CINXE.COM

Search

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes"> <title>Search</title> <meta id="meta-title" property="citation_title" content="Search"/> <meta id="og-title" property="og:title" content="Search"/> <meta name="twitter:widgets:autoload" content="off"/> <meta name="twitter:dnt" content="on"/> <meta name="twitter:widgets:csp" content="on"/> <meta name="google-site-verification" content="lQbRRf0vgPqMbnbCsgELjAjIIyJjiIWo917M7hBshvI"/> <meta id="og-image" property="og:image" content="https://escholarship.org/images/escholarship-facebook2.jpg"/> <meta id="og-image-width" property="og:image:width" content="1242"/> <meta id="og-image-height" property="og:image:height" content="1242"/> <link rel="stylesheet" href="/css/main-6e346ed4504727cd.css"> <link rel="resource" type="application/l10n" href="/node_modules/pdfjs-embed2/dist/locale/locale.properties"> <noscript><style> .jsonly { display: none } </style></noscript> <!-- Matomo --> <!-- TBD Configure Matomo for SPA https://developer.matomo.org/guides/spa-tracking --> <script type="text/plain" data-type="application/javascript" data-name="matomo"> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.cdlib.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '7']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); console.log('*** MATOMO LOADED ***'); })(); </script> <!-- End Matomo Code --> </head> <body> <div id="main"><div data-reactroot=""><div class="body"><a href="#maincontent" class="c-skipnav">Skip to main content</a><div class="l_search"><div><div style="margin-top:-10px"></div><header id="#top" class="c-header"><a class="c-header__logo2" href="/"><picture><source srcSet="/images/logo_eschol-small.svg" media="(min-width: 870px)"/><img src="/images/logo_eschol-mobile.svg" alt="eScholarship"/></picture><div class="c-header__logo2-tagline">Open Access Publications from the University of California</div></a><div class="c-header__search"><form class="c-search1"><label class="c-search1__label" for="c-search1__field">search</label><input type="search" id="c-search1__field" name="q" class="c-search1__field" placeholder="Search over 500,000 items" autoCapitalize="off" value="author:Rasch, Philip"/><button type="submit" class="c-search1__submit-button" aria-label="submit search"></button><button type="button" class="c-search1__search-close-button" aria-label="close search field"></button></form></div><button class="c-header__search-open-button" aria-label="open search field"></button></header></div><div class="c-navbar"><nav class="c-nav"><details open="" class="c-nav__main"><summary class="c-nav__main-button">Menu</summary><ul class="c-nav__main-items"><li><details class="c-nav__sub"><summary class="c-nav__sub-button">About eScholarship</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/repository">eScholarship Repository</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/policies">Site policies</a></li><li><a href="/terms">Terms of Use and Copyright Information</a></li><li><a href="/privacyPolicy">Privacy statement</a></li></ul></div></details></li><li><details class="c-nav__sub"><summary class="c-nav__sub-button">Campus Sites</summary><div class="c-nav__sub-items"><button class="c-nav__sub-items-button" aria-label="return to menu">Main Menu</button><ul><li><a href="/uc/ucb">UC Berkeley</a></li><li><a href="/uc/ucd">UC Davis</a></li><li><a href="/uc/uci">UC Irvine</a></li><li><a href="/uc/ucla">UCLA</a></li><li><a href="/uc/ucm">UC Merced</a></li><li><a href="/uc/ucr">UC Riverside</a></li><li><a href="/uc/ucsd">UC San Diego</a></li><li><a href="/uc/ucsf">UCSF</a></li><li><a href="/uc/ucsb">UC Santa Barbara</a></li><li><a href="/uc/ucsc">UC Santa Cruz</a></li><li><a href="/uc/ucop">UC Office of the President</a></li><li><a href="/uc/lbnl">Lawrence Berkeley National Laboratory</a></li><li><a href="/uc/anrcs">UC Agriculture &amp; Natural Resources</a></li></ul></div></details></li><li><a href="/ucoapolicies">UC Open Access Policies</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="/ucpubs">UCPUBS</a></li></ul></details></nav></div><form id="facetForm" class="c-columns"><aside><div><div class="c-filter"><h1 class="c-filter__heading">Your search: "author:Rasch, Philip"</h1><input type="hidden" name="q" value="author:Rasch, Philip"/><div class="c-filter__results">11<!-- --> results</div><div class="c-filter__inactive-note">No filters applied</div><details class="c-filter__active" open=""><summary><span><strong></strong> filter<!-- -->s<!-- --> applied</span></summary><button class="c-filter__clear-all">clear all</button><ul class="c-filter__active-list"></ul></details><a href="https://help.escholarship.org/support/solutions/articles/9000148939-using-advanced-search-beta-" class="c-filter__tips">Search tips</a></div><div class="c-refine--has-drawer"><button class="c-refine__button--open">Refine Results</button><button class="c-refine__button--close" hidden="">Back to Results</button><div class="c-refine__drawer--closed"><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox0">Type of Work</span></summary><fieldset aria-labelledby="facetbox0"><ul class="c-checkbox"><li class=""><input type="checkbox" id="type_of_work-article" class="c-checkbox__input" name="type_of_work" value="article"/><label for="type_of_work-article" class="c-checkbox__label">Article<!-- --> (<!