CINXE.COM
Yosef badali | İstanbul Ticaret Üniversitesi - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Yosef badali | İstanbul Ticaret Üniversitesi - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="ADEvcAMCJVBwed9OzLFneEFTQoDj5FyD5ymihbq6tXXI0rgvZQb/nb7xmtx7sBsrH9JEuR0f+LnOhd0rjrABBw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="yosef badali" /> <meta name="description" content="Yosef badali, İstanbul Ticaret Üniversitesi: 36 Followers, 30 Following, 33 Research papers. Research interests: Research in Technology, Technology and it's…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '08c611e06efd956c8cb6c100cf9e757ee1b93f16'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15265,"monthly_visitors":"113 million","monthly_visitor_count":113485689,"monthly_visitor_count_in_millions":113,"user_count":277892302,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733202049000); window.Aedu.timeDifference = new Date().getTime() - 1733202049000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bad3fa1257b860f4633ff1db966aa3ae7dfe1980708675f3e2488742c1a0d941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-34a3460a4873b743570e35df99c7839e3ddd9a3d06ef96c9fe38311a96a8a24e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ticaret.academia.edu/Yosefbadali" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-d50db999ccdab527b1e040b4cc8af62d4a8254a0385f5004e234635ba055442a.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali","photo":"https://0.academia-photos.com/1303640/481697/73032549/s65_yosef.badali.jpg","has_photo":true,"department":{"id":461750,"name":"Computer Engineering","url":"https://ticaret.academia.edu/Departments/Computer_Engineering/Documents","university":{"id":51120,"name":"İstanbul Ticaret Üniversitesi","url":"https://ticaret.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":1222788,"name":"Research in Technology","url":"https://www.academia.edu/Documents/in/Research_in_Technology"},{"id":1222789,"name":"Technology and it's Advancements","url":"https://www.academia.edu/Documents/in/Technology_and_its_Advancements"},{"id":78937,"name":"Fizik","url":"https://www.academia.edu/Documents/in/Fizik"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ticaret.academia.edu/Yosefbadali","location":"/Yosefbadali","scheme":"https","host":"ticaret.academia.edu","port":null,"pathname":"/Yosefbadali","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-7ed049f8-da13-42a6-8b72-5551de3fcac5"></div> <div id="ProfileCheckPaperUpdate-react-component-7ed049f8-da13-42a6-8b72-5551de3fcac5"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Yosef badali" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1303640/481697/73032549/s200_yosef.badali.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Yosef badali</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ticaret.academia.edu/">İstanbul Ticaret Üniversitesi</a>, <a class="u-tcGrayDarker" href="https://ticaret.academia.edu/Departments/Computer_Engineering/Documents">Computer Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div><div><a class="u-tcGrayDarker" href="https://gazi.academia.edu/">Gazi University</a>, <a class="u-tcGrayDarker" href="https://gazi.academia.edu/Departments/Advanced_Technologies/Documents">Advanced Technologies</a>, <span class="u-tcGrayDarker">Graduate Student</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Yosef" data-follow-user-id="1303640" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="1303640"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">36</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">30</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="1303640" href="https://www.academia.edu/Documents/in/Research_in_Technology"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ticaret.academia.edu/Yosefbadali","location":"/Yosefbadali","scheme":"https","host":"ticaret.academia.edu","port":null,"pathname":"/Yosefbadali","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Research in Technology"]}" data-trace="false" data-dom-id="Pill-react-component-a6d85b9c-49ba-4a3b-8b54-46c8f98ab828"></div> <div id="Pill-react-component-a6d85b9c-49ba-4a3b-8b54-46c8f98ab828"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="1303640" href="https://www.academia.edu/Documents/in/Technology_and_its_Advancements"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Technology and it's Advancements"]}" data-trace="false" data-dom-id="Pill-react-component-369cb5a7-caae-4584-ac1d-b6e420076421"></div> <div id="Pill-react-component-369cb5a7-caae-4584-ac1d-b6e420076421"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="1303640" href="https://www.academia.edu/Documents/in/Fizik"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fizik"]}" data-trace="false" data-dom-id="Pill-react-component-57a7593f-a959-4642-aa80-af811e317717"></div> <div id="Pill-react-component-57a7593f-a959-4642-aa80-af811e317717"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Yosef badali</h3></div><div class="js-work-strip profile--work_container" data-work-id="116791469"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements"><img alt="Research paper thumbnail of The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements">The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan &#945; fazından polar &#946; fazına bir geçiş yapmasına neden olmaktadır. Bu &#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116791469"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116791469"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116791469; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116791469]").text(description); $(".js-view-count[data-work-id=116791469]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116791469; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116791469']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116791469, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116791469]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116791469,"title":"The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements","translated_title":"","metadata":{"abstract":"Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan \u0026#945; fazından polar \u0026#946; fazına bir geçiş yapmasına neden olmaktadır. Bu \u0026#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan \u0026#945; fazından polar \u0026#946; fazına bir geçiş yapmasına neden olmaktadır. Bu \u0026#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...","internal_url":"https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements","translated_internal_url":"","created_at":"2024-03-28T02:07:19.