CINXE.COM

Search results for: recovery behavior

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recovery behavior</title> <meta name="description" content="Search results for: recovery behavior"> <meta name="keywords" content="recovery behavior"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recovery behavior" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recovery behavior"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8139</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recovery behavior</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8139</span> The Initiator Matters in Service Co-Recovery: Investigation on Attribution and Satisfaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Tsai">Chia-Ching Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the literature, the positive effect of service co-recovery has been evidenced, and which customers’ attribution is the key successful factor has also been indicated. There is also literature investigating on initiation of co-recovery for finding out the superior way to co-recovery, and indicating co-recovery initiated by employees causes better effect of co-recovery. This research postulates the consequences of co-recovery by different initiators affect customers’ attribution and the resultant results. Thus, this research uses a 3x2 factorial design to investigate the impact of initiator of co-recovery and consequence of co-recovery on customers’ attribution and post-recovery satisfaction. The results show initiation of co-recovery has a significant influence on internal attribution, and the employee initiator causes the highest internal attribution. The consequences of co-recovery interact with initiators of co-recovery on internal attribution significantly. Moreover, internal attribution significantly affects post-recovery satisfaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20co-recovery" title="service co-recovery">service co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=initiation%20of%20co-recovery" title=" initiation of co-recovery"> initiation of co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=attribution" title=" attribution"> attribution</a>, <a href="https://publications.waset.org/abstracts/search?q=post-recovery%20satisfaction" title=" post-recovery satisfaction"> post-recovery satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/78185/the-initiator-matters-in-service-co-recovery-investigation-on-attribution-and-satisfaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8138</span> The Impact of Level and Consequence of Service Co-Recovery on Post-Recovery Satisfaction and Repurchase Intent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Tsai">Chia-Ching Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In service delivery, interpersonal interaction is the key to customer satisfaction, and apparently, the factor of human is critical in service delivery. Besides, customers quite care about the consequences of co-recovery. Thus, this research focuses on service failure caused by other customers and uses a 2x2 factorial design to investigate the impact of consequence and level of service co-recovery on post-recovery satisfaction and repurchase intent. 150 undergraduates were recruited as participants, and assigned to one of the four cells randomly. Every participant was requested to read the scenario and then rated the post-recovery satisfaction and repurchase intent. The results show that under the condition of failed co-recovery, level of co-recovery has no effect on post-recovery satisfaction, while under the condition of successful co-recovery, high-level co-recovery causes significantly higher post-recovery satisfaction than low-level co-recovery. Moreover, post-recovery satisfaction has significantly positive impact on repurchase intent. In the system of service delivery, customers interact with other customers frequently. Therefore, comparing with the literature, this research focuses on the service failure caused by other customers. This research also supplies a better understanding of customers’ view on consequences of different levels of co-recovery, which is helpful for the practitioners to make use of co-recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20failure" title="service failure">service failure</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20co-recovery" title=" service co-recovery"> service co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=consequence%20of%20co-recovery" title=" consequence of co-recovery"> consequence of co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20co-recovery" title=" level of co-recovery"> level of co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=post-recovery%20satisfaction" title=" post-recovery satisfaction"> post-recovery satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=repurchase%20intent" title=" repurchase intent"> repurchase intent</a> </p> <a href="https://publications.waset.org/abstracts/78948/the-impact-of-level-and-consequence-of-service-co-recovery-on-post-recovery-satisfaction-and-repurchase-intent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8137</span> Autonomic Recovery Plan with Server Virtualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hameed">S. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anwer"> S. Anwer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saady"> M. Saady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20intelligence" title="autonomous intelligence">autonomous intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20recovery" title=" disaster recovery"> disaster recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=server%20virtualization" title=" server virtualization"> server virtualization</a> </p> <a href="https://publications.waset.org/abstracts/129654/autonomic-recovery-plan-with-server-virtualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8136</span> A Hard Day&#039;s Night: Persistent Within-Individual Effects of Job Demands and the Role of Recovery Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Pluut">Helen Pluut</a>, <a href="https://publications.waset.org/abstracts/search?q=Remus%20Ilies"> Remus Ilies</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20Dimotakis"> Nikos Dimotakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Maral%20Darouei"> Maral Darouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to examine recovery from work as an important daily activity with implications for workplace behavior. Building on affective events theory and the stressor-detachment model as frameworks, this paper proposes and tests a comprehensive within-individual model that uncovers the role of recovery processes at home in linking workplace demands (e.g., workload) and stressors (e.g., workplace incivility) to next-day organizational citizenship behaviors (OCBs). Our sample consisted of 126 full-time employees in a large Midwestern University. For a period of 16 working days, these employees were asked to fill out 3 electronic surveys while at work. The first survey (sent out in the morning) measured self-reported sleep quality, recovery experiences the previous day at home, and momentary effect. The second survey (sent out close to the end of the workday) measured job demands and stressors as well as OCBs, while the third survey in the evening assessed job strain. Data were analyzed using Hierarchical Linear Modeling (HLM). Results indicated that job demands and stressors at work made it difficult to unwind properly at home and have a good night’s sleep, which had repercussions for next day’s morning effect, which, in turn, influenced OCBs. It can be concluded that processes of recovery are vital to an individual’s daily effective functioning and behavior at work, but recovery may become impaired after a hard day’s work. Thus, our study sheds light on the potentially persistent nature of strain experienced as a result of work and points to the importance of recovery processes to enable individuals to avoid such cross-day spillover. Our paper will discuss this implication for theory and practice as well as potential directions for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=affect" title="affect">affect</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20demands" title=" job demands"> job demands</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20citizenship%20behavior" title=" organizational citizenship behavior"> organizational citizenship behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a> </p> <a href="https://publications.waset.org/abstracts/94667/a-hard-days-night-persistent-within-individual-effects-of-job-demands-and-the-role-of-recovery-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8135</span> Effect of Friction Parameters on the Residual Bagging Behaviors of Denim Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gazzah">M. Gazzah</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Jaouachi"> B. Jaouachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sakli"> F. Sakli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on the yarn-to-yarn and metal-to-fabric friction effects on the residual bagging behavior expressed by residual bagging height, volume and recovery of some denim fabrics. The results show, that both residual bagging height and residual bagging volume, which is determined using image analysis method, are significantly affected due to the most influential fabric parameter variations, the weft yarns density and the mean frictional coefficients. After the applied number of fatigue cycles, the findings revealed that the weft yarn rigidity contributes on fabric bagging behavior accurately. Among the tested samples, our results show that the elastic fabrics present a high recovery ability to give low bagging height and volume values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bagging%20recovery" title="bagging recovery">bagging recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=denim%20fabric" title=" denim fabric"> denim fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-to-fabric%20friction" title=" metal-to-fabric friction"> metal-to-fabric friction</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20bagging%20height" title=" residual bagging height"> residual bagging height</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn-to-yarn%20friction" title=" yarn-to-yarn friction"> yarn-to-yarn friction</a> </p> <a href="https://publications.waset.org/abstracts/25575/effect-of-friction-parameters-on-the-residual-bagging-behaviors-of-denim-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8134</span> Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Kim">W. J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-ratio%20differential%20speed%20rolling" title="high-ratio differential speed rolling">high-ratio differential speed rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/69337/measurements-of-recovery-stress-and-recovery-strain-of-ni-based-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8133</span> Blogging Towards Recovery: The Benefits of Blogging about Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayme%20R.%20Swanke">Jayme R. Swanke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the benefits of maintaining public blogs about substance use disorder recovery. The data analyzed for this study included statements about the benefits derived by individuals who blogged about their recovery. The researcher developed classifications of statements that expressed what these individuals gained from blogging into common themes and developed an emerging theory based on these patterns. The findings indicate that these individuals in recovery benefit from blogging by developing connections, processing emotions, remaining accountable, as well as enjoying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substance%20use%20disorder%20recovery" title="substance use disorder recovery">substance use disorder recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=blogging" title=" blogging"> blogging</a>, <a href="https://publications.waset.org/abstracts/search?q=accountability" title=" accountability"> accountability</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20emotions" title=" processing emotions"> processing emotions</a> </p> <a href="https://publications.waset.org/abstracts/143240/blogging-towards-recovery-the-benefits-of-blogging-about-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8132</span> Evaluation of Mango Seed Extract as Surfactant for Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezzaddin%20Rashid%20Hussein">Ezzaddin