CINXE.COM
Search results for: strength development
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: strength development</title> <meta name="description" content="Search results for: strength development"> <meta name="keywords" content="strength development"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="strength development" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="strength development"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19346</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: strength development</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19346</span> Development of the Accelerator Applied to an Early Stage High-Strength Shotcrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayanori%20Sugiyama">Ayanori Sugiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahisa%20Hanei"> Takahisa Hanei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhide%20Higo"> Yasuhide Higo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Domestic demand for the construction of tunnels has been increasing in recent years in Japan. To meet this demand, various construction materials and construction methods have been developed to attain higher strength, reduction of negative impact on the environment and improvement for working conditions. In this report, we would like to introduce the newly developed shotcrete with superior hardening properties which were tested through the actual machine scale and its workability and strength development were evaluated. As a result, this new tunnel construction method was found to achieve higher workability and quicker strength development in only a couple of minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerator" title="accelerator">accelerator</a>, <a href="https://publications.waset.org/abstracts/search?q=shotcrete" title=" shotcrete"> shotcrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=high-strength" title=" high-strength"> high-strength</a> </p> <a href="https://publications.waset.org/abstracts/81877/development-of-the-accelerator-applied-to-an-early-stage-high-strength-shotcrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19345</span> Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Won%20Kim"> Ju-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Sug%20Cho"> Myung-Sug Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20curing" title="concrete curing">concrete curing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20piezoelectric%20sensor" title=" embedded piezoelectric sensor"> embedded piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing%20impedance" title=" self-sensing impedance "> self-sensing impedance </a> </p> <a href="https://publications.waset.org/abstracts/2720/real-time-compressive-strength-monitoring-for-npp-concrete-construction-using-an-embedded-piezoelectric-self-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19344</span> Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Ryu">G. S. Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Koh"> K. T. Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Kim"> H. Y. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20H.%20An"> G. H. An</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Seo"> D. W. Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali-activated%20material" title="alkali-activated material">alkali-activated material</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace%20slag" title=" blast furnace slag"> blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20development" title=" strength development"> strength development</a> </p> <a href="https://publications.waset.org/abstracts/79904/characteristic-on-compressive-strength-of-blast-slag-and-fly-ash-hybrid-geopolymer-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19343</span> Stabilisation of a Soft Soil by Alkaline Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Yaghoubi">Mohammadjavad Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20M.%20Disfani"> Mahdi M. Disfani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Myint%20W.%20Bo"> Myint W. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20P.%20Darmawan"> Stephen P. Darmawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title="alkaline activation">alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a> </p> <a href="https://publications.waset.org/abstracts/67439/stabilisation-of-a-soft-soil-by-alkaline-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19342</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19341</span> Effect of Concrete Waste Quality on the Compressive Strength of Recycled Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebaili%20Bachir">Kebaili Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reuse of concrete waste as a secondary aggregate could be an efficient solution for sustainable development and long-term environmental protection. The variable nature of waste concrete, with various compressive strengths, can have a negative effect on the final compressive strength of recycled concrete. Accordingly, an experimental test programme was developed to evaluate the effect of parent concrete qualities on the performance of recycled concrete. Three grades with different compressive strengths 10MPa, 20MPa, and 30MPa were considered in the study; moreover, an unknown compressive strength was introduced as well. The trial mixes used 40% secondary aggregates (both course and fine) and 60% of natural aggregates. The compressive strength of the test concrete decrease between 15 and 25% compared to normal concrete with no secondary aggregates. This work proves that the strength properties of the parent concrete have a limited effect on the compressive strength of recycled concrete. Low compressive strength parent concrete when crushed generate a high percentage of recycled coarse aggregates with the less attached mortar and give the same compressive strength as an excellent parent concrete. However, the decrease in compressive strength can be mitigated by increasing the cement content 4% by weight of recycled aggregates used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive" title="compressive">compressive</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled" title=" recycled"> recycled</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/86475/effect-of-concrete-waste-quality-on-the-compressive-strength-of-recycled-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19340</span> Compressive