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[],"urls":[{"id":40672324,"url":"http://hdl.handle.net/20.500.12602/151123"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107984358"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating"><img alt="Research paper thumbnail of Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating">Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating</a></div><div class="wp-workCard_item"><span>Journal of Building Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107984358"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107984358"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107984358; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107984358]").text(description); $(".js-view-count[data-work-id=107984358]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107984358; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107984358']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107984358, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107984358]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107984358,"title":"Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Building Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating","translated_internal_url":"","created_at":"2023-10-11T06:50:34.526-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":914665,"name":"Building Engineering","url":"https://www.academia.edu/Documents/in/Building_Engineering"}],"urls":[{"id":34595323,"url":"https://api.elsevier.com/content/article/PII:S2352710223007131?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107984357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios"><img alt="Research paper thumbnail of Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios">Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios</a></div><div class="wp-workCard_item"><span>International Journal of Numerical Methods for Heat &amp; Fluid Flow</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107984357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107984357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107984357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107984357]").text(description); $(".js-view-count[data-work-id=107984357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107984357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107984357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107984357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107984357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107984357,"title":"Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios","translated_title":"","metadata":{"abstract":"Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...","publisher":"Emerald","publication_name":"International Journal of Numerical Methods for Heat \u0026amp; Fluid Flow"},"translated_abstract":"Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...","internal_url":"https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios","translated_internal_url":"","created_at":"2023-10-11T06:50:34.322-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":359085,"name":"Heat transfer enhancement","url":"https://www.academia.edu/Documents/in/Heat_transfer_enhancement"},{"id":437832,"name":"Distilled Water","url":"https://www.academia.edu/Documents/in/Distilled_Water"},{"id":1900043,"name":"Turbulator","url":"https://www.academia.edu/Documents/in/Turbulator"}],"urls":[{"id":34595322,"url":"https://www.emerald.com/insight/content/doi/10.1108/HFF-10-2022-0588/full/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107983595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es"><img alt="Research paper thumbnail of Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es">Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-k...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (&#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, &#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss&#8210;(Ec-Ess)); doğru beslem (I&#8210;V), voltaja bağlı bariyer yüksekliği (&#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)&#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C&#8210;V ve G/&#61559;&#8210;V ölçümleri de yapılmıştır. Ters beslem C-2&#8210;V...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107983595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107983595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107983595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107983595]").text(description); $(".js-view-count[data-work-id=107983595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107983595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107983595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107983595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107983595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107983595,"title":"Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes","translated_title":"","metadata":{"abstract":"Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (\u0026#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, \u0026#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss\u0026#8210;(Ec-Ess)); doğru beslem (I\u0026#8210;V), voltaja bağlı bariyer yüksekliği (\u0026#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)\u0026#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C\u0026#8210;V ve G/\u0026#61559;\u0026#8210;V ölçümleri de yapılmıştır. Ters beslem C-2\u0026#8210;V...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (\u0026#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, \u0026#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss\u0026#8210;(Ec-Ess)); doğru beslem (I\u0026#8210;V), voltaja bağlı bariyer yüksekliği (\u0026#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)\u0026#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C\u0026#8210;V ve G/\u0026#61559;\u0026#8210;V ölçümleri de yapılmıştır. Ters beslem C-2\u0026#8210;V...","internal_url":"https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es","translated_internal_url":"","created_at":"2023-10-11T06:31:05.294-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparatıon_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Usıng_Dıfferent_X_Materıals_And_Investıgatıon_Of_Electrıcal_And_Dıelectrıc_Propertıes","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[],"urls":[{"id":34594807,"url":"http://hdl.handle.net/20.500.12602/151093"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact"><img alt="Research paper thumbnail of Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact">Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact</a></div><div class="wp-workCard_item"><span>IEEE Sensors Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307030]").text(description); $(".js-view-count[data-work-id=100307030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307030, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307030,"title":"Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_name":"IEEE