Rashid Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the viability of mango seed extract (MSE) using a surfactant to improve oil recovery (EOR). This research examines MSE-based surfactant solutions and compares them to more traditional synthetic surfactants in terms of phase behaviour and interfacial tension. The phase behaviour and interfacial tension of five samples of surfactant solutions with different concentrations were measured. Samples 1 (2.0 g) and 1 (1.5 g) performed closest to the critical micelle concentration (CMC) and displayed the greatest decrease in surface tension, according to the results. In addition, the measurement of IFT, contact angle, and pH, as well as comparison with prior research, highlights the potential environmental benefits of MSMEs as an eco-friendly alternative. It is recommended that additional research be conducted to assess their stability and behaviour under reservoir conditions. Overall, mango seed extract demonstrates promise as a natural and sustainable surfactant for enhancing oil recovery, paving the way for eco-friendly enhanced oil recovery techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title="oil and gas">oil and gas</a>, <a href="https://publications.waset.org/abstracts/search?q=mango%20seed%20powder" title=" mango seed powder"> mango seed powder</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension%20IFT" title=" interfacial tension IFT"> interfacial tension IFT</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=contacts%20angle" title=" contacts angle"> contacts angle</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20behavior" title=" phase behavior"> phase behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/170803/evaluation-of-mango-seed-extract-as-surfactant-for-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8131</span> Prediction Modeling of Compression Properties of a Knitted Sportswear Fabric Using Response Surface Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jawairia%20Umar">Jawairia Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Hussain"> Tanveer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfiqar%20Ali"> Zulfiqar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Maqsood"> Muhammad Maqsood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different knitted structures and knitted parameters play a vital role in the stretch and recovery management of compression sportswear in addition to the materials use to generate this stretch and recovery behavior of the fabric. The present work was planned to predict the different performance indicators of a compression sportswear fabric with some ground parameters i.e. base yarn stitch length (polyester as base yarn and spandex as plating yarn involve to make a compression fabric) and linear density of the spandex which is a key material of any sportswear fabric. The prediction models were generated by response surface method for performance indicators such as stretch &amp; recovery percentage, compression generated by the garment on body, total elongation on application of high power force and load generated on certain percentage extension in fabric. Certain physical properties of the fabric were also modeled using these two parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Compression" title="Compression">Compression</a>, <a href="https://publications.waset.org/abstracts/search?q=sportswear" title=" sportswear"> sportswear</a>, <a href="https://publications.waset.org/abstracts/search?q=stretch%20and%20recovery" title=" stretch and recovery"> stretch and recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20model" title=" statistical model"> statistical model</a>, <a href="https://publications.waset.org/abstracts/search?q=kikuhime" title=" kikuhime"> kikuhime</a> </p> <a href="https://publications.waset.org/abstracts/39290/prediction-modeling-of-compression-properties-of-a-knitted-sportswear-fabric-using-response-surface-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8130</span> Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO₂ Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Lu">Peng Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Branimir%20Radisavljevic"> Branimir Radisavljevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Seeger"> Martin Seeger</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Over"> Daniel Over</a>, <a href="https://publications.waset.org/abstracts/search?q=Torsten%20Votteler"> Torsten Votteler</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernardo%20Galletti"> Bernardo Galletti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20mixture" title="CO₂ mixture">CO₂ mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage%20circuit%20breakers" title=" high voltage circuit breakers"> high voltage circuit breakers</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20recovery%20rate" title=" dielectric recovery rate"> dielectric recovery rate</a>, <a href="https://publications.waset.org/abstracts/search?q=short-circuit%20current" title=" short-circuit current"> short-circuit current</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20flux" title=" mass flux"> mass flux</a> </p> <a href="https://publications.waset.org/abstracts/139491/dielectric-recovery-characteristics-of-high-voltage-gas-circuit-breakers-operating-with-co2-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8129</span> The Effect of Temperature, Contact Time and Agitation Speed During Pre-Treatment on Elution of Gold</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Oladele">T. P. Oladele</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20A.