Strength Development of Normal Concrete and Self-Consolidating Concrete Incorporated with GGBS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nili">M. Nili</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tavasoli"> S. Tavasoli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Yazdandoost"> A. R. Yazdandoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an experimental investigation on the effect of Isfahan Ground Granulate Blast Furnace Slag (GGBS) on the compressive strength development of self-consolidating concrete (SCC) and normal concrete (NC) was performed. For this purpose, Portland cement type I was replaced with GGBS in various Portions. For NC and SCC Mixes, 10*10*10 cubic cm specimens were tested in 7, 28 and 91 days. It must be stated that in this research water to cement ratio was 0.44, cement used in cubic meter was 418 Kg/m³ and Superplasticizer (SP) Type III used in SCC based on Poly-Carboxylic acid. The results of experiments have shown that increasing GGBS Percentages in both types of concrete reduce Compressive strength in early ages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20concrete" title=" normal concrete"> normal concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=self-consolidating%20concrete" title=" self-consolidating concrete"> self-consolidating concrete</a> </p> <a href="https://publications.waset.org/abstracts/28853/compressive-strength-development-of-normal-concrete-and-self-consolidating-concrete-incorporated-with-ggbs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19339</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19338</span> Development of High Strength Filler Consumables by Means of Calculations and Microstructural Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Holly">S. Holly</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Schnitzer"> R. Schnitzer</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Haslberger"> P. Haslberger</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Z%C3%BCgner"> D. Zügner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of new filler consumables necessitates a high effort regarding samples and experiments to achieve the required mechanical properties and chemistry. In the scope of the development of a metal-cored wire with the target tensile strength of 1150 MPa and acceptable impact toughness, thermodynamic and kinetic calculations via MatCalc were used to reduce the experimental work and the resources required. Micro alloying elements were used to reach the high strength as an alternative approach compared to the conventional solid solution hardening. In order to understand the influence of different micro alloying elements in more detail, the influence of different elements on the precipitation behavior in the weld metal was evaluated. Investigations of the microstructure were made via atom probe and EBSD to understand the effect of micro alloying elements. The calculated results are in accordance with the results obtained by experiments and can be explained by the microstructural investigations. On the example of aluminium, the approach is exemplified and clarifies the efficient way of development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloy%20development" title="alloy development">alloy development</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20steel" title=" high strength steel"> high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=MatCalc" title=" MatCalc"> MatCalc</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-cored%20wire" title=" metal-cored wire"> metal-cored wire</a> </p> <a href="https://publications.waset.org/abstracts/58448/development-of-high-strength-filler-consumables-by-means-of-calculations-and-microstructural-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19337</span> Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Wook%20Shin">Sung-Wook Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Taek%20Chung"> Sung-Taek Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand%20grip%20strength" title="hand grip strength">hand grip strength</a>, <a href="https://publications.waset.org/abstracts/search?q=EMG" title=" EMG"> EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20reaction" title=" visual reaction"> visual reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance" title=" endurance"> endurance</a> </p> <a href="https://publications.waset.org/abstracts/11414/evaluation-of-hand-grip-strength-and-emg-signal-on-visual-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19336</span> Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharmana%20Pradeep">Dharmana Pradeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Kumar%20Patnaikuni"> Chandan Kumar Patnaikuni</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20S.%20Venugopal"> N. V. S. Venugopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title="rice husk ash">rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20phosphate" title=" sodium phosphate"> sodium phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a> </p> <a href="https://publications.waset.org/abstracts/67999/studies-on-partial-replacement-of-cement-by-rice-husk-ash-under-sodium-phosphate-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19335</span> Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.-Y.%20Lee">J.-Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-S.%20Lim"> H.-S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-E.%20Kim"> S.-E. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete%20members" title="prestressed concrete members">prestressed concrete members</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20reinforcing%20bars" title=" high strength reinforcing bars"> high strength reinforcing bars</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/65500/evaluation-of-applicability-of-high-strength-stirrup-for-prestressed-concrete-members" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19334</span> Experimental Study on Stabilisation of a Soft Soil by Alkaline Activation of Industrial By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Yaghoubi">Mohammadjavad Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20M.%20Disfani"> Mahdi M. Disfani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Myint%20W.