scenario 2: Segmenting users","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_15":{"__typename":"Paragraph","id":"14db477f1edd_15","name":"5eb6","type":"P","href":null,"layout":null,"metadata":null,"text":"In the clustering scenario, you want to understand the different types of users of your product. The idea is usually that you want to categorize users into a set of personas and then see how different outcomes differ from persona to persona to ensure that all your different types of users are well served.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_16":{"__typename":"Paragraph","id":"14db477f1edd_16","name":"0946","type":"P","href":null,"layout":null,"metadata":null,"text":"ML features that purport to solve this use case are typically based on cluster analysis. The idea behind cluster analysis is it will identify distinct groups of users that behave similarly to one another. Clustering features typically require the user to specify a number of clusters to find and then look across all events, or sometimes just the most popular events, to find the requested number of clusters. These features will also typically ask you to provide one or more outcomes so you can see how the clusters differ from one another.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_17":{"__typename":"Paragraph","id":"14db477f1edd_17","name":"43ef","type":"P","href":null,"layout":null,"metadata":null,"text":"There are several problems with doing cluster analysis in this kind of setup. The first problem is that the clustering algorithm is blind to the product and business context of your app. It is scanning simple event counts, and it is therefore missing out on features from user profiles or any kind of complex features. For example, maybe the ratio of two events is what is important rather than the counts. Maybe geographic region is a key part of the clusters. The resulting clustering is likely to be noisy as a result of missing these.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_18":{"__typename":"Paragraph","id":"14db477f1edd_18","name":"9d11","type":"P","href":null,"layout":null,"metadata":null,"text":"Another problem is that you need to guess how many clusters are in the data. The only way to do this is to guess by trial and error until you find something that “looks good”. And this leads us to the final problem: There is no objective way for you to assess whether the resulting clusters are good or even represent anything resembling actual clusters. A clustering algorithm will divide your users into the requested number of clusters even if all of your users just fall along a continuum rather than clustering into distinct behaviors.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_19":{"__typename":"Paragraph","id":"14db477f1edd_19","name":"a9c7","type":"P","href":null,"layout":null,"metadata":null,"text":"All of these problems add up to a clustering analysis that is more often than not partitioning your users into an arbitrary number of clusters based on an arbitrary collection of events. There is no safeguard to ensure that these clusters represent anything real, and whether they differ on the outcomes you select is up to random chance.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_20":{"__typename":"Paragraph","id":"14db477f1edd_20","name":"3012","type":"P","href":null,"layout":null,"metadata":null,"text":"If you want to segment your users into reusable clusters or personas, there are two alternatives:","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_21":{"__typename":"Paragraph","id":"14db477f1edd_21","name":"6471","type":"OLI","href":null,"layout":null,"metadata":null,"text":"High-investment path: To have an enduring set of user personas you can trust, you should start with qualitative user research where you interview users to understand the different modes or use cases your users fall into. This qualitative analysis should then be synthesized into a set of behavioral features that capture the different kinds of groups of users. This set of features can then be used in cluster analysis.","hasDropCap":null,"dropCapImage":null,"markups":[],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_22":{"__typename":"Paragraph","id":"14db477f1edd_22","name":"56a2","type":"OLI","href":null,"layout":null,"metadata":null,"text":"Pragmatic path: For most companies we work with, the methodology above is overkill. Most often what you are looking for is the segments of users that are converting well or not converting well on a particular outcome. For example, what segments of users are most likely to successfully purchase after adding an item to a cart? And what segments of users are least likely to do so? These kinds of questions can be answered most directly in Funnels and Retention. Within Funnels, Mixpanel has a Find Interesting Segments feature that will even look through all the ways to segment your users and surface the ones most and least likely to convert.