%20Snyders"> C. A. Snyders</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Bradshaw"> S. M. Bradshaw</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Akdogan"> G. Akdogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of temperature, contact time and agitation during pre-treatment was investigated on the elution of gold from granular activated carbon at fixed caustic-cyanide concentration and elution conditions. It was shown that there are interactions between parameters during pre-treatment. At 80oC, recovery is independent of the contact time while the maximum recovery is obtained in the absence of agitation (0rpm). Increase in agitation speed from 0 rev/min to 1200 rev/min showed a decrease in recovery of approximately 20 percent at 80°C. Recovery with increased time from 15 minutes to 45 minutes is only pronounced at 25°C with approximately 4 percent increase at all agitation speeds. The results from elution recovery are aimed to give insight into the mechanisms of pre-treatment under the combinations of the chosen parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold" title="gold">gold</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20time" title=" contact time"> contact time</a>, <a href="https://publications.waset.org/abstracts/search?q=agitation%20speed" title=" agitation speed"> agitation speed</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/20502/the-effect-of-temperature-contact-time-and-agitation-speed-during-pre-treatment-on-elution-of-gold" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8128</span> Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Comakli">Kemal Comakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Terhan"> Meryem Terhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler&rsquo;s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery%20from%20flue%20gas" title="heat recovery from flue gas">heat recovery from flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis%20of%20flue%20gas" title=" energy analysis of flue gas"> energy analysis of flue gas</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20analysis" title=" economical analysis"> economical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=payback%20period" title=" payback period"> payback period</a> </p> <a href="https://publications.waset.org/abstracts/45052/energy-and-economic-analysis-of-heat-recovery-from-boiler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8127</span> A Case Study at Lara&#039;s Landfill: Solid Waste Management and Energy Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Danielly%20Da%20Silva%20Alcantara">Kelly Danielly Da Silva Alcantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Fernando%20Molina%20Junqueira"> Daniel Fernando Molina Junqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Graziella%20Colato%20Antonio"> Graziella Colato Antonio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Law No. 12,305/10, established by the National Solid Waste Policy (PNRS), provides major changes in the management and managing scenario of solid waste in Brazil. The PNRS established since changes from population behavior as environmental and the consciousness and commitment of the companies with the waste produced. The objective of this project is to conduct a benchmarking study of the management models of Waste Management Municipal Solid (MSW) in national and international levels emphasizing especially in the European Union (Portugal, France and Germany), which are reference countries in energy development, sustainability and consequently recovery of waste generated. The management that encompasses all stages that are included in this sector will be analyzed by benchmarking, as the collection, transportation, processing/treatment and final disposal of waste. Considering the needs to produce clean energy in Brazil, this study will allow the determination to the best treatment of the waste in order to reduce the amount of waste and increase the lifetime of the landfill. Finally, it intends to identify the energy recovery potential through a study analysis of economic viability, energy and sustainable based on a holistic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmarking" title="benchmarking">benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20recovery" title=" energy recovery"> energy recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill" title=" landfill"> landfill</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste" title=" municipal solid waste"> municipal solid waste</a> </p> <a href="https://publications.waset.org/abstracts/30758/a-case-study-at-laras-landfill-solid-waste-management-and-energy-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8126</span> Protecting the Cloud Computing Data Through the Data Backups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Alsaeed">Abdullah Alsaeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20backup" title="data backup">data backup</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20recovery" title=" data recovery"> data recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20continuity" title=" business continuity"> business continuity</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20recovery" title=" disaster recovery"> disaster recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cost-effective" title=" cost-effective"> cost-effective</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20encryption." title=" data encryption."> data encryption.</a> </p> <a href="https://publications.waset.org/abstracts/161029/protecting-the-cloud-computing-data-through-the-data-backups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8125</span> The Shape Memory Recovery Properties under Load of a Polymer Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Basit">Abdul Basit</a>, <a href="https://publications.waset.org/abstracts/search?q=Gildas%20Lhostis"> Gildas Lhostis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Durand"> Bernard Durand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title="shape memory">shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20testing" title=" thermo-mechanical testing"> thermo-mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery%20under%20load" title=" recovery under load"> recovery under load</a> </p> <a href="https://publications.waset.org/abstracts/74774/the-shape-memory-recovery-properties-under-load-of-a-polymer-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8124</span> Effects of the Different Recovery Durations on Some Physiological Parameters during 3 X 3 Small-Sided Games in Soccer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samet%20Akta%C5%9F">Samet Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurtekin%20Erkmen"> Nurtekin Erkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Guven"> Faruk Guven</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Taskin"> Halil Taskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the effects of 