%20Bo"> Myint W. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20P.%20Darmawan"> Stephen P. Darmawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilising waste materials, such as fly ash (FA) and slag (S) stockpiled in landfills, has drawn the attention of researchers and engineers in the recent years. There is a great potential for usage of these wastes in ground improvement projects, especially where deep deposits of soft compressible soils exist. This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activated FA and S, termed as geopolymer binder, to use in deep soil mixing technology. The strength improvement and the changes in the microstructure of the mixtures have been studied. The results show that using FA and S-based geopolymers can increases the strength significantly. Furthermore, utilising FA and S in ground improvement projects, where large amounts of binders are required, can be a solution to the disposal of these wastes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title="alkaline activation">alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20development" title=" strength development"> strength development</a> </p> <a href="https://publications.waset.org/abstracts/74598/experimental-study-on-stabilisation-of-a-soft-soil-by-alkaline-activation-of-industrial-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19333</span> Utilization of Waste Glass Powder in Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaib%20Salahuddin%20Alzubair%20Suliman">Suhaib Salahuddin Alzubair Suliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20powder" title="glass powder">glass powder</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolana" title=" pozzolana"> pozzolana</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/175562/utilization-of-waste-glass-powder-in-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19332</span> Towards Sustainable Concrete: Maturity Method to Evaluate the Effect of Curing Conditions on the Strength Development in Concrete Structures under Kuwait Environmental Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Al-Fahad">F. Al-Fahad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Chakkamalayath"> J. Chakkamalayath</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Aibani"> A. Al-Aibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional methods of determination of concrete strength under controlled laboratory conditions will not accurately represent the actual strength of concrete developed under site curing conditions. This difference in strength measurement will be more in the extreme environment in Kuwait as it is characterized by hot marine environment with normal temperature in summer exceeding 50°C accompanied by dry wind in desert areas and salt laden wind on marine and on shore areas. Therefore, it is required to have test methods to measure the in-place properties of concrete for quality assurance and for the development of durable concrete structures. The maturity method, which defines the strength of a given concrete mix as a function of its age and temperature history, is an approach for quality control for the production of sustainable and durable concrete structures. The unique harsh environmental conditions in Kuwait make it impractical to adopt experiences and empirical equations developed from the maturity methods in other countries. Concrete curing, especially in the early age plays an important role in developing and improving the strength of the structure. This paper investigates the use of maturity method to assess the effectiveness of three different types of curing methods on the compressive and flexural strength development of one high strength concrete mix of 60 MPa produced with silica fume. This maturity approach was used to predict accurately, the concrete compressive and flexural strength at later ages under different curing conditions. Maturity curves were developed for compressive and flexure strengths for a commonly used concrete mix in Kuwait, which was cured using three different curing conditions, including water curing, external spray coating and the use of internal curing compound during concrete mixing. It was observed that the maturity curve developed for the same mix depends on the type of curing conditions. It can be used to predict the concrete strength under different exposure and curing conditions. This study showed that concrete curing with external spray curing method cannot be recommended to use as it failed to aid concrete in reaching accepted values of strength, especially for flexural strength. Using internal curing compound lead to accepted levels of strength when compared with water cuing. Utilization of the developed maturity curves will help contactors and engineers to determine the in-place concrete strength at any time, and under different curing conditions. This will help in deciding the appropriate time to remove the formwork. The reduction in construction time and cost has positive impacts towards sustainable construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing" title="curing">curing</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/38466/towards-sustainable-concrete-maturity-method-to-evaluate-the-effect-of-curing-conditions-on-the-strength-development-in-concrete-structures-under-kuwait-environmental-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19331</span> Influence of the Reliability Index on the Safety Factor of the Concrete Contribution to Shear Strength of HSC Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Sagiroglu">Ali Sagiroglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sema%20Noyan%20Alacali"> Sema Noyan Alacali</a>, <a href="https://publications.waset.org/abstracts/search?q=Guray%20Arslan"> Guray Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on the influence of the safety factor in the concrete contribution to shear strength of high-strength concrete (HSC) beams according to TS500. In TS500, the contribution of concrete to shear strength is obtained by reducing diagonal cracking strength with a safety factor of 0.8. It was investigated that the coefficient of 0.8 considered in determining the contribution of concrete to the shear strength corresponds to which value of failure probability. Also, the changes in the reduction factor depending on different