Sensors Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact","translated_internal_url":"","created_at":"2023-04-17T00:00:08.831-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685691,"url":"http://xplorestaging.ieee.org/ielx7/7361/9966666/09918658.pdf?arnumber=9918658"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface"><img alt="Research paper thumbnail of The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface">The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface</a></div><div class="wp-workCard_item"><span>Polymer Bulletin</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307029]").text(description); $(".js-view-count[data-work-id=100307029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307029,"title":"The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Polymer Bulletin"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface","translated_internal_url":"","created_at":"2023-04-17T00:00:08.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33912,"name":"Doping","url":"https://www.academia.edu/Documents/in/Doping"},{"id":347722,"name":"Photodetector","url":"https://www.academia.edu/Documents/in/Photodetector"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":397201,"name":"Thermionic Emission","url":"https://www.academia.edu/Documents/in/Thermionic_Emission"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"}],"urls":[{"id":30685690,"url":"https://link.springer.com/content/pdf/10.1007/s00289-023-04725-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface"><img alt="Research paper thumbnail of The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface">The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface</a></div><div class="wp-workCard_item"><span>Synthetic Metals</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307028]").text(description); $(".js-view-count[data-work-id=100307028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307028, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307028,"title":"The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Synthetic Metals"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface","translated_internal_url":"","created_at":"2023-04-17T00:00:08.559-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33912,"name":"Doping","url":"https://www.academia.edu/Documents/in/Doping"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":183411,"name":"Conductance","url":"https://www.academia.edu/Documents/in/Conductance"},{"id":389570,"name":"Capacitance","url":"https://www.academia.edu/Documents/in/Capacitance"},{"id":2540146,"name":"Ruthenium","url":"https://www.academia.edu/Documents/in/Ruthenium"}],"urls":[{"id":30685689,"url":"https://api.elsevier.com/content/article/PII:S0379677922002375?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode"><img alt="Research paper thumbnail of 21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode">21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode</a></div><div class="wp-workCard_item"><span>IEEE Sensors Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307027]").text(description); $(".js-view-count[data-work-id=100307027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307027, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307027,"title":"21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_name":"IEEE Sensors Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode","translated_internal_url":"","created_at":"2023-04-17T00:00:08.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":483393,"name":"Notation","url":"https://www.academia.edu/Documents/in/Notation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685688,"url":"http://xplorestaging.ieee.org/ielx7/7361/9984967/09944651.pdf?arnumber=9944651"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics"><img alt="Research paper thumbnail of Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics">Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics</a></div><div class="wp-workCard_item"><span>Journal of Physics and Chemistry of Solids</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307026]").text(description); $(".js-view-count[data-work-id=100307026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307026, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307026,"title":"Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Physics and Chemistry of Solids"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics","translated_internal_url":"","created_at":"2023-04-17T00:00:08.293-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":30488,"name":"Atomic Layer Deposition","url":"https://www.academia.edu/Documents/in/Atomic_Layer_Deposition"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"}],"urls":[{"id":30685687,"url":"https://api.elsevier.com/content/article/PII:S0022369722003961?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency"><img alt="Research paper thumbnail of Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency">Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307025]").text(description); $(".js-view-count[data-work-id=100307025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307025, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307025,"title":"Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"SSRN Electronic Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency","translated_internal_url":"","created_at":"2023-04-17T00:00:08.205-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction"><img alt="Research paper thumbnail of Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction" class="work-thumbnail" src="https://attachments.academia-assets.com/101167100/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction">Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction</a></div><div class="wp-workCard_item"><span>Journal of Physics and Chemistry of Solids</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40015a3be4de20230c7c303f7de246e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167100,"asset_id":100307024,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307024]").text(description); $(".js-view-count[data-work-id=100307024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307024, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40015a3be4de20230c7c303f7de246e1" } } $('.js-work-strip[data-work-id=100307024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307024,"title":"Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this study, HfAlO 3 ternary alloy thin film was grown on n-type silicon using the atomic layer deposition method. The current transport mechanisms in the (Au/Ni)/HfAlO 3 /n-Si junction were examined over a wide temperature range (80-360 K). The