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":493,"end":518,"href":"https:\u002F\u002Fhelp.mixpanel.com\u002Fhc\u002Fen-us\u002Farticles\u002F360031788492-Find-Interesting-Segments","anchorType":"LINK","userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"Paragraph:14db477f1edd_23":{"__typename":"Paragraph","id":"14db477f1edd_23","name":"fa3f","type":"P","href":null,"layout":null,"metadata":null,"text":"Gain insights into how best to convert, engage, and retain your users with Mixpanel’s powerful product analytics. Try it free.","hasDropCap":null,"dropCapImage":null,"markups":[{"__typename":"Markup","type":"A","start":114,"end":125,"href":"https:\u002F\u002Fmixpanel.com\u002F","anchorType":"LINK","userId":null,"linkMetadata":null},{"__typename":"Markup","type":"EM","start":0,"end":126,"href":null,"anchorType":null,"userId":null,"linkMetadata":null}],"codeBlockMetadata":null,"iframe":null,"mixtapeMetadata":null},"CollectionViewerEdge:collectionId:42f014f901ad-viewerId:lo_c6bc865b090d":{"__typename":"CollectionViewerEdge","id":"collectionId:42f014f901ad-viewerId:lo_c6bc865b090d","isEditor":false,"isMuting":false},"ImageMetadata:1*4xIuKpG9U_m3zLX76_6lyA.png":{"__typename":"ImageMetadata","id":"1*4xIuKpG9U_m3zLX76_6lyA.png","originalWidth":1912,"originalHeight":390},"PostViewerEdge:postId:c7c33335eddc-viewerId:lo_c6bc865b090d":{"__typename":"PostViewerEdge","shouldIndexPostForExternalSearch":true,"id":"postId:c7c33335eddc-viewerId:lo_c6bc865b090d"},"Tag:product-management":{"__typename":"Tag","id":"product-management","displayTitle":"Product Management","normalizedTagSlug":"product-management"},"Tag:product-analytics":{"__typename":"Tag","id":"product-analytics","displayTitle":"Product Analytics","normalizedTagSlug":"product-analytics"},"Tag:metrics":{"__typename":"Tag","id":"metrics","displayTitle":"Metrics","normalizedTagSlug":"metrics"},"Tag:machine-learning":{"__typename":"Tag","id":"machine-learning","displayTitle":"Machine Learning","normalizedTagSlug":"machine-learning"},"Post:c7c33335eddc":{"__typename":"Post","id":"c7c33335eddc","collection":{"__ref":"Collection:42f014f901ad"},"content({\"postMeteringOptions\":{}})":{"__typename":"PostContent","isLockedPreviewOnly":false,"bodyModel":{"__typename":"RichText","sections":[{"__typename":"Section","name":"d52a","startIndex":0,"textLayout":null,"imageLayout":null,"backgroundImage":null,"videoLayout":null,"backgroundVideo":null},{"__typename":"Section","name":"4272","startIndex":23,"textLayout":null,"imageLayout":null,"backgroundImage":null,"videoLayout":null,"backgroundVideo":null}],"paragraphs":[{"__ref":"Paragraph:14db477f1edd_0"},{"__ref":"Paragraph:14db477f1edd_1"},{"__ref":"Paragraph:14db477f1edd_2"},{"__ref":"Paragraph:14db477f1edd_3"},{"__ref":"Paragraph:14db477f1edd_4"},{"__ref":"Paragraph:14db477f1edd_5"},{"__ref":"Paragraph:14db477f1edd_6"},{"__ref":"Paragraph:14db477f1edd_7"},{"__ref":"Paragraph:14db477f1edd_8"},{"__ref":"Paragraph:14db477f1edd_9"},{"__ref":"Paragraph:14db477f1edd_10"},{"__ref":"Paragraph:14db477f1edd_11"},{"__ref":"Paragraph:14db477f1edd_12"},{"__ref":"Paragraph:14db477f1edd_13"},{"__ref":"Paragraph:14db477f1edd_14"},{"__ref":"Paragraph:14db477f1edd_15"},{"__ref":"Paragraph:14db477f1edd_16"},{"__ref":"Paragraph:14db477f1edd_17"},{"__ref":"Paragraph:14db477f1edd_18"},{"__ref":"Paragraph:14db477f1edd_19"},{"__ref":"Paragraph:14db477f1edd_20"},{"__ref":"Paragraph:14db477f1edd_21"},{"__ref":"Paragraph:14db477f1edd_22"},{"__ref":"Paragraph:14db477f1edd_23"}]},"validatedShareKey":"","shareKeyCreator":null},"creator":{"__ref":"User:d9ce9f6dba3e"},"inResponseToEntityType":null,"isLocked":false,"isMarkedPaywallOnly":false,"lockedSource":"LOCKED_POST_SOURCE_NONE","mediumUrl":"https:\u002F\u002Fmedium.com\u002Fmixpanel-s-the-signal\u002Fmachine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc","primaryTopic":{"__ref":"Topic:ae5d4995e225"},"topics":[{"__typename":"Topic","slug":"machine-learning"},{"__typename":"Topic","slug":"data-science"}],"isPublished":true,"latestPublishedVersion":"14db477f1edd","visibility":"PUBLIC","postResponses":{"__typename":"PostResponses","count":0},"clapCount":33,"allowResponses":true,"isLimitedState":false,"title":"Machine