coefficients of variation of concrete were examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=beam" title=" beam"> beam</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20factor" title=" safety factor"> safety factor</a> </p> <a href="https://publications.waset.org/abstracts/22211/influence-of-the-reliability-index-on-the-safety-factor-of-the-concrete-contribution-to-shear-strength-of-hsc-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">830</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19330</span> Strength Translation from Spun Yarns to Woven Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anindya%20Ghosh">Anindya Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural parameters, yarn to yarn friction, strength of ring, rotor, air-jet and open-end friction spun yarns and the strength of fabrics made from these yarns are measured. The ratio of fabric strip strength per yarn and corresponding single yarn strength is considered as a measure of quantifying the fabric assistance. Mechanism of yarn failure inside the fabric is different as that of single yarn and the former exhibit more fibre rupture. Fabrics made from weaker yarns have higher ratio of strip strength to single yarn strength than that made from stronger yarns due to larger increase in the percentage of rupture fibres in the former. The fabric assistance also depends to some extent on the degree of gripping of the yarns that is influenced by the yarn to yarn friction, extent of yarn flattening and yarn diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20assistance" title="fabric assistance">fabric assistance</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20strength" title=" fabric strength"> fabric strength</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20diameter" title=" yarn diameter"> yarn diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20friction" title=" yarn friction"> yarn friction</a>, <a href="https://publications.waset.org/abstracts/search?q=yarn%20strength" title=" yarn strength"> yarn strength</a> </p> <a href="https://publications.waset.org/abstracts/43748/strength-translation-from-spun-yarns-to-woven-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19329</span> Interrelationship of BMI with Strength, Speed and Flexibility in Different Age Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nimesh%20D.%20Chaudhari">Nimesh D. Chaudhari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to find out the interrelationship of BMI with strength, i.e. endurance strength of abdominal muscles and explosive strength of leg muscles, speed and flexibility which are respectively assessed by sit up, standing broad jump, 50 yard dash and sit and reach tests. 48 boys, aged 7 to 13 years as group A and 40 boys, aged 17 to 28 years asgroup B were selected as the subjects for the study. Product moment correlation coefficient test (r at 0.05 level of significance) was applied to test hypothesis. The findings of the study shows that there is significant relationship of BMI with endurance strength of abdominal muscles, explosive strength of leg muscles, and flexibility whereas a negative significant relationship was found between BMI and speed in group A, i.e. aged from 7 to 13 years. However, there was no significant relationship of BMI with endurance strength of abdominal muscles, explosive strength of leg muscles, speed and flexibility in higher age group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title="body mass index">body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20of%20abdominal%20muscles" title=" strength of abdominal muscles"> strength of abdominal muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive%20strength%20of%20leg%20muscles" title=" explosive strength of leg muscles"> explosive strength of leg muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20of%20lower%20back%20and%20hamstring%20muscles" title=" flexibility of lower back and hamstring muscles"> flexibility of lower back and hamstring muscles</a> </p> <a href="https://publications.waset.org/abstracts/3474/interrelationship-of-bmi-with-strength-speed-and-flexibility-in-different-age-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19328</span> Prediction of Compressive Strength Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Pal%20Singh">Vijay Pal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20Chandra%20Kotiyal"> Yogesh Chandra Kotiyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structures are a combination of various load carrying members which transfer the loads to the foundation from the superstructure safely. At the design stage, the loading of the structure is defined and appropriate material choices are made based upon their properties, mainly related to strength. The strength of materials kept on reducing with time because of many factors like environmental exposure and deformation caused by unpredictable external loads. Hence, to predict the strength of materials used in structures, various techniques are used. Among these techniques, Non-Destructive Techniques (NDT) are the one that can be used to predict the strength without damaging the structure. In the present study, the compressive strength of concrete has been predicted using Artificial Neural Network (ANN). The predicted strength was compared with the experimentally obtained actual compressive strength of concrete and equations were developed for different models. A good co-relation has been obtained between the predicted strength by these models and experimental values. Further, the co-relation has been developed using two NDT techniques for prediction of strength by regression analysis. It was found that the percentage error has been reduced between the predicted strength by using combined techniques in place of single techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rebound" title="rebound">rebound</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra-sonic%20pulse" title=" ultra-sonic pulse"> ultra-sonic pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=penetration" title=" penetration"> penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=NDT" title=" NDT"> NDT</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/2487/prediction-of-compressive-strength-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19327</span> Diagonal Crack Width of RC Members with High Strength Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Y.