3 versus 3 small-sided games (SSG) with different recovery times on soma physiological parameters in soccer players. Twelve soccer players from Regional Amateur League volunteered for this study (mean±SD age, 20.50±2.43 years; height, 177.73±4.13 cm; weight, 70.83±8.38 kg). Subjects were performing soccer training for five days per week. The protocol of the study was approved by the local ethic committee in School of Physical Education and Sport, Selcuk University. The subjects were divided into teams with 3 players according to Yo-Yo Intermittent Recovery Test. The field dimension was 26 m wide and 34 m in length. Subjects performed two times in a random order a series of 3 bouts of 3-a-side SSGs with 3 min and 5 min recovery durations. In SSGs, each set were performed with 6 min duration. The percent of maximal heart rate (% HRmax), blood lactate concentration (LA) and Rated Perceived Exertion (RPE) scale points were collected before the SSGs and at the end of each set. Data were analyzed by analysis of variance (ANOVA) with repeated measures. Significant differences were found between %HRmax in before SSG and 1st set, 2nd set, and 3rd set in both SSG with 3 min recovery duration and SSG with 5 min recovery duration (p<0.05). Means of %HRmax in SSG with 3 min recovery duration at both 1st and 2nd sets were significantly higher than SSG with 5 min recovery duration (p<0.05). No significant difference was found between sets of either SSGs in terms of LA (p>0.05). LA in SSG with 3 min recovery duration was higher than SSG with 5 min recovery duration at 2nd sets (p<0.05). RPE in soccer players was not different between SSGs (p>0.05).In conclusion, this study demonstrates that exercise intensity in SSG with 3 min recovery durations is higher than SSG with 5 min recovery durations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small-sided%20games" title="small-sided games">small-sided games</a>, <a href="https://publications.waset.org/abstracts/search?q=soccer" title=" soccer"> soccer</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=lactate" title=" lactate"> lactate</a> </p> <a href="https://publications.waset.org/abstracts/17945/effects-of-the-different-recovery-durations-on-some-physiological-parameters-during-3-x-3-small-sided-games-in-soccer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8123</span> Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khazam">M. Khazam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Altawil"> M. Altawil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eljabri"> A. Eljabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EoS%20models" title="EoS models">EoS models</a>, <a href="https://publications.waset.org/abstracts/search?q=gas-condensate" title=" gas-condensate"> gas-condensate</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20cycling" title=" gas cycling"> gas cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20critical%20fluid" title=" near critical fluid"> near critical fluid</a> </p> <a href="https://publications.waset.org/abstracts/61658/phase-behavior-modelling-of-libyan-near-critical-gas-condensate-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8122</span> Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20King%20Soon%20Wong">Vincent King Soon Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Seng%20Ng"> Hong Seng Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Florinna%20Sim"> Florinna Sim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20vs%20slow%20BTI" title="fast vs slow BTI">fast vs slow BTI</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20wafer%20level%20reliability%20%28FWLR%29" title=" fast wafer level reliability (FWLR)"> fast wafer level reliability (FWLR)</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20bias%20temperature%20instability%20%28NBTI%29" title=" negative bias temperature instability (NBTI)"> negative bias temperature instability (NBTI)</a>, <a href="https://publications.waset.org/abstracts/search?q=NBTI%20measurement%20system" title=" NBTI measurement system"> NBTI measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-oxide-semiconductor%20field-effect%20transistor%20%28MOSFET%29" title=" metal-oxide-semiconductor field-effect transistor (MOSFET)"> metal-oxide-semiconductor field-effect transistor (MOSFET)</a>, <a href="https://publications.waset.org/abstracts/search?q=NBTI%20recovery" title=" NBTI recovery"> NBTI recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/61786/influence-of-measurement-system-on-negative-bias-temperature-instability-characterization-fast-bti-vs-conventional-bti-vs-fast-wafer-level-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8121</span> The Effect of Brand Recovery Communications on Embarrassed Consumers’ Cognitive Appraisal and Post-purchase Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kin%20Yan%20Ho">Kin Yan Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Negative brand news (such as Volkswagen’s faulty carbon emission reports, China’s Luckin Coffee scandal, and bribery in reputable US universities) influence how people perceive a company. Germany’s citizens claimed Volkswagen’s scandal as a national embarrassment and cannot recover their psychological damages through monetary and non-monetary compensation. The main research question is to examine how consumers evaluate and respond to embarrassing brand publicity. The cognitive appraisal theory is used as a theoretical foundation. This study describes the use of scenario-based experiment. The findings suggest that consumers with different levels of embarrassment evaluate brand remedial offers from emotion-focused and task-focused restorative justice perspectives (newly derived from the well-established scales of perceived justice). When consumers face both negative and positive brand information (i.e., negative publicity news and a remedial offer), they change their appraisal criterion. The social situation in the cognitive reappraisal process influences the quality of the customer-brand relationship and the customer’s recovery from brand embarrassment. The results also depict that the components of recovery compensation cause differences in emotion recovery, relationship quality, and repurchase intentions. This study extends embarrassment literature in an embarrassing brand