values obtained for the ideality factor (n) varied from 22.93 to 3.94 and the barrier height at zero bias (Ф B0) ranged from 0.221 eV to 0.821 eV as the temperature changed from 80 to 360 K. The Φ B0-n and Φ B0-q/2 kT characteristics were investigated to explain the higher n values and non-ideal behavior of the Richardson curves. Two linear regions were found at low temperatures (LTs; 80-180 K) and high temperatures (HTs; 200-360 K), which indicated the presence of a Gaussian distribution barrier height and the average barrier heights (Φ B0) were identified. The values obtained for Φ Bo were 0.734 eV for LTs and 1.125 eV for HTs, and the values of σ s were 0.085 V for LTs and 0.140 V for HTs. The values obtained for N ss decreased as the temperature increased and they varied between ~10 12 and 10 13 eV − 1 cm − 2. Finally, the dielectric behavior and conductivity of the (Au/Ni)/HfAlO 3 /n-Si junction were investigated at frequencies between 5 kHz and 2 MHz at room temperature. The values determined for ε ′ and ε ′ ′ at − 1 V and 5 kHz were 2.1 and 3.53, respectively.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Physics and Chemistry of Solids","grobid_abstract_attachment_id":101167100},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction","translated_internal_url":"","created_at":"2023-04-17T00:00:08.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167100/thumbnails/1.jpg","file_name":"Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction.pdf","download_url":"https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_transport_properties_of_Au_Ni_Hf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167100/Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction-libre.pdf?1681731226=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_transport_properties_of_Au_Ni_Hf.pdf\u0026Expires=1733205649\u0026Signature=QG7gqoozJZZ2IVwC7gQCgwAOBItnq8QkNQWs636neprmKxnFEEfd8gWZDHcoOsy1ykhAN73DoWE1f7VECF3u3UR0lF~x1b-0hTf11yuKLa95vLBbClKMWFcck9dmEf6SiVsBRDXySxOSFHJ--Xvi8fp4fKOfnI7qLHFXQ8y-EOVT1mBCauW-qWAd~kzjVpled1VqihxZXSQc4NT9K9QobWSD29OMVrKhNlZDlmPZi08HpZUbm6coINDwpO-CZMO7bpMG1Syc68EjCJZ3FNdJtKdtXQatmLoeDqD~V~sN~X4PW0A9tqCcUqIZLekeAHIEsVKhl2bOcf~yUYErDeKawg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167100/thumbnails/1.jpg","file_name":"Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction.pdf","download_url":"https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_transport_properties_of_Au_Ni_Hf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167100/Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction-libre.pdf?1681731226=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_transport_properties_of_Au_Ni_Hf.pdf\u0026Expires=1733205649\u0026Signature=QG7gqoozJZZ2IVwC7gQCgwAOBItnq8QkNQWs636neprmKxnFEEfd8gWZDHcoOsy1ykhAN73DoWE1f7VECF3u3UR0lF~x1b-0hTf11yuKLa95vLBbClKMWFcck9dmEf6SiVsBRDXySxOSFHJ--Xvi8fp4fKOfnI7qLHFXQ8y-EOVT1mBCauW-qWAd~kzjVpled1VqihxZXSQc4NT9K9QobWSD29OMVrKhNlZDlmPZi08HpZUbm6coINDwpO-CZMO7bpMG1Syc68EjCJZ3FNdJtKdtXQatmLoeDqD~V~sN~X4PW0A9tqCcUqIZLekeAHIEsVKhl2bOcf~yUYErDeKawg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"}],"urls":[{"id":30685686,"url":"https://api.elsevier.com/content/article/PII:S0022369720308817?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures"><img alt="Research paper thumbnail of Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures">Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures</a></div><div class="wp-workCard_item"><span>Applied Physics A</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To determine the influence of the thin polymer interface film on the electrical and dielectric ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307023]").text(description); $(".js-view-count[data-work-id=100307023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307023, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307023,"title":"Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures","translated_title":"","metadata":{"abstract":"To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Applied Physics A"},"translated_abstract":"To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.","internal_url":"https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures","translated_internal_url":"","created_at":"2023-04-17T00:00:07.967-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":1736799,"name":"Dissipation Factor","url":"https://www.academia.edu/Documents/in/Dissipation_Factor"}],"urls":[{"id":30685685,"url":"https://link.springer.com/content/pdf/10.1007/s00339-021-04400-4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions"><img alt="Research paper thumbnail of The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions" class="work-thumbnail" src="https://attachments.academia-assets.com/101167103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions">The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0ef9a587b8c25e5a6c793b73fed9a94" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167103,"asset_id":100307022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307022]").text(description); $(".js-view-count[data-work-id=100307022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307022, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0ef9a587b8c25e5a6c793b73fed9a94" } } $('.js-work-strip[data-work-id=100307022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307022,"title":"The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"The possible current-conduction mechanism (CCMs) of the Au/CoSO 4-PVP/n-Si junctions was investigated using temperature-dependence current-voltage (I-V) experiments over 100-360 K. The experimental results showed that the value of BH increases approximately linearly with increasing temperature. Such positive temperature coefficient (a = DU B0 /DT) is in agreement with the reported negative temperature coefficient of the bandgap of Si (=-0.473 meV/K). The (n ap-1-1) vs q/2kT curves have different characters in two temperature ranges due to having separate two barrier distributions. The q 2 and q 3 values obtained from intercept and slope of these curves as 0.521 V and 0.011 V for 240-360 K temperature range and 0.737 V and 0.004 V for the 100-220 K range. This results show that the high temperature region with smaller q 2 and larger q 3 voltage deformation coefficients has a wider and greater of the barrier height distribution than the second region. As an evidence for the Gaussian distribution, the U B0 and standard deviation (r 0) were derived from the intercept and slope of the U B0-q/2kT curves as 1.14 eV and 0.163 V at high temperatures and 0.62 eV and 0.088 V at low temperatures. The Richardson constant obtained as 102 A/cm 2 K 2 for 240-360 K temperature range using standard deviation value which is similar to the theoretical Richardson constant value of silicon (112 A/cm 2 K 2). For each temperature, the profile of N ss vs (E c-E ss) was provided using the voltage-dependent effective barrier height (U e) value. It was observed that these surface conditions decreased with increasing temperature.