-- -->10<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-monograph" class="c-checkbox__input" name="type_of_work" value="monograph"/><label for="type_of_work-monograph" class="c-checkbox__label">Book<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-dissertation" class="c-checkbox__input" name="type_of_work" value="dissertation"/><label for="type_of_work-dissertation" class="c-checkbox__label">Theses<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="type_of_work-multimedia" class="c-checkbox__input" name="type_of_work" value="multimedia"/><label for="type_of_work-multimedia" class="c-checkbox__label">Multimedia<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox" open=""><summary class="c-facetbox__summary"><span id="facetbox1">Peer Review</span></summary><fieldset aria-labelledby="facetbox1"><ul class="c-checkbox"><li class=""><input type="checkbox" id="peer_reviewed-1" class="c-checkbox__input" name="peer_reviewed" value="1"/><label for="peer_reviewed-1" class="c-checkbox__label">Peer-reviewed only<!-- --> (<!-- -->11<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox2">Supplemental Material</span></summary><fieldset aria-labelledby="facetbox2"><ul class="c-checkbox--2column"><li class=""><input type="checkbox" id="supp_file_types-video" class="c-checkbox__input" name="supp_file_types" value="video"/><label for="supp_file_types-video" class="c-checkbox__label">Video<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-audio" class="c-checkbox__input" name="supp_file_types" value="audio"/><label for="supp_file_types-audio" class="c-checkbox__label">Audio<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-images" class="c-checkbox__input" name="supp_file_types" value="images"/><label for="supp_file_types-images" class="c-checkbox__label">Images<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-zip" class="c-checkbox__input" name="supp_file_types" value="zip"/><label for="supp_file_types-zip" class="c-checkbox__label">Zip<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="supp_file_types-other_files" class="c-checkbox__input" name="supp_file_types" value="other files"/><label for="supp_file_types-other_files" class="c-checkbox__label">Other files<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox3">Publication Year</span></summary><fieldset aria-labelledby="facetbox3"><div class="c-pubyear"><div class="c-pubyear__field"><label for="c-pubyear__textfield1">From:</label><input type="text" id="c-pubyear__textfield1" name="pub_year_start" maxLength="4" placeholder="1900" value=""/></div><div class="c-pubyear__field"><label for="c-pubyear__textfield2">To:</label><input type="text" id="c-pubyear__textfield2" name="pub_year_end" maxLength="4" placeholder="2025" value=""/></div><button class="c-pubyear__button">Apply</button></div></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox4">Campus</span></summary><fieldset aria-labelledby="facetbox4"><ul class="c-checkbox"><li class=""><input type="checkbox" id="campuses-ucb" class="c-checkbox__input" name="campuses" value="ucb"/><label for="campuses-ucb" class="c-checkbox__label">UC Berkeley<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucd" class="c-checkbox__input" name="campuses" value="ucd"/><label for="campuses-ucd" class="c-checkbox__label">UC Davis<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-uci" class="c-checkbox__input" name="campuses" value="uci"/><label for="campuses-uci" class="c-checkbox__label">UC Irvine<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucla" class="c-checkbox__input" name="campuses" value="ucla"/><label for="campuses-ucla" class="c-checkbox__label">UCLA<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucm" class="c-checkbox__input" name="campuses" value="ucm"/><label for="campuses-ucm" class="c-checkbox__label">UC Merced<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucr" class="c-checkbox__input" name="campuses" value="ucr"/><label for="campuses-ucr" class="c-checkbox__label">UC Riverside<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsd" class="c-checkbox__input" name="campuses" value="ucsd"/><label for="campuses-ucsd" class="c-checkbox__label">UC San Diego<!-- --> (<!-- -->3<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsf" class="c-checkbox__input" name="campuses" value="ucsf"/><label for="campuses-ucsf" class="c-checkbox__label">UCSF<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsb" class="c-checkbox__input" name="campuses" value="ucsb"/><label for="campuses-ucsb" class="c-checkbox__label">UC Santa Barbara<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucsc" class="c-checkbox__input" name="campuses" value="ucsc"/><label for="campuses-ucsc" class="c-checkbox__label">UC Santa Cruz<!-- --> (<!-- -->0<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-ucop" class="c-checkbox__input" name="campuses" value="ucop"/><label for="campuses-ucop" class="c-checkbox__label">UC Office of the President<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-lbnl" class="c-checkbox__input" name="campuses" value="lbnl"/><label for="campuses-lbnl" class="c-checkbox__label">Lawrence Berkeley National Laboratory<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="campuses-anrcs" class="c-checkbox__input" name="campuses" value="anrcs"/><label for="campuses-anrcs" class="c-checkbox__label">UC Agriculture &amp; Natural Resources<!-- --> (<!-- -->0<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox5">Department</span></summary><fieldset aria-labelledby="facetbox5"><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-uciess" class="c-checkbox__input" name="departments" value="uciess"/><label for="departments-uciess" class="c-checkbox__label">Department of Earth System Science<!-- --> (<!-- -->7<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-ics" class="c-checkbox__input" name="departments" value="ics"/><label for="departments-ics" class="c-checkbox__label">Donald Bren School of Information and Computer Sciences<!-- --> (<!-- -->2<!