%20Lee">J. Y. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Lim"> H. S. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoon"> S. H. Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagonal%20crack%20width" title="diagonal crack width">diagonal crack width</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20stirrups" title=" high strength stirrups"> high strength stirrups</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20members" title=" RC members"> RC members</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behavior" title=" shear behavior"> shear behavior</a> </p> <a href="https://publications.waset.org/abstracts/46565/diagonal-crack-width-of-rc-members-with-high-strength-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19326</span> Behavior of Polymeric Mortars: An Analysis from the Point of View of Application in Severe Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Gorninski">J. P. Gorninski</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20L.%20Reis"> J. M. L. Reis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present work was aimed to develop polymeric mortars having as binder two polyester resins namely isophtalic and orthophtalic polyester. The inorganic phase was composed by medium-size river sand and fly ash fíller, a by-product of the burning of coal in power plants. The compositions in this study are high performance mortars and were assessed by mechanical properties, through compressive strength and flexural strength, by durability strength when exposed to the cyclical variation of temperature from -400C to +300C and by the chemical aggression test. The composites displayed good performance when exposed to cyclical temperature variations and chemical solutions. The mechanical strength values reached the 100 MPa, the flexural strength yielded values of about twenty percent of mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20mortar" title="polymer mortar">polymer mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclical%20temperatures" title=" cyclical temperatures"> cyclical temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20strength" title=" chemical strength"> chemical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/13309/behavior-of-polymeric-mortars-an-analysis-from-the-point-of-view-of-application-in-severe-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19325</span> The Mechanical Behavior of a Chemically Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%20Lamri">I Lamri</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20Arabet"> L Arabet</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hidjeb"> M. Hidjeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction" title=" angle of internal friction"> angle of internal friction</a> </p> <a href="https://publications.waset.org/abstracts/23790/the-mechanical-behavior-of-a-chemically-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19324</span> Experimental Studies on Reactive Powder Concrete Containing Fly Ash and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Shah">A. J. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Kumar%20Sahu"> Neeraj Kumar Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reactive powder concrete (RPC) is high performance and high strength concrete which composes of very fine powdered materials like cement, sand, silica fume and quartz powder. It also constitutes steel fibre (optional) and super-plasticizer. The present study investigates the performance of reactive powder concrete with fly ash as a replacement of cement under hot water and normal water curing conditions. The replacement of cement with fly ash is done at 10%, 20%, 30% and 40%. To compare the results of cement replaced RPC and traditional RPC, the performance of various mixes is evaluated by compressive strength, flexural strength, split tensile strength and durability. The results show that with increasing percentage of fly ash, improvement in durability is observed and a slight decrease in compressive strength and flexural strength is also observed. It is observed that specimen under hot water curing showed 15 to 20 % more strength than specimens under normal water curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title="high strength concrete">high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20flexural%20strength%20of%20RPC" title=" the flexural strength of RPC"> the flexural strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength%20of%20RPC" title=" compressive strength of RPC"> compressive strength of RPC</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/96189/experimental-studies-on-reactive-powder-concrete-containing-fly-ash-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19323</span> Recurring as a Means of Partial Strength Recovery of Concrete Subjected to Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shree%20Laxmi%20Prashant">Shree Laxmi Prashant</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20C.%20Yaragal"> Subhash C. Yaragal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Babu%20Narayan"> K. S. Babu Narayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is found to undergo degradation when subjected to elevated temperatures and loose substantial amount of its strength. The loss of strength in concrete is mainly attributed to decomposition of C-S-H and release of physically and chemically bound water, which begins when the exposure temperature exceeds 100°C. When such a concrete comes in contact with moisture, the cement paste is found rehydrate and considerable amount of strength lost is found to recover. This paper presents results of an experimental program carried out to investigate the effect of recuring on strength gain of OPC concrete specimens subjected to elevated temperatures from 200°C to 800°C, which were subjected to retention time of two hours and four hours at the designated temperature. Strength recoveries for concrete subjected to 7 designated elevated temperatures are compared. It is found that the efficacy of recuring as a measure of strength recovery reduces with increase in exposure temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title="elevated temperature">elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=recuring" title=" recuring"> recuring</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20recovery" title=" strength