publicity context. The emotional components of brand remedial tactics provide insights to brand managers on how to handle different consumers’ emotions, consumer satisfaction, and foster positive future behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brand%20relationship%20quality" title="brand relationship quality">brand relationship quality</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20appraisal" title=" cognitive appraisal"> cognitive appraisal</a>, <a href="https://publications.waset.org/abstracts/search?q=crisis%20communications" title=" crisis communications"> crisis communications</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion" title=" emotion"> emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=justice" title=" justice"> justice</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20presence" title=" social presence"> social presence</a> </p> <a href="https://publications.waset.org/abstracts/127553/the-effect-of-brand-recovery-communications-on-embarrassed-consumers-cognitive-appraisal-and-post-purchase-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8120</span> Superhydrophobic, Heteroporous Flexible Ceramic for Micro-Emulsion Separation, Oil Sorption, and Recovery of Fats, Oils, and Grease from Restaurant Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhoanne%20Pedres%20Bo%C3%B1gol">Jhoanne Pedres Boñgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Liu"> Zhang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuyin%20Qiu"> Yuyin Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=King%20Lun%20Yeung"> King Lun Yeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible ceramic sorbent material can be a viable technology to capture and recover emulsified fats, oils, and grease (FOG) that often cause sanitary sewer overflows. This study investigates the sorption capacity and recovery rate of ceramic material in surfactant-stabilized oil-water emulsion by synthesizing silica aerogel: SiO₂–X via acid-base sol-gel method followed by ambient pressure drying. The SiO₂–X is amorphous, microstructured, lightweight, flexible, and highly oleophilic. It displays spring-back behavior apparent at 80% compression with compressive strength of 0.20 MPa and can stand a weight of 1000 times its own. The contact angles measured at 0° and 177° in oil and water, respectively, confirm its oleophilicity and hydrophobicity while its thermal stability even at 450 °C is confirmed via TGA. In pure oil phase, the qe,AV. of 1x1 mm SiO₂–X is 7.5 g g⁻¹ at tqe= 10 min, and a qe,AV. of 6.05 to 6.76 g g⁻¹ at tqe= 24 hrs in O/W emulsion. The filter ceramic can be reused 50 x with 75-80 % FOG recovery by manual compression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=aerogel" title=" aerogel"> aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=FOG" title=" FOG"> FOG</a> </p> <a href="https://publications.waset.org/abstracts/147856/superhydrophobic-heteroporous-flexible-ceramic-for-micro-emulsion-separation-oil-sorption-and-recovery-of-fats-oils-and-grease-from-restaurant-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8119</span> Use of Microbial Fuel Cell for Metal Recovery from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajbhan%20Sevda">Surajbhan Sevda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title="metal recovery">metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectricity" title=" bioelectricity"> bioelectricity</a> </p> <a href="https://publications.waset.org/abstracts/78731/use-of-microbial-fuel-cell-for-metal-recovery-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8118</span> Metrics and Methods for Improving Resilience in Agribusiness Supply Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Golnar%20Behzadi">Golnar Behzadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20O%27Sullivan"> Michael O&#039;Sullivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tava%20Olsen"> Tava Olsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Zhang"> Abraham Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agribusiness%20supply%20chain" title="agribusiness supply chain">agribusiness supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20metric" title=" resilience metric"> resilience metric</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/67437/metrics-and-methods-for-improving-resilience-in-agribusiness-supply-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8117</span> Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Hamdi">Zakaria Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyamni%20Awang"> Mariyamni Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past decades, CO<sub>2</sub> flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO<sub>2</sub> into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors&rsquo; knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO<sub>2</sub> into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 &deg;F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO<sub>2</sub> at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO<sub>2</sub> rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO<sub>2</sub> inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO<sub>2</sub> is proposed to be used as early as secondary recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20flooding" title=" CO₂ flooding"> CO₂ flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=micromodel%20studies" title=" micromodel studies"> micromodel studies</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible%20flooding" title=" miscible flooding"> miscible flooding</a> </p> <a href="https://publications.waset.org/abstracts/71727/oil-recovery-study-by-low-temperature-carbon-dioxide-injection-in-high-pressure-high-temperature-micromodels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8116</span> Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Hunky">Rabia Hunky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayat%20Kalifa"> Hayat Kalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai"> Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EOR" title="EOR">EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20gas" title=" oil gas"> oil gas</a>, <a href="https://publications.waset.org/abstracts/search?q=IOR" title=" IOR"> IOR</a>, <a href="https://publications.waset.org/abstracts/search?q=WC" title=" WC"> WC</a>, <a href="https://publications.waset.org/abstracts/search?q=IF" title=" IF"> IF</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title=" oil and gas"> oil and gas</a> </p> <a href="https://publications.waset.org/abstracts/151355/surfactant-improved-heavy-oil-recovery-in-sandstone-reservoirs-by-wettability-alteration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8115</span> Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Idawaty">A. Idawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Mohamed"> O. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Z.%20Zuriati"> A. Z. Zuriati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real-time%20system%20%28RTS%29" title="real-time system (RTS)">real-time system (RTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20utility%20function%2F%20utility%20accrual%20%28TUF%2FUA%29%20scheduling" title=" time utility function/ utility accrual (TUF/UA) scheduling"> time utility function/ utility accrual (TUF/UA) scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=backward%20recovery%20mechanism" title=" backward recovery mechanism"> backward recovery mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=multiprocessor" title=" multiprocessor"> multiprocessor</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation%20%28DES%29" title=" discrete event simulation (DES)"> discrete event simulation (DES)</a> </p> <a href="https://publications.waset.org/abstracts/52774/simulation-of-utility-accrual-scheduling-and-recovery-algorithm-in-multiprocessor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8114</span> Effect of Graphene Oxide Nanoparticles on a Heavy Oilfield: Interfacial Tension, Wettability and Oil Displacement Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jimena%20Lizeth%20Gomez%20Delgado">Jimena Lizeth Gomez Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhon%20Jairo%20Rodriguez"> Jhon Jairo Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Santos"> Nicolas Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia%20Ospino"> Enrique Mejia Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has played an important role in the hydrocarbon industry, recently , due to the unique properties of graphene oxide nanoparticles, they have been incorporated in different studies enhanced oil recovery. Nonetheless, very few studies have used graphene oxide nanoparticles in coreflooding experiments. Herein, the use of Graphene oxide (GO) nanoparticle was explored, exploited and evaluated. The performance of Graphene oxide nanoparticles on the interfacial properties in the presence of different electrolyte concentrations representative of field brine and pH conditions was investigated. Moreover, wettability behavior of the nanofluid at the oil/sand interface was studied used contact angle and Amott Harvey evaluation. Experimental result shows that the adsorption of GO on the sandstone surface changes the wettability of the sandstone from being strongly crude oil-wet to intermediate crude oil-wettability. At 900 ppm formation brine with 8 pH solution and 0.09 wt% nanoparticles concentration, Graphene oxide nanofluid exhibited better performance under the different electrolyte concentration studied. Finally, heavy oil displacement test in sandstone cores showed that oil recovery of Graphene oxide nanofluid had 7% incremental oil recovery over conventional waterflooding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=coreflooding" title=" coreflooding"> coreflooding</a> </p> <a href="https://publications.waset.org/abstracts/177299/effect-of-graphene-oxide-nanoparticles-on-a-heavy-oilfield-interfacial-tension-wettability-and-oil-displacement-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8113</span> An Experimental Investigation of Chemical Enhanced Oil Recovery (Ceor) for Fractured Carbonate Reservoirs, Case Study: Kais Formation on Wakamuk Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Andreas%20Theo%20Pola">Jackson Andreas Theo Pola</a>, <a href="https://publications.waset.org/abstracts/search?q=Leksono%20Mucharam"> Leksono Mucharam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Oetomo"> Hari Oetomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Susanto"> Budi Susanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisnu%20Nugraha"> Wisnu Nugraha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About half of the world oil reserves are located in carbonate reservoirs, where 65% of the total carbonate reservoirs are oil wet and 12% intermediate wet [1]. Oil recovery in oil wet or mixed wet carbonate reservoirs can be increased by dissolving surfactant to injected water to change the rock wettability from oil wet to more water wet. The Wakamuk Field operated by PetroChina International (Bermuda) Ltd. and PT. Pertamina EP in Papua, produces from main reservoir of Miocene Kais Limestone. First production commenced on August, 2004 and the peak field production of 1456 BOPD occurred in August, 2010. It was found that is a complex reservoir system and until 2014 cumulative oil production was 2.07 MMBO, less than 9% of OOIP. This performance is indicative of presence of secondary porosity, other than matrix porosity which is of low average porosity 13% and permeability less than 7 mD. Implementing chemical EOR in this case is the best way to increase oil production. However, the selected chemical must be able to lower the interfacial tension (IFT), reduce oil viscosity, and alter the wettability; thus a special chemical treatment named SeMAR has been proposed. Numerous laboratory tests such as phase behavior test, core compatibility test, mixture viscosity, contact angle measurement, IFT, imbibitions test and core flooding were conducted on Wakamuk field samples. Based on the spontaneous imbibitions results for Wakamuk field core, formulation of SeMAR with compositional S12A gave oil recovery 43.94% at 1wt% concentration and maximum percentage of oil recovery 87.3% at 3wt% concentration respectively. In addition, the results for first scenario of core flooding test gave oil recovery 60.32% at 1 wt% concentration S12A and the second scenario gave 96.78% of oil recovery at concentration 3 wt% respectively. The soaking time of chemicals has a significant effect on the recovery and higher chemical concentrations affect larger areas for wettability and therefore, higher oil recovery. The chemical that gives best overall results from laboratory tests study will also be a consideration for Huff and Puff injections trial (pilot project) for increasing oil recovery from Wakamuk Field <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wakamuk%20field" title="Wakamuk field">Wakamuk field</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20treatment" title=" chemical treatment"> chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20recovery" title=" oil recovery"> oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/20988/an-experimental-investigation-of-chemical-enhanced-oil-recovery-ceor-for-fractured-carbonate-reservoirs-case-study-kais-formation-on-wakamuk-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">693</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8112</span> Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20S.%20Alavi">F. S. Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mowla"> D. Mowla</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Esmaeilzadeh"> F. Esmaeilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-condensate%20reservoir" title="gas-condensate reservoir">gas-condensate reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20modelling" title=" compositional modelling"> compositional modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20condensate%20recovery" title=" enhanced condensate recovery"> enhanced condensate recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20injection" title=" gas injection"> gas injection</a> </p> <a href="https://publications.waset.org/abstracts/153670/evaluating-the-effects-of-gas-injection-on-enhanced-gas-condensate-recovery-and-reservoir-pressure-maintenance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8111</span> Recovery of Petroleum Reservoir by Waterflooding Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zabihullah%20Mahdi">Zabihullah Mahdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khwaja%20Naweed%20Seddiqi"> Khwaja Naweed Seddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeo%20Honma"> Shigeo Honma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buckley-Leverett%20theory" title="Buckley-Leverett theory">Buckley-Leverett theory</a>, <a href="https://publications.waset.org/abstracts/search?q=waterflooding%20technique" title=" waterflooding technique"> waterflooding technique</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20engineering" title=" petroleum engineering"> petroleum engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20displacement" title=" immiscible displacement"> immiscible displacement</a> </p> <a href="https://publications.waset.org/abstracts/59677/recovery-of-petroleum-reservoir-by-waterflooding-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8110</span> Emotional Processing Difficulties in Recovered Anorexia Nervosa Patients: State or Trait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Telma%20Fontao%20de%20Castro">Telma Fontao de Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kylee%20Miller"> Kylee Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Xavier%20Ara%C3%BAjo"> Maria Xavier Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Brandao"> Isabel Brandao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Torres"> Sandra Torres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: There is a dearth of research investigating the long-term emotional functioning of individuals recovered from anorexia nervosa (AN). This 15-year longitudinal study aimed to examine whether difficulties in cognitive processing of emotions persisted after long-term AN recovery and its link to anxiety and depression. Method: Twenty-four females, who were tested longitudinally during their acute and recovered AN phases, and 24 healthy control (HC) women, were screened for anxiety, depression, alexithymia, and emotion regulation difficulties (ER; only assessed in recovery phase). Results: Anxiety, depression, and alexithymia levels decreased significantly with AN recovery. However, scores on anxiety and difficulty in identifying feelings (alexithymia factor) remained high when compared to the HC group. Scores on emotion regulation difficulties were also lower in HC group. The abovementioned differences between AN recovered group and HC group in difficulties in identifying and accepting feelings and lack of emotional clarity were no longer present when the effect of anxiety and depression was controlled. Conclusions: Findings suggest that emotional dysfunction tends to decrease in AN recovered phase. However, using an HC group as a reference, we conclude that several emotional difficulties are still increased after long-term AN recovery, in particular, limited access to emotion regulation strategies, and difficulty controlling impulses and engaging in goal-directed behavior, thus suggesting to be a trait vulnerability. In turn, competencies related to emotional clarity and acceptance of emotional responses seem to be state-dependent phenomena linked to anxiety and depression. In sum, managing emotions remains a challenge for individuals recovered from AN. Under this circumstance, maladaptive eating behavior can serve as an affect regulatory function, increasing the risk of relapse. Emotional education and stabilization of depressive and anxious symptomatology after recovery emerge as an important avenue to protect from long-term AN relapse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alexithymia" title="alexithymia">alexithymia</a>, <a href="https://publications.waset.org/abstracts/search?q=anorexia%20nervosa" title=" anorexia nervosa"> anorexia nervosa</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20recognition" title=" emotion recognition"> emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20regulation" title=" emotion regulation"> emotion regulation</a> </p> <a href="https://publications.waset.org/abstracts/130888/emotional-processing-difficulties-in-recovered-anorexia-nervosa-patients-state-or-trait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=271">271</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=272">272</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recovery%20behavior&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10