-- -->)</label><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-ics_cs" class="c-checkbox__input" name="departments" value="ics_cs"/><label for="departments-ics_cs" class="c-checkbox__label">Department of Computer Science<!-- --> (<!-- -->2<!-- -->)</label></li></ul></li><li class=""><input type="checkbox" id="departments-rgpo" class="c-checkbox__input" name="departments" value="rgpo"/><label for="departments-rgpo" class="c-checkbox__label">Research Grants Program Office<!-- --> (<!-- -->2<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-lbnl_cs" class="c-checkbox__input" name="departments" value="lbnl_cs"/><label for="departments-lbnl_cs" class="c-checkbox__label">Computing Sciences<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-lbnl_ees" class="c-checkbox__input" name="departments" value="lbnl_ees"/><label for="departments-lbnl_ees" class="c-checkbox__label">Earth &amp; Environmental Sciences<!-- --> (<!-- -->1<!-- -->)</label></li><li class=""><input type="checkbox" id="departments-uci_eng" class="c-checkbox__input" name="departments" value="uci_eng"/><label for="departments-uci_eng" class="c-checkbox__label">Samueli School of Engineering<!-- --> (<!-- -->1<!-- -->)</label><ul class="c-checkbox"><li class=""><input type="checkbox" id="departments-uci_eng_cee" class="c-checkbox__input" name="departments" value="uci_eng_cee"/><label for="departments-uci_eng_cee" class="c-checkbox__label">Civil and Environmental Engineering<!-- --> (<!-- -->1<!-- -->)</label></li></ul></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox6">Journal</span></summary><fieldset aria-labelledby="facetbox6"><ul class="c-checkbox"></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox7">Discipline</span></summary><fieldset aria-labelledby="facetbox7"><ul class="c-checkbox"><li class=""><input type="checkbox" id="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__input" name="disciplines" value="Physical Sciences and Mathematics"/><label for="disciplines-Physical_Sciences_and_Mathematics" class="c-checkbox__label">Physical Sciences and Mathematics<!-- --> (<!-- -->3<!-- -->)</label></li></ul></fieldset></details><details class="c-facetbox"><summary class="c-facetbox__summary"><span id="facetbox8">Reuse License</span></summary><fieldset aria-labelledby="facetbox8"><ul class="c-checkbox"><li class="c-checkbox__attrib-cc-by"><input type="checkbox" id="rights-CC_BY" class="c-checkbox__input" name="rights" value="CC BY"/><label for="rights-CC_BY" class="c-checkbox__label">BY - Attribution required<!-- --> (<!-- -->5<!-- -->)</label></li></ul></fieldset></details></div></div><button type="submit" id="facet-form-submit" style="display:none">Search</button></div></aside><main id="maincontent"><section class="o-columnbox1"><header><h2 class="o-columnbox1__heading" aria-live="polite">Scholarly Works (<!-- -->11 results<!-- -->)</h2></header><div class="c-sortpagination"><div class="c-sort"><div class="o-input__droplist1"><label for="c-sort1">Sort By:</label><select name="sort" id="c-sort1" form="facetForm"><option selected="" value="rel">Relevance</option><option value="a-title">A-Z By Title</option><option value="z-title">Z-A By Title</option><option value="a-author">A-Z By Author</option><option value="z-author">Z-A By Author</option><option value="asc">Date Ascending</option><option value="desc">Date Descending</option></select></div><div class="o-input__droplist1 c-sort__page-input"><label for="c-sort2">Show:</label><select name="rows" id="c-sort2" form="facetForm"><option selected="" value="10">10</option><option value="20">20</option></select></div></div><input type="hidden" name="start" form="facetForm" value="0"/><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li></ul></nav></div><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9k7037cz"><div class="c-clientmarkup">Present-day climate forcing and response from black carbon in snow</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AFlanner%2C%20Mark%20G">Flanner, Mark G</a>; </li><li><a href="/search/?q=author%3AZender%2C%20Charles%20S">Zender, Charles S</a>; </li><li><a href="/search/?q=author%3ARanderson%2C%20James%20T">Randerson, James T</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uciess_rw">Faculty Publications</a> (<!-- -->2007<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">We apply our Snow, Ice, and Aerosol Radiative (SNICAR) model, coupled to a general circulation model with prognostic carbon aerosol transport, to improve understanding of climate forcing and response from black carbon (BC) in snow. Building on two previous studies, we account for interannually varying biomass burning BC emissions, snow aging, and aerosol scavenging by snow meltwater. We assess uncertainty in forcing estimates from these factors, as well as BC optical properties and snow cover fraction. BC emissions are the largest source of uncertainty, followed by snow aging. The rate of snow aging determines snowpack effective radius (<em>r</em> <sub>e</sub>), which directly controls snow reflectance and the magnitude of albedo change caused by BC. For a reasonable <em>r</em> <sub>e</sub> range, reflectance reduction from BC varies threefold. Inefficient meltwater scavenging keeps hydrophobic impurities near the surface during melt and enhances forcing. Applying biomass burning BC emission inventories for a strong (1998) and weak (2001) boreal fire year, we estimate global annual mean BC/snow surface radiative forcing from all sources (fossil fuel, biofuel, and biomass burning) of +0.054 (0.007–0.13) and +0.049 (0.007–0.12) W m<sup>−2</sup>, respectively. Snow forcing from only fossil fuel + biofuel sources is +0.043 W m<sup>−2</sup> (forcing from only fossil fuels is +0.033 W m<sup>−2</sup>), suggesting that the anthropogenic contribution to total forcing is at least 80%. The 1998 global land and sea-ice snowpack absorbed 0.60 and 0.23 W m<sup>−2</sup>, respectively, because of direct BC/snow forcing. The forcing is maximum coincidentally with snowmelt onset, triggering strong snow-albedo feedback in local springtime. Consequently, the “efficacy” of BC/snow forcing is more than three times greater than forcing by CO<sub>2</sub>. The 1998 and 2001 land snowmelt rates north of 50°N are 28% and 19% greater in the month preceding maximum melt of control simulations without BC in snow. With climate feedbacks, global annual mean 2-meter air temperature warms 0.15 and 0.10°C, when BC is included in snow, whereas annual arctic warming is 1.61 and 0.50°C. Stronger high-latitude climate response in 1998 than 2001 is at least partially caused by boreal fires, which account for nearly all of the 35% biomass burning contribution to 1998 arctic forcing. Efficacy was anomalously large in this experiment, however, and more research is required to elucidate the role of boreal fires, which we suggest have maximum arctic BC/snow forcing potential during April–June. Model BC concentrations in snow agree reasonably well (<em>r</em> = 0.78) with a set of 23 observations from various locations, spanning nearly 4 orders of magnitude. We predict concentrations in excess of 1000 ng g<sup>−1</sup> for snow in northeast China, enough to lower snow albedo by more than 0.13. The greatest instantaneous forcing is over the Tibetan Plateau, exceeding 20 W m<sup>−2</sup> in some places during spring. These results indicate that snow darkening is an important component of carbon aerosol climate forcing.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9k7037cz"><img src="/cms-assets/c61d552e1d7844ba66298a3814b94c552a2807ef028014110664114d41e2729d" alt="Cover page: Present-day climate forcing and response from black carbon in snow"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/22g5w0mp"><div class="c-clientmarkup">Climatic Responses to Future Trans‐Arctic Shipping</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AStephenson%2C%20Scott%20R">Stephenson, Scott R</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Wenshan">Wang, Wenshan</a>; </li><li><a href="/search/?q=author%3AZender%2C%20Charles%20S">Zender, Charles S</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Hailong">Wang, Hailong</a>; </li><li><a href="/search/?q=author%3ADavis%2C%20Steven%20J">Davis, Steven J</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uci_postprints">UC Irvine Previously Published Works</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">As global temperatures increase, sea ice loss will increasingly enable commercial shipping traffic to cross the Arctic Ocean, where the ships' gas and particulate emissions may have strong regional effects. Here we investigate impacts of shipping emissions on Arctic climate using a fully coupled Earth system model (CESM 1.2.2) and a suite of newly developed projections of 21st-century trans-Arctic shipping emissions. We find that trans-Arctic shipping will reduce Arctic warming by nearly 1&nbsp;°C by 2099, due to sulfate-driven liquid water cloud formation. Cloud fraction and liquid water path exhibit significant positive trends, cooling the lower atmosphere and surface. Positive feedbacks from sea ice growth-induced albedo increases and decreased downwelling longwave radiation due to reduced water vapor content amplify the cooling relative to the shipping-free Arctic. Our findings thus point to the complexity in Arctic climate responses to increased shipping traffic, justifying further study and policy considerations as trade routes open.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/22g5w0mp"><img src="/cms-assets/89097ea165b09a2a9460e37130f01c54efefd46f32644e6c1938fb6b797ddce4" alt="Cover page: Climatic Responses to Future Trans‐Arctic Shipping"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/8q3815jn"><div class="c-clientmarkup">Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AMahowald%2C%20Natalie%20M">Mahowald, Natalie M</a>; </li><li><a href="/search/?q=author%3AMuhs%2C%20Daniel%20R">Muhs, Daniel R</a>; </li><li><a href="/search/?q=author%3ALevis%2C%20Samuel">Levis, Samuel</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a>; </li><li><a href="/search/?q=author%3AYoshioka%2C%20Masaru">Yoshioka, Masaru</a>; </li><li><a href="/search/?q=author%3AZender%2C%20Charles%20S">Zender, Charles S</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALuo%2C%20Chao">Luo, Chao</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uciess_rw">Faculty Publications</a> (<!-- -->2006<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Desert dust simulations generated by the National Center for Atmospheric Research's Community Climate System Model for the current climate are shown to be consistent with present day satellite and deposition data. The response of the dust cycle to last glacial maximum, preindustrial, modern, and doubled-carbon dioxide climates is analyzed. Only natural (non-land use related) dust sources are included in this simulation. Similar to some previous studies, dust production mainly responds to changes in the source areas from vegetation changes, not from winds or soil moisture changes alone. This model simulates a +92%, +33%, and −60% change in dust loading for the last glacial maximum, preindustrial, and doubled-carbon dioxide climate, respectively, when impacts of carbon dioxide fertilization on vegetation are included in the model. Terrestrial sediment records from the last glacial maximum compiled here indicate a large underestimate of deposition in continental regions, probably due to the lack of simulation of glaciogenic dust sources. In order to include the glaciogenic dust sources as a first approximation, we designate the location of these sources, and infer the size of the sources using an inversion method that best matches the available data. The inclusion of these inferred glaciogenic dust sources increases our dust flux in the last glacial maximum from 2.1 to 3.3 times current deposition.