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics","grobid_abstract_attachment_id":101167103},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions","translated_internal_url":"","created_at":"2023-04-17T00:00:07.841-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167103/thumbnails/1.jpg","file_name":"s10854-020-04406-320230417-1-o5pmqc.pdf","download_url":"https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_possible_current_conduction_mechanis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167103/s10854-020-04406-320230417-1-o5pmqc-libre.pdf?1681731213=\u0026response-content-disposition=attachment%3B+filename%3DThe_possible_current_conduction_mechanis.pdf\u0026Expires=1733205649\u0026Signature=V-K-byM1ERuDTF~duZ8-pbsjTxvsZxdkcHkXNAH-dRLGl3EX66ojr5bKBEzM18eQse4ugUFIo-NWp4Amrmyuur9ZFZALcKUzlPYne-E4TcwgGzA~Cexz9gaGngW92K5Ae0nPhI4T27rJJFSQHAW~L-zHMyRPPuFdTuMrGCy4ze9oMBC2Up3nY7WZZQbqUJgk91DkDgbjkJforGfpWteFYbEHjCAD~6tmUgvAOR0ClBikAKmdvreyxZR1~IUIQm2bVmsf~1kzovLLwQek8-GPEKVXPxtG4-vje~4eDf7pltbZKHYYoV3EBzteYElA~qHTRrE4NFiu9mQQgNf3P5lhzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167103/thumbnails/1.jpg","file_name":"s10854-020-04406-320230417-1-o5pmqc.pdf","download_url":"https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_possible_current_conduction_mechanis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167103/s10854-020-04406-320230417-1-o5pmqc-libre.pdf?1681731213=\u0026response-content-disposition=attachment%3B+filename%3DThe_possible_current_conduction_mechanis.pdf\u0026Expires=1733205649\u0026Signature=V-K-byM1ERuDTF~duZ8-pbsjTxvsZxdkcHkXNAH-dRLGl3EX66ojr5bKBEzM18eQse4ugUFIo-NWp4Amrmyuur9ZFZALcKUzlPYne-E4TcwgGzA~Cexz9gaGngW92K5Ae0nPhI4T27rJJFSQHAW~L-zHMyRPPuFdTuMrGCy4ze9oMBC2Up3nY7WZZQbqUJgk91DkDgbjkJforGfpWteFYbEHjCAD~6tmUgvAOR0ClBikAKmdvreyxZR1~IUIQm2bVmsf~1kzovLLwQek8-GPEKVXPxtG4-vje~4eDf7pltbZKHYYoV3EBzteYElA~qHTRrE4NFiu9mQQgNf3P5lhzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"}],"urls":[{"id":30685684,"url":"https://link.springer.com/content/pdf/10.1007/s10854-020-04406-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity"><img alt="Research paper thumbnail of Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity" class="work-thumbnail" src="https://attachments.academia-assets.com/101167095/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity">Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f33c39481cf3d1e2edee70b9e4eef345" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167095,"asset_id":100307021,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307021]").text(description); $(".js-view-count[data-work-id=100307021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307021, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f33c39481cf3d1e2edee70b9e4eef345" } } $('.js-work-strip[data-work-id=100307021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307021,"title":"Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"I-V Characteristics of MIS Structures under Varying Light Intensity","grobid_abstract":"The current-voltage (I-V) and capacitance-voltage (C-V) behaviors of the (Au/Ni)/HfAlO 3 /n-Si (MIS) junctions at room temperature under white light with various intensities were investigated. The ln(I)-V curves show two linear behavior regions at about 1 V before and after the point of intersection that can be defined as two separate current-conduction (CMs) Mechanisms. The values of the ideality factor (n) and the zero-bias barrier height (Φ B0) were extracted using the slope and intercept of the ln(I)-V curve before and after the intersection point based on lighting power. Although the Φ B0 values decrease with increasing light power, n increases for two regions, and there is a strong linear relationship between them. The values of photo-current (I ph) increase with the increasing lighting power due to the formation of electron-hole pairs. The slope of the double-logarithmic I ph-P was changed from 0.422 to 0.852, respectively, at − 2 V and − 9 V, which indicates the ongoing distribution of N ss. In addition, the profile of surface states (N ss) ionized by light was obtained from the capacitance measured in dark and under lighting at 1 MHz. The N ss-V curve has two characteristic peaks that correspond to the region of depletion and accumulation due to a special distribution of N ss and their restructuring and reordering under the effects of lighting and an electric field.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics","grobid_abstract_attachment_id":101167095},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity","translated_internal_url":"","created_at":"2023-04-17T00:00:07.712-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167095/thumbnails/1.jpg","file_name":"15143.pdf","download_url":"https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Intersection_behavior_of_the_current_vol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167095/15143-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DIntersection_behavior_of_the_current_vol.pdf\u0026Expires=1733205649\u0026Signature=FPzphhdzqcSPQO9PiqAiKzoZrOKwVOSLgng9Ci5I1du-GeJUOEfe7KpnB3LGeh0TdoDpIM0pWKyN7V26ZoxAGa4P2cCIq45GSbKkxbIJBb55VQISzZPBwbDTbysj7eoXhL0rrZh9dJnGXBdxfdpm4hwDZotA3UgqeKqSyHlM-ShUA56KsoNfpp7h28l3z-Hte-fOWNrSEA9L8S0vCu2ffFFSr0Mt8pxMXICq~CpWui7eVrXnwhKXo0zpk78cXS-v--TTG92ZzFiNwCeMWrGypxA66P32N~oXJFtOEhEMa~DmjOffB88soL5PDkod91vNCDyscS5E4suxIErfuNz8-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167095/thumbnails/1.jpg","file_name":"15143.pdf","download_url":"https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Intersection_behavior_of_the_current_vol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167095/15143-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DIntersection_behavior_of_the_current_vol.pdf\u0026Expires=1733205649\u0026Signature=FPzphhdzqcSPQO9PiqAiKzoZrOKwVOSLgng9Ci5I1du-GeJUOEfe7KpnB3LGeh0TdoDpIM0pWKyN7V26ZoxAGa4P2cCIq45GSbKkxbIJBb55VQISzZPBwbDTbysj7eoXhL0rrZh9dJnGXBdxfdpm4hwDZotA3UgqeKqSyHlM-ShUA56KsoNfpp7h28l3z-Hte-fOWNrSEA9L8S0vCu2ffFFSr0Mt8pxMXICq~CpWui7eVrXnwhKXo0zpk78cXS-v--TTG92ZzFiNwCeMWrGypxA66P32N~oXJFtOEhEMa~DmjOffB88soL5PDkod91vNCDyscS5E4suxIErfuNz8-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"}],"urls":[{"id":30685683,"url":"https://link.springer.com/content/pdf/10.1007/s10854-020-03868-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307020"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters"><img alt="Research paper thumbnail of Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters">Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulato...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307020"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307020"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307020; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307020]").text(description); $(".js-view-count[data-work-id=100307020]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307020; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307020']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307020, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307020]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307020,"title":"Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters","translated_title":"","metadata":{"abstract":"In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics"},"translated_abstract":"In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.","internal_url":"https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters","translated_internal_url":"","created_at":"2023-04-17T00:00:07.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"}],"urls":[{"id":30685682,"url":"http://link.springer.com/content/pdf/10.1007/s10854-020-03343-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307019"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties"><img alt="Research paper thumbnail of Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties" class="work-thumbnail" src="https://attachments.academia-assets.com/101167092/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties">Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba896ec6f9a59d8f06c85f6c1050475f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167092,"asset_id":100307019,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307019"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307019"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307019; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307019]").text(description); $(".js-view-count[data-work-id=100307019]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307019; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307019']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307019, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba896ec6f9a59d8f06c85f6c1050475f" } } $('.js-work-strip[data-work-id=100307019]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307019,"title":"Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Ultrasound-Fabricated Au/Ag2S-PVA/n-Si Diode: Electrical Study","grobid_abstract":"Au/n-Si metal/semiconductor (MS) Schottky barrier diodes with and without (Ag 2 S-PVA) interlayer were prepared by the ultrasound-assisted method and their electric and dielectric properties were examined by using current-voltage (I-V) and capacitance-voltage (C-V) measuring devices. The structural, optical and morphological characteristics of the (Ag 2 S-PVA) were studied by xray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible spectroscopy. The observed peaks in the XRD pattern are related to the aphase of silver sulfide. The UV-Visible spectrum of (Ag 2 S-PVA) shows the quantum confinement and SEM image proves the grain size in nano-scale. The ideality factor (n) and barrier height (BH) at zero bias (U B0 (I-V)) were acquired from the I-V data. On the other hand; Fermi energy (E F), donor concentration atoms (N D), and BH (U B (C-V)) values were obtained from the reverse bias C-V data. The voltage-dependent resistance profile (Ln(R i)-V) was obtained by applying Ohm's law and also by the Nicollian-Brews methods. Also, considering the voltage-dependent n and BH, N ss-(E c-E ss) profile was acquired from the forward biases I-V characteristics. Depending on high, intermediate and low biases ln(I)-Ln(V) curves have three linear regions with distinct slopes for MS and MPS structures. The predominant current-transport mechanisms were obtained in related regions via trap-charge limited current and space-charge limited current, respectively. These outcomes indicate that the (Ag 2 S-PVA) interlayer enhanced the performance of the diode considerably in terms of high rectifier rate (RR), shunt resistance (R sh), and low surface states (N ss) and series resistance (R s). Thus, the (Ag 2 S-PVA) interlayer can be used in MS type diode instead of a traditional insulator layer.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Electronic Materials","grobid_abstract_attachment_id":101167092},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties","translated_internal_url":"","created_at":"2023-04-17T00:00:07.439-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167092/thumbnails/1.jpg","file_name":"s11664-019-07708-320230417-1-unh8eo.pdf","download_url":"https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrasound_Assisted_Method_for_Preparati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167092/s11664-019-07708-320230417-1-unh8eo-libre.pdf?1681731215=\u0026response-content-disposition=attachment%3B+filename%3DUltrasound_Assisted_Method_for_Preparati.pdf\u0026Expires=1733205649\u0026Signature=Ynfo93GZScW6eicUCYWzwE3Q1pNUtnBu5FCl75MEOf~WzkeLYFOPoogkIe4Ji0lb0FzgwMGKcX4M0zhvOuUZbGvrj8gEEcYGUf~5eW0YfRnlTxhyjCvCW0Jpm2jXubC9JvcL801yiojPimIpKpLG0A6BuEwJaigDfoH06lZwzl8Y2NDY~Mw-8AgAxEGOhNvW5bmcEt00CtBjZbKo3bM-~sLCqH~ZDUqIWJdTiGXCow9~LMiO5rHDpQB6ioVnVm3sRQF5Mo9wR1Gh1bkRT8yVNutEaMzOlKOn~si-xMRc6Fkpe7T-5DnjDXB17fvmlV-e~7rPXFDGuGKjsUChGETq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167092/thumbnails/1.jpg","file_name":"s11664-019-07708-320230417-1-unh8eo.pdf","download_url":"https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrasound_Assisted_Method_for_Preparati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167092/s11664-019-07708-320230417-1-unh8eo-libre.pdf?1681731215=\u0026response-content-disposition=attachment%3B+filename%3DUltrasound_Assisted_Method_for_Preparati.pdf\u0026Expires=1733205649\u0026Signature=Ynfo93GZScW6eicUCYWzwE3Q1pNUtnBu5FCl75MEOf~WzkeLYFOPoogkIe4Ji0lb0FzgwMGKcX4M0zhvOuUZbGvrj8gEEcYGUf~5eW0YfRnlTxhyjCvCW0Jpm2jXubC9JvcL801yiojPimIpKpLG0A6BuEwJaigDfoH06lZwzl8Y2NDY~Mw-8AgAxEGOhNvW5bmcEt00CtBjZbKo3bM-~sLCqH~ZDUqIWJdTiGXCow9~LMiO5rHDpQB6ioVnVm3sRQF5Mo9wR1Gh1bkRT8yVNutEaMzOlKOn~si-xMRc6Fkpe7T-5DnjDXB17fvmlV-e~7rPXFDGuGKjsUChGETq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"},{"id":148624,"name":"Nanostructure","url":"https://www.academia.edu/Documents/in/Nanostructure"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685681,"url":"http://link.springer.com/content/pdf/10.1007/s11664-019-07708-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307018"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures"><img alt="Research paper