recovery"> strength recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/23449/recurring-as-a-means-of-partial-strength-recovery-of-concrete-subjected-to-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">597</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19322</span> Engineering Review of Recycled Concrete Production for Structural and Non-Structural Applications (Green Concrete)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Rouhi%20Belvirdi">Hadi Rouhi Belvirdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing demand for sustainable development, recycled materials are receiving more attention in construction projects. To promote sustainable development, this review article evaluates the feasibility of using recycled concrete in construction projects from an economic and environmental perspective. The results show that making concrete using recycled concrete is a suitable strategy for sustainable development. A complete examination of the physical and chemical properties of these recycled materials also provides important information about their suitability for use in the construction industry. Most of the studies do not show surprising results of the compressive or bending strength of these materials, and only the aspect of sustainable development of these materials is of interest. Their application can be investigated more in masonry and joinery works, but among them, some studies sometimes obtained more compressive and bending strength than the control sample, which can be used in concrete structures. Most of the cases introduced and discussed in this study can be implemented and help the country and the people of Iran preserve the environment and discuss sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20recycling" title="environmental recycling">environmental recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a> </p> <a href="https://publications.waset.org/abstracts/192244/engineering-review-of-recycled-concrete-production-for-structural-and-non-structural-applications-green-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19321</span> Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Soni">D. K. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentary%20rocks" title="sedimentary rocks">sedimentary rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20test" title=" split tensile test"> split tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20rate" title=" deformation rate"> deformation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20rate" title=" saturation rate"> saturation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20stone" title=" sand stone"> sand stone</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20stone" title=" lime stone"> lime stone</a> </p> <a href="https://publications.waset.org/abstracts/7251/effect-of-saturation-and-deformation-rate-on-split-tensile-strength-for-various-sedimentary-rocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19320</span> Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menglim%20Hoy">Menglim Hoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title="recycled asphalt pavement">recycled asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/120035/laboratory-investigation-of-fly-ash-based-geopolymer-stabilized-recycled-asphalt-pavement-as-a-base-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19319</span> Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20I.%20Arafa">Alaa I. Arafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemdan%20O.%20A.%20Said.%20Marwa%20A.%20M.%20Ali"> Hemdan O. A. Said. Marwa A. M. Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm<sup>2</sup>); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 <sup>o</sup>C); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete%20beams" title=" high strength concrete beams"> high strength concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20loading" title=" monotonic loading"> monotonic loading</a> </p> <a href="https://publications.waset.org/abstracts/54480/effect-of-fire-on-structural-behavior-of-normal-and-high-strength-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19318</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19317</span> Analyzing Tensile Strength in Different Composites at High Temperatures: Insights from 761 Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Abolfazli">Milad Abolfazli</a>, <a href="https://publications.waset.org/abstracts/search?q=Milad%20Bazli"> Milad Bazli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this critical review, the topic of how composites maintain their tensile strength when exposed to elevated temperatures will be studied. A comprehensive database of 761 tests have been analyzed and closely examined to study the various factors that affect the strength retention. Conclusions are drawn from the collective research efforts of numerous scholars who have investigated this subject. Through the analysis of these tests, the relationships between the tensile strength retention and various effective factors are investigated. This review is meant to be a practical resource for researchers and engineers. It provides valuable information that can guide the development of composites tailored for high-temperature applications. By offering a deeper understanding of how composites behave in extreme heat, the paper contributes to the advancement of materials science and engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tesnile%20tests" title="tesnile tests">tesnile tests</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperatures" title=" high temperatures"> high temperatures</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20composites" title=" FRP composites"> FRP composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20perfomance" title=" mechanical perfomance"> mechanical perfomance</a> </p> <a href="https://publications.waset.org/abstracts/176234/analyzing-tensile-strength-in-different-composites-at-high-temperatures-insights-from-761-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=644">644</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=645">645</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=strength%20development&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>