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/8q3815jn"><img src="/cms-assets/efe0eab1659d7159d715fc1a678e0cbf0cb410c459fee1f85a7bd4f061e72e0a" alt="Cover page: Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/3410j40f"><div class="c-clientmarkup">The role of interdecadal climate oscillations in driving Arctic atmospheric river trends.</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AMa%2C%20Weiming">Ma, Weiming</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Hailong">Wang, Hailong</a>; </li><li><a href="/search/?q=author%3ALeung%2C%20L">Leung, L</a>; </li><li><a href="/search/?q=author%3ALu%2C%20Jian">Lu, Jian</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip">Rasch, Philip</a>; </li><li><a href="/search/?q=author%3AFu%2C%20Qiang">Fu, Qiang</a>; </li><li><a href="/search/?q=author%3AKravitz%2C%20Ben">Kravitz, Ben</a>; </li><li><a href="/search/?q=author%3AZou%2C%20Yufei">Zou, Yufei</a>; </li><li><a href="/search/?q=author%3ACassano%2C%20John">Cassano, John</a>; </li><li><a href="/search/?q=author%3AMaslowski%2C%20Wieslaw">Maslowski, Wieslaw</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AChen%2C%20Gang">Chen, Gang</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucla_postprints">UCLA Previously Published Works</a> (<!-- -->2024<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/3410j40f"><img src="/cms-assets/b3274de56f82f798fd453a4f89ac88e5132c61d92b5b227d8c7e9a97c8d51dd9" alt="Cover page: The role of interdecadal climate oscillations in driving Arctic atmospheric river trends."/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/95t592v9"><div class="c-clientmarkup">Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AXu%2C%20Li">Xu, Li</a>; </li><li><a href="/search/?q=author%3APierce%2C%20David%20W">Pierce, David W</a>; </li><li><a href="/search/?q=author%3ARussell%2C%20Lynn%20M">Russell, Lynn M</a>; </li><li><a href="/search/?q=author%3AMiller%2C%20Arthur%20J">Miller, Arthur J</a>; </li><li><a href="/search/?q=author%3ASomerville%2C%20Richard%20CJ">Somerville, Richard CJ</a>; </li><li><a href="/search/?q=author%3ATwohy%2C%20Cynthia%20H">Twohy, Cynthia H</a>; </li><li><a href="/search/?q=author%3AGhan%2C%20Steven%20J">Ghan, Steven J</a>; </li><li><a href="/search/?q=author%3ASingh%2C%20Balwinder">Singh, Balwinder</a>; </li><li><a href="/search/?q=author%3AYoon%2C%20Jin%E2%80%90Ho">Yoon, Jin‐Ho</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2015<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">This study examines multiyear climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150 year simulation for preindustrial conditions of the Community Earth System Model version 1.0. The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the El Niño-Southern Oscillation cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency variability in the Pacific Ocean similar to the Interdecadal Pacific Oscillation but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variability may contribute to SWCF variability in the tropical Pacific, explaining up to 20-30% of the variance in that region. Elsewhere, there is only a small sea salt aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multiyear aerosol-cloud-wind interaction.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/95t592v9"><img src="/cms-assets/7fcbf52415a1a5a2c24302c69c062b043c85bfde3606b30b9b9371aa69358de2" alt="Cover page: Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/0zn2s5r7"><div class="c-clientmarkup">Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AYang%2C%20Yang">Yang, Yang</a>; </li><li><a href="/search/?q=author%3ARussell%2C%20Lynn%20M">Russell, Lynn M</a>; </li><li><a href="/search/?q=author%3AXu%2C%20Li">Xu, Li</a>; </li><li><a href="/search/?q=author%3ALou%2C%20Sijia">Lou, Sijia</a>; </li><li><a href="/search/?q=author%3ALamjiri%2C%20Maryam%20A">Lamjiri, Maryam A</a>; </li><li><a href="/search/?q=author%3ASomerville%2C%20Richard%20CJ">Somerville, Richard CJ</a>; </li><li><a href="/search/?q=author%3AMiller%2C%20Arthur%20J">Miller, Arthur J</a>; </li><li><a href="/search/?q=author%3ACayan%2C%20Daniel%20R">Cayan, Daniel R</a>; </li><li><a href="/search/?q=author%3ADeFlorio%2C%20Michael%20J">DeFlorio, Michael J</a>; </li><li><a href="/search/?q=author%3AGhan%2C%20Steven%20J">Ghan, Steven J</a>; </li><li><a href="/search/?q=author%3ALiu%2C%20Ying">Liu, Ying</a>; </li><li><a href="/search/?q=author%3ASingh%2C%20Balwinder">Singh, Balwinder</a>; </li><li><a href="/search/?q=author%3AWang%2C%20Hailong">Wang, Hailong</a>; </li><li><a href="/search/?q=author%3AYoon%2C%20Jin%E2%80%90Ho">Yoon, Jin‐Ho</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/ucsd_postprints">UC San Diego Previously Published Works</a> (<!-- -->2016<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Niño-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth’s Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60Wm-2, with weaker effects of 10-40Wm-2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/0zn2s5r7"><img src="/cms-assets/416486ea861c68405300704cca1f0e456a68e026044f2a8390c6109026fd62d6" alt="Cover page: Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/6127d7bs"><div class="c-clientmarkup">Physics–Dynamics Coupling in weather, climate and Earth system models: Challenges and recent progress</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AGross%2C%20Markus">Gross, Markus</a>; </li><li><a href="/search/?q=author%3AWan%2C%20Hui">Wan, Hui</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a>; </li><li><a href="/search/?q=author%3ACaldwell%2C%20Peter%20M">Caldwell, Peter M</a>; </li><li><a href="/search/?q=author%3AWilliamson%2C%20David%20L">Williamson, David L</a>; </li><li><a href="/search/?q=author%3AKlocke%2C%20Daniel">Klocke, Daniel</a>; </li><li><a href="/search/?q=author%3AJablonowski%2C%20Christiane">Jablonowski, Christiane</a>; </li><li><a href="/search/?q=author%3AThatcher%2C%20Diana%20R">Thatcher, Diana R</a>; </li><li><a href="/search/?q=author%3AWood%2C%20Nigel">Wood, Nigel</a>; </li><li><a href="/search/?q=author%3ACullen%2C%20Mike">Cullen, Mike</a>; </li><li><a href="/search/?q=author%3ABeare%2C%20Bob">Beare, Bob</a>; </li><li><a href="/search/?q=author%3AWillett%2C%20Martin">Willett, Martin</a>; </li><li><a href="/search/?q=author%3ALemari%C3%A9%2C%20Florian">Lemarié, Florian</a>; </li><li><a href="/search/?q=author%3ABlayo%2C%20Eric">Blayo, Eric</a>; </li><li><a href="/search/?q=author%3AMalardel%2C%20Sylvie">Malardel, Sylvie</a>; </li><li><a href="/search/?q=author%3ATermonia%2C%20Piet">Termonia, Piet</a>; </li><li><a href="/search/?q=author%3AGassmann%2C%20Almut">Gassmann, Almut</a>; </li><li><a href="/search/?q=author%3ALauritzen%2C%20Peter%20H">Lauritzen, Peter H</a>; </li><li><a href="/search/?q=author%3AJohansen%2C%20Hans">Johansen, Hans</a>; </li><li><a href="/search/?q=author%3AZarzycki%2C%20Colin%20M">Zarzycki, Colin M</a>; </li><li><a href="/search/?q=author%3ASakaguchi%2C%20Koichi">Sakaguchi, Koichi</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3ALeung%2C%20Ruby">Leung, Ruby</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/lbnl_rw">LBL Publications</a> (<!-- -->2018<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">Numerical weather, climate, or Earth system models involve the coupling of components. At a broad level, these components can be classified as the resolved fluid dynamics, unresolved fluid dynamical aspects (i.e., those represented by physical parameterizations such as subgrid-scale mixing), and nonfluid dynamical aspects such as radiation and microphysical processes. Typically, each component is developed, at least initially, independently.Once development ismature, the components are coupled to deliver a model of the required complexity. The implementation of the coupling can have a significant impact on the model.As the error associated with each component decreases, the errors introduced by the coupling will eventually dominate. Hence, any improvement in one of the components is unlikely to improve the performance of the overall system. The challenges associated with combining the components to create a coherentmodel are here termed physics-dynamics coupling. The issue goes beyond the coupling between the parameterizations and the resolved fluid dynamics. This paper highlights recent progress and some of the current challenges. It focuses on three objectives: to illustrate the phenomenology of the coupling problemwith references to examples in the literature, to show howthe problem can be analyzed, and to create awareness of the issue across the disciplines and specializations. The topics addressed are different ways of advancing full models in time, approaches to understanding the role of the coupling and evaluation of approaches, coupling ocean and atmosphere models, thermodynamic compatibility between model components, and emerging issues such as those that arise as model resolutions increase and/ormodels use variable resolutions.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/6127d7bs"><img src="/cms-assets/c6194f9b91619e9440265e47b42b1031a12b7ba76ab40f9606db56fce67e14ae" alt="Cover page: Physics–Dynamics Coupling in weather, climate and Earth system models: Challenges and recent progress"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/9zh399j3"><div class="c-clientmarkup">Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3ASeinfeld%2C%20John%20H">Seinfeld, John H</a>; </li><li><a href="/search/?q=author%3ABretherton%2C%20Christopher">Bretherton, Christopher</a>; </li><li><a href="/search/?q=author%3ACarslaw%2C%20Kenneth%20S">Carslaw, Kenneth S</a>; </li><li><a href="/search/?q=author%3ACoe%2C%20Hugh">Coe, Hugh</a>; </li><li><a href="/search/?q=author%3ADeMott%2C%20Paul%20J">DeMott, Paul J</a>; </li><li><a href="/search/?q=author%3ADunlea%2C%20Edward%20J">Dunlea, Edward J</a>; </li><li><a href="/search/?q=author%3AFeingold%2C%20Graham">Feingold, Graham</a>; </li><li><a href="/search/?q=author%3AGhan%2C%20Steven">Ghan, Steven</a>; </li><li><a href="/search/?q=author%3AGuenther%2C%20Alex%20B">Guenther, Alex B</a>; </li><li><a href="/search/?q=author%3AKahn%2C%20Ralph">Kahn, Ralph</a>; </li><li><a href="/search/?q=author%3AKraucunas%2C%20Ian">Kraucunas, Ian</a>; </li><li><a href="/search/?q=author%3AKreidenweis%2C%20Sonia%20M">Kreidenweis, Sonia M</a>; </li><li><a href="/search/?q=author%3AMolina%2C%20Mario%20J">Molina, Mario J</a>; </li><li><a href="/search/?q=author%3ANenes%2C%20Athanasios">Nenes, Athanasios</a>; </li><li><a href="/search/?q=author%3APenner%2C%20Joyce%20E">Penner, Joyce E</a>; </li><li><a href="/search/?q=author%3APrather%2C%20Kimberly%20A">Prather, Kimberly A</a>; </li><li><a href="/search/?q=author%3ARamanathan%2C%20V">Ramanathan, V</a>; </li><li><a href="/search/?q=author%3ARamaswamy%2C%20Venkatachalam">Ramaswamy, Venkatachalam</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a>; </li><li><a href="/search/?q=author%3ARavishankara%2C%20AR">Ravishankara, AR</a>; </li><li><a href="/search/?q=author%3ARosenfeld%2C%20Daniel">Rosenfeld, Daniel</a>; </li><li><a href="/search/?q=author%3AStephens%2C%20Graeme">Stephens, Graeme</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AWood%2C%20Robert">Wood, Robert</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uci_postprints">UC Irvine Previously Published Works</a> (<!-- -->2016<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup">The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.</div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/9zh399j3"><img src="/cms-assets/0b7f0640e44eb46471e9c4f11a3cdd53553f2d5b831c4b2c0484eab2f0de1f6e" alt="Cover page: Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-article">Article</li><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/75x7340d"><div class="c-clientmarkup">Evaluation and intercomparison of global atmospheric transport models using 222 Rn and other short-lived tracers</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3AJacob%2C%20Daniel%20J">Jacob, Daniel J</a>; </li><li><a href="/search/?q=author%3APrather%2C%20Michael%20J">Prather, Michael J</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip%20J">Rasch, Philip J</a>; </li><li><a href="/search/?q=author%3AShia%2C%20Run-Lie">Shia, Run-Lie</a>; </li><li><a href="/search/?q=author%3ABalkanski%2C%20Yves%20J">Balkanski, Yves J</a>; </li><li><a href="/search/?q=author%3ABeagley%2C%20Stephen%20R">Beagley, Stephen R</a>; </li><li><a href="/search/?q=author%3ABergmann%2C%20Daniel%20J">Bergmann, Daniel J</a>; </li><li><a href="/search/?q=author%3ABlackshear%2C%20W.%20T">Blackshear, W. T</a>; </li><li><a href="/search/?q=author%3ABrown%2C%20Margaret">Brown, Margaret</a>; </li><li><a href="/search/?q=author%3AChiba%2C%20Masaru">Chiba, Masaru</a>; </li><li><a href="/search/?q=author%3AChipperfield%2C%20Martyn%20P">Chipperfield, Martyn P</a>; </li><li><a href="/search/?q=author%3Ade%20Grandpra%2C%20J.">de Grandpra, J.</a>; </li><li><a href="/search/?q=author%3ADignon%2C%20Jane%20E">Dignon, Jane E</a>; </li><li><a href="/search/?q=author%3AFeichter%2C%20Johann">Feichter, Johann</a>; </li><li><a href="/search/?q=author%3AGenthon%2C%20Christophe">Genthon, Christophe</a>; </li><li><a href="/search/?q=author%3AGrose%2C%20W.%20L">Grose, W. L</a>; </li><li><a href="/search/?q=author%3AKasibhatla%2C%20Prasad%20S">Kasibhatla, Prasad S</a>; </li><li><a href="/search/?q=author%3AKahler%2C%20Ines">Kahler, Ines</a>; </li><li><a href="/search/?q=author%3AKritz%2C%20Mark%20A">Kritz, Mark A</a>; </li><li><a href="/search/?q=author%3ALaw%2C%20Kathy">Law, Kathy</a>; </li><li><a href="/search/?q=author%3APenner%2C%20Joyce%20E">Penner, Joyce E</a>; </li><li><a href="/search/?q=author%3ARamonet%2C%20Michel">Ramonet, Michel</a>; </li><li><a href="/search/?q=author%3AReeves%2C%20Claire%20E">Reeves, Claire E</a>; </li><li><a href="/search/?q=author%3ARotman%2C%20Douglas%20A">Rotman, Douglas A</a>; </li><li><a href="/search/?q=author%3AStockwell%2C%20Deianeira%20Z">Stockwell, Deianeira Z</a>; </li><li><a href="/search/?q=author%3AVan%20Velthoven%2C%20Peter%20F.%20J">Van Velthoven, Peter F. J</a>; </li><li><a href="/search/?q=author%3AVerver%2C%20G">Verver, G</a>; </li><li><a href="/search/?q=author%3AWild%2C%20Oliver">Wild, Oliver</a>; </li><li><a href="/search/?q=author%3AYang%2C%20Hu">Yang, Hu</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AZimmermann%2C%20Peter">Zimmermann, Peter</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uciess_rw">Faculty Publications</a> (<!-- -->1997<!-- -->)</div><div class="c-scholworks__abstract"><div class="c-clientmarkup"><p>Simulations of <sup>222</sup>Rn and other short-lived tracers are used to evaluate and intercompare the representations of convective and synoptic processes in 20 global atmospheric transport models. Results show that most established three-dimensional models simulate vertical mixing in the troposphere to within the constraints offered by the observed mean <sup>222</sup>Rn concentrations and that subgrid parameterization of convection is essential for this purpose. However, none of the models captures the observed variability of <sup>222</sup>Rn concentrations in the upper troposphere, and none reproduces the high <sup>222</sup>Rn concentrations measured at 200 hPa over Hawaii. The established three-dimensional models reproduce the frequency and magnitude of high-<sup>222</sup>Rn episodes observed at Crozet Island in the Indian Ocean, demonstrating that they can resolve the synoptic-scale transport of continental plumes with no significant numerical diffusion. Large differences between models are found in the rates of meridional transport in the upper troposphere (interhemispheric exchange, exchange between tropics and high latitudes). The four two-dimensional models which participated in the intercomparison tend to underestimate the rate of vertical transport from the lower to the upper troposphere but show concentrations of <sup>222</sup>Rn in the lower troposphere that are comparable to the zonal mean values in the three-dimensional models.