thumbnail of Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures" class="work-thumbnail" src="https://attachments.academia-assets.com/101167091/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures">Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures</a></div><div class="wp-workCard_item"><span>Physica B: Condensed Matter</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9a7e3f4102ba0d35e6fd1ee48fc6c2a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167091,"asset_id":100307018,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307018"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307018"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307018; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307018]").text(description); $(".js-view-count[data-work-id=100307018]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307018; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307018']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307018, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9a7e3f4102ba0d35e6fd1ee48fc6c2a" } } $('.js-work-strip[data-work-id=100307018]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307018,"title":"Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this study, simple ultrasound-assisted method was used for prepare the composite of (Cu-doped PVA) interfacial layer between metal and semiconductor (Al/p-Si). The scanning electron microscopy (SEM) images of the prepared (Cu-doped PVA) nanocomposites have shown an uniform fish scale shape, which are about 100 nm long and several tens of nm in width. Both the Al/p-Si (MS) and Al/(Cu-PVA)/p-Si (MPS) structures were fabricated on the same Si wafer to investigate the effect of this polymer layer on the electrical characteristics by using the current-voltage (I-V) and capacitance/conductance-voltage (C/G-V) measurements at room temperature. The values of reverse-saturation current (I o), ideality factor (n) and zero-bias barrier height (Φ Bo) were obtained from the liner part of the forward bias I-V plot as 6.6 × 10 −10 A, 3.67 and 0.84 eV for MS structure and 1.82 × 10 −8 A, 4.18 and 0.76 eV for MPS structure, respectively. MPS structure has a good rectifier behavior with low leakage current in comparison to the MS structure. The high values of n was attributed to the barrier inhomogeneity at Al/p-Si, special density distribution of N ss at (Cu-PVA)/p-Si interface and both the existence of native SiO 2 and deposited of (Cu-doped PVA) interlayer at M/S interface. The energy dependent values of N ss were obtained from the forward bias I-V data and they ranged from the 1.85 × 10 13 eV −1 cm −2 (0.60 eV-Ev) to 7.40 × 10 13 eV −1 cm −2 (0.40 eV-Ev) for MS structure and 9.81 × 10 12 eV −1 cm −2 (0.67 eV-Ev) to 5.26 × 10 13 eV −1 cm −2 (0.47 eV-Ev) for the MPS structure. Experimental results show that the (Cu-PVA) interlayer can be successfully used instead of traditional insulator layer because of the saturation of dangling bonds.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Physica B: Condensed Matter","grobid_abstract_attachment_id":101167091},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures","translated_internal_url":"","created_at":"2023-04-17T00:00:07.300-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167091/thumbnails/1.jpg","file_name":"j.physb.2018.06.01920230417-1-fykyfl.pdf","download_url":"https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preparation_of_mixed_copper_PVA_nanocomp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167091/j.physb.2018.06.01920230417-1-fykyfl-libre.pdf?1681731222=\u0026response-content-disposition=attachment%3B+filename%3DPreparation_of_mixed_copper_PVA_nanocomp.pdf\u0026Expires=1733205649\u0026Signature=RSKzRwK7xBvxKjNOOmEs~mIMnOZivnP00jXx9XkqC4077JCNfIKqkeFTaGv~SiPAMlncK2f45ExcyM-hQlXP1GAEoWOPzSQp2ZhMiq1coSFdfa7egRzWRpjWMtymjm99IXQSo4N2pRDhPbRHzHpRkRF4-uPQxGr3n5Yk8QGbbKdUIZ~wFm-Blxsz1tbXTWDuP0hdalU0WOdzg~uapBYqxmHfetQSdgjWCgHEAn43pA760nnw9UZ0jR20GwosyqXy6mMYhfJLKgMxBlfbrwtPKM0KVXioevt0VKAPBXnpJns3JhtFwy5kNUxCHiDw9-UUaQu1dBKIplWrhcjUbL2OCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167091/thumbnails/1.jpg","file_name":"j.physb.2018.06.01920230417-1-fykyfl.pdf","download_url":"https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preparation_of_mixed_copper_PVA_nanocomp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167091/j.physb.2018.06.01920230417-1-fykyfl-libre.pdf?1681731222=\u0026response-content-disposition=attachment%3B+filename%3DPreparation_of_mixed_copper_PVA_nanocomp.pdf\u0026Expires=1733205649\u0026Signature=RSKzRwK7xBvxKjNOOmEs~mIMnOZivnP00jXx9XkqC4077JCNfIKqkeFTaGv~SiPAMlncK2f45ExcyM-hQlXP1GAEoWOPzSQp2ZhMiq1coSFdfa7egRzWRpjWMtymjm99IXQSo4N2pRDhPbRHzHpRkRF4-uPQxGr3n5Yk8QGbbKdUIZ~wFm-Blxsz1tbXTWDuP0hdalU0WOdzg~uapBYqxmHfetQSdgjWCgHEAn43pA760nnw9UZ0jR20GwosyqXy6mMYhfJLKgMxBlfbrwtPKM0KVXioevt0VKAPBXnpJns3JhtFwy5kNUxCHiDw9-UUaQu1dBKIplWrhcjUbL2OCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"}],"urls":[{"id":30685680,"url":"https://api.elsevier.com/content/article/PII:S0921452618304113?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307017"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure"><img alt="Research paper thumbnail of Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure" class="work-thumbnail" src="https://attachments.academia-assets.com/101167096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure">Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure</a></div><div class="wp-workCard_item"><span>Materials Science in Semiconductor Processing</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11ff143523c07fb039cb6dc1b29bd828" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167096,"asset_id":100307017,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307017"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307017"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307017; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307017]").text(description); $(".js-view-count[data-work-id=100307017]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307017; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307017']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307017, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11ff143523c07fb039cb6dc1b29bd828" } } $('.js-work-strip[data-work-id=100307017]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307017,"title":"Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Ultrasound-Assisted ZnO Nanopowders: Dielectric and Electric Properties","grobid_abstract":"ZnO nanopowders have been prepared by a simple ultrasound-assisted method, and the prepared nanopowders have been utilized for fabrication of Au/(ZnO-PVA)/n-Si structures. Size and morphology of ZnO have been