learning and product analytics: Navigating the hype","isSeries":false,"sequence":null,"uniqueSlug":"machine-learning-and-product-analytics-navigating-the-hype-c7c33335eddc","socialTitle":"","socialDek":"","canonicalUrl":"https:\u002F\u002Fmixpanel.com\u002Fblog\u002Fmachine-learning-and-product-analytics\u002F","metaDescription":"","latestPublishedAt":1643662421708,"readingTime":4.849056603773585,"previewContent":{"__typename":"PreviewContent","subtitle":"By Adam Kinney, Head of Analytics @ Mixpanel"},"previewImage":{"__ref":"ImageMetadata:1*3Xd9ztVo1RVUTE6V1Zo3Bw.png"},"isShortform":false,"seoTitle":"","firstPublishedAt":1643662421708,"updatedAt":1644028717018,"shortformType":"SHORTFORM_TYPE_LINK","seoDescription":"","viewerEdge":{"__ref":"PostViewerEdge:postId:c7c33335eddc-viewerId:lo_c6bc865b090d"},"isSuspended":false,"license":"ALL_RIGHTS_RESERVED","tags":[{"__ref":"Tag:product-management"},{"__ref":"Tag:product-analytics"},{"__ref":"Tag:metrics"},{"__ref":"Tag:machine-learning"}],"isNewsletter":false,"statusForCollection":"APPROVED","pendingCollection":null,"detectedLanguage":"en","wordCount":1232,"layerCake":3,"responsesLocked":false}}</script><script>window.__MIDDLEWARE_STATE__={"session":{"xsrf":""},"cache":{"cacheStatus":"MISS"}}</script><script src="https://cdn-client.medium.com/lite/static/js/manifest.aa9242f7.js"></script><script src="https://cdn-client.medium.com/lite/static/js/9865.1496d74a.js"></script><script src="https://cdn-client.medium.com/lite/static/js/main.e556b4ac.js"></script><script src="https://cdn-client.medium.com/lite/static/js/instrumentation.d9108df7.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/reporting.ff22a7a5.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9120.5df29668.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5049.d1ead72d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4810.6318add7.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6618.db187378.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2707.b0942613.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/9977.5b3eb23a.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8599.1ab63137.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5250.9f9e01d2.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5787.e66a3a4d.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2648.26563adf.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8393.826a25fb.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3104.c3413b66.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3735.afb7e926.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/5642.8ad8a900.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6546.cd03f950.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/6834.08de95de.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/7346.72622eb9.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2420.2a5e2d95.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/839.ca7937c2.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/7975.d195c6f1.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2106.21ff89d3.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/7394.094844de.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2961.00a48598.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8204.c4082863.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/4391.59acaed3.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostPage.MainContent.1387c5dc.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/8414.6565ad5f.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/3974.8d3e0217.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/2527.a0afad8a.chunk.js"></script> <script src="https://cdn-client.medium.com/lite/static/js/PostResponsesContent.36c2ecf4.chunk.js"></script><script>window.main();</script><script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e8eea284d39ce86',t:'MTczMjY3NjkxNy4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10