</p></div></div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/75x7340d"><img src="/cms-assets/282ba7c8b3d56b12f992d2a2b0944613fa06dd44da09b632c48084ffe1f98e6b" alt="Cover page: Evaluation and intercomparison of global atmospheric transport models using 222 Rn and other short-lived tracers"/></a><a href="https://creativecommons.org/licenses/by/4.0/" class="c-scholworks__license"><img class="c-lazyimage" data-src="/images/cc-by-small.svg" alt="Creative Commons &#x27;BY&#x27; version 4.0 license"/></a></div></section><section class="c-scholworks"><div class="c-scholworks__main-column"><ul class="c-scholworks__tag-list"><li class="c-scholworks__tag-peer">Peer Reviewed</li></ul><div><h3 class="c-scholworks__heading"><a href="/uc/item/2f76j72x"><div class="c-clientmarkup">Climate System Scenario Tables</div></a></h3></div><div class="c-authorlist"><ul class="c-authorlist__list"><li class="c-authorlist__begin"><a href="/search/?q=author%3APrather%2C%20Michael">Prather, Michael</a>; </li><li><a href="/search/?q=author%3AFlato%2C%20Gregory">Flato, Gregory</a>; </li><li><a href="/search/?q=author%3AFriedlingstein%2C%20Pierre">Friedlingstein, Pierre</a>; </li><li><a href="/search/?q=author%3AJones%2C%20Christopher">Jones, Christopher</a>; </li><li><a href="/search/?q=author%3ALamarque%2C%20Jean-Francois">Lamarque, Jean-Francois</a>; </li><li><a href="/search/?q=author%3ALiao%2C%20Hong">Liao, Hong</a>; </li><li><a href="/search/?q=author%3ARasch%2C%20Philip">Rasch, Philip</a>; </li><li><a href="/search/?q=author%3ABoucher%2C%20Olivier">Boucher, Olivier</a>; </li><li><a href="/search/?q=author%3ABreon%2C%20Francois-Marie">Breon, Francois-Marie</a>; </li><li><a href="/search/?q=author%3ACarter%2C%20Tim">Carter, Tim</a>; </li><li><a href="/search/?q=author%3ACollins%2C%20William">Collins, William</a>; </li><li><a href="/search/?q=author%3ADentener%2C%20Frank%20J">Dentener, Frank J</a>; </li><li><a href="/search/?q=author%3ADlugokencky%2C%20Edward%20J">Dlugokencky, Edward J</a>; </li><li><a href="/search/?q=author%3ADufresne%2C%20Jean-Louis">Dufresne, Jean-Louis</a>; </li><li><a href="/search/?q=author%3AErisman%2C%20Jan%20Willem">Erisman, Jan Willem</a>; </li><li><a href="/search/?q=author%3AEyring%2C%20Veronika">Eyring, Veronika</a>; </li><li><a href="/search/?q=author%3AFiore%2C%20Arlene%20M">Fiore, Arlene M</a>; </li><li><a href="/search/?q=author%3AGalloway%2C%20James">Galloway, James</a>; </li><li><a href="/search/?q=author%3AGregory%2C%20Jonathan%20M">Gregory, Jonathan M</a>; </li><li><a href="/search/?q=author%3AHawkins%2C%20Ed">Hawkins, Ed</a>; </li><li><a href="/search/?q=author%3AHolmes%2C%20Chris">Holmes, Chris</a>; </li><li><a href="/search/?q=author%3AJohn%2C%20Jasmin">John, Jasmin</a>; </li><li><a href="/search/?q=author%3AJohns%2C%20Tim">Johns, Tim</a>; </li><li><a href="/search/?q=author%3ALo%2C%20Fiona">Lo, Fiona</a>; </li><li><a href="/search/?q=author%3AMahowald%2C%20Natalie">Mahowald, Natalie</a>; </li><li><a href="/search/?q=author%3AMeinshausen%2C%20Malte">Meinshausen, Malte</a>; </li><li><a href="/search/?q=author%3AMorice%2C%20Colin">Morice, Colin</a>; </li><li><a href="/search/?q=author%3ANaik%2C%20Vaishali">Naik, Vaishali</a>; </li><li><a href="/search/?q=author%3AShindell%2C%20Drew">Shindell, Drew</a>; </li><li><a href="/search/?q=author%3ASmith%2C%20Steven%20J">Smith, Steven J</a>; </li><li><a href="/search/?q=author%3AStevenson%2C%20David">Stevenson, David</a>; </li><li><a href="/search/?q=author%3AThorne%2C%20Peter%20W">Thorne, Peter W</a>; </li><li><a href="/search/?q=author%3Avan%20Oldenborgh%2C%20Geert%20Jan">van Oldenborgh, Geert Jan</a>; </li><li><a href="/search/?q=author%3AVoulgarakis%2C%20Apostolos">Voulgarakis, Apostolos</a>; </li><li><a href="/search/?q=author%3AWild%2C%20Oliver">Wild, Oliver</a>; </li><li><a href="/search/?q=author%3AWuebbles%2C%20Donald">Wuebbles, Donald</a>; </li><li class="c-authorlist__end"><a href="/search/?q=author%3AYoung%2C%20Paul">Young, Paul</a> </li></ul></div><div class="c-scholworks__publication"><a href="/uc/uci_postprints">UC Irvine Previously Published Works</a> (<!-- -->2014<!-- -->)</div><div class="c-scholworks__media"><ul class="c-medialist"></ul></div></div><div class="c-scholworks__ancillary"><a class="c-scholworks__thumbnail" href="/uc/item/2f76j72x"><img src="/cms-assets/694d858335b4eea74a78712bd8376e3a6b8b6e0247e7e22ee54cb1e9669e93a9" alt="Cover page: Climate System Scenario Tables"/></a></div></section><nav class="c-pagination"><ul><li><a href="" aria-label="you are on result set 1" class="c-pagination__item--current">1</a></li><li><a href="" aria-label="go to result set 2" class="c-pagination__item">2</a></li></ul></nav></section></main></form></div><div><div class="c-toplink"><a href="javascript:window.scrollTo(0, 0)">Top</a></div><footer class="c-footer"><nav class="c-footer__nav"><ul><li><a href="/">Home</a></li><li><a href="/aboutEschol">About eScholarship</a></li><li><a href="/campuses">Campus Sites</a></li><li><a href="/ucoapolicies">UC Open Access Policy</a></li><li><a href="/publishing">eScholarship Publishing</a></li><li><a href="https://www.cdlib.org/about/accessibility.html">Accessibility</a></li><li><a href="/privacypolicy">Privacy Statement</a></li><li><a href="/policies">Site Policies</a></li><li><a href="/terms">Terms of Use</a></li><li><a href="/login"><strong>Admin Login</strong></a></li><li><a href="https://help.escholarship.org"><strong>Help</strong></a></li></ul></nav><div class="c-footer__logo"><a href="/"><img class="c-lazyimage" data-src="/images/logo_footer-eschol.svg" alt="eScholarship, University of California"/></a></div><div class="c-footer__copyright">Powered by the<br/><a href="http://www.cdlib.org">California Digital Library</a><br/>Copyright © 2017<br/>The Regents of the University of California</div></footer></div></div></div></div> <script src="/js/vendors~app-bundle-2aefc956e545366a5d4e.js"></script> <script src="/js/app-bundle-3c8ebc2ec05dcc3202fd.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10