studied by X-ray diffraction and scanning electron microscopy (SEM) techniques. The average nanocrystallite size of ZnO nanopowders was estimated less than 50 nm and the XRD pattern are shown in a hexagonal lattice. Its band gap was obtained from Uv-Visible absorption spectrum as 3.15 eV. Electric and dielectric parameters of MPS structures were analyzed by impedance spectroscopy technique. The measured capacitance and conductance have a strong function of frequency and voltage in depletion and accumulation regions because of the presence of interface states (N ss), series resistance (R s), interfacial (ZnO-PVA) layer and polarization processes particularly at low frequencies. This is because the N ss and dipoles have enough time to follow external ac signal and can be turned around at low frequencies. The barrier height (Φ B) and depletion layer wides (W d) increase linearly with increasing frequency. The voltage-dependent profile of N ss extracted from the low-high frequency capacitance process and it has two distinctive peaks due to a particular distribution of interface charges at (ZnO-PVA)/n-Si in the forbidden band-gap of Si. The dielectric constants (ε′) and dielectric loss (ε′′) values increase with decreasing frequency, however the tangent loss (tanδ), real and imaginary components of the electric modulus (M′, M′′) and electrical conductivity (σ) increase with increasing frequency. The increase of σ ac with increasing frequency was attributed to the increase eddies current that leads to the increase in the energy tanδ. Interestingly, the high value of ε′ (≈30) even at 1 kHz shows that the prepared ZnO-PVA nanocomposite interlayer can capability to the storage more and more charges or energy and so it can be used instead of traditional interfacial insulator layers.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Materials Science in Semiconductor Processing","grobid_abstract_attachment_id":101167096},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure","translated_internal_url":"","created_at":"2023-04-17T00:00:07.181-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167096/thumbnails/1.jpg","file_name":"j.mssp.2018.06.03020230417-1-l7pp5e.pdf","download_url":"https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_of_ZnO_nanopowders_by_the_simp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167096/j.mssp.2018.06.03020230417-1-l7pp5e-libre.pdf?1681731214=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_ZnO_nanopowders_by_the_simp.pdf\u0026Expires=1733205649\u0026Signature=X5qcaYI-sU5qDRx0Wny1eUGBQKAYXQuf4XFvFIzQ5DghOnpjGhWrQWOvgoKOGaRFbnn8s6O4sURw2WbeLdUCAD18j4ZfvshBazijKuoB5Gyzp4-sG47VGIhrpcg1hX4tCRau5wUIuS2ppZa3WI10Khv2zTrEuyFCe1R3jRn7YIruwzpcGbDtVLPxieQM4N-V29rEAsdC1QKSz6ILvxTt0u-9jRGpvyx9C0lr~JTxwiWVY2ealbyrWiROC5-i3x7ga8H~jN3dq8WsDKiyX0OoAdTkZCY4gpgwZpqpVo1R857H0QPaAlgM5JOPp2Jh6Djqh-BiaV~defvjKBheqt7XNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167096/thumbnails/1.jpg","file_name":"j.mssp.2018.06.03020230417-1-l7pp5e.pdf","download_url":"https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_of_ZnO_nanopowders_by_the_simp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167096/j.mssp.2018.06.03020230417-1-l7pp5e-libre.pdf?1681731214=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_ZnO_nanopowders_by_the_simp.pdf\u0026Expires=1733205649\u0026Signature=X5qcaYI-sU5qDRx0Wny1eUGBQKAYXQuf4XFvFIzQ5DghOnpjGhWrQWOvgoKOGaRFbnn8s6O4sURw2WbeLdUCAD18j4ZfvshBazijKuoB5Gyzp4-sG47VGIhrpcg1hX4tCRau5wUIuS2ppZa3WI10Khv2zTrEuyFCe1R3jRn7YIruwzpcGbDtVLPxieQM4N-V29rEAsdC1QKSz6ILvxTt0u-9jRGpvyx9C0lr~JTxwiWVY2ealbyrWiROC5-i3x7ga8H~jN3dq8WsDKiyX0OoAdTkZCY4gpgwZpqpVo1R857H0QPaAlgM5JOPp2Jh6Djqh-BiaV~defvjKBheqt7XNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"}],"urls":[{"id":30685679,"url":"https://api.elsevier.com/content/article/PII:S1369800118301483?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307016"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K"><img alt="Research paper thumbnail of Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K" class="work-thumbnail" src="https://attachments.academia-assets.com/101167099/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K">Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a859fdc99be21c7794f14dfbe9c203f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167099,"asset_id":100307016,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307016"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307016"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307016; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307016]").text(description); $(".js-view-count[data-work-id=100307016]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307016; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307016']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307016, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a859fdc99be21c7794f14dfbe9c203f" } } $('.js-work-strip[data-work-id=100307016]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307016,"title":"Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Electronic Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K","translated_internal_url":"","created_at":"2023-04-17T00:00:07.062-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167099/thumbnails/1.jpg","file_name":"s11664-018-6593-y20230417-1-wo6o5x.pdf","download_url":"https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_Transport_Mechanisms_of_the_Al_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167099/s11664-018-6593-y20230417-1-wo6o5x-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_Transport_Mechanisms_of_the_Al_B.pdf\u0026Expires=1733205649\u0026Signature=HmNUTtrL4QjbABB2XvoBnwxz7Da3TjTMJu6iFCN-65MNvYG-1BcVTqcERk2X7ZGCEwKJM5csGc5hHCcvegwU2NdZMDQ~UU23slJZOjOupnvLa5uHgPffO9SZqiPqmxFmf99v0CP0cBGLdEmOdV08kp2hlcOno0Ox2UHt255qd7E4F4~WEjrk6rMKUTVC5ekbF60FIQMy2Hc32hZI65R0NqxfgO68KlDOW12Ulnz8decdUAuIsTH6qJm~mgyjlxHqWOTa8dycK5VmLSDIa5r7VCpnS5idXXs4OpR4QeGtdYheN3FxImdxrRqkzS7sTcKWlGw7T0G0AQmnnfbxroDibg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167099/thumbnails/1.jpg","file_name":"s11664-018-6593-y20230417-1-wo6o5x.pdf","download_url":"https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_Transport_Mechanisms_of_the_Al_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167099/s11664-018-6593-y20230417-1-wo6o5x-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_Transport_Mechanisms_of_the_Al_B.pdf\u0026Expires=1733205649\u0026Signature=HmNUTtrL4QjbABB2XvoBnwxz7Da3TjTMJu6iFCN-65MNvYG-1BcVTqcERk2X7ZGCEwKJM5csGc5hHCcvegwU2NdZMDQ~UU23slJZOjOupnvLa5uHgPffO9SZqiPqmxFmf99v0CP0cBGLdEmOdV08kp2hlcOno0Ox2UHt255qd7E4F4~WEjrk6rMKUTVC5ekbF60FIQMy2Hc32hZI65R0NqxfgO68KlDOW12Ulnz8decdUAuIsTH6qJm~mgyjlxHqWOTa8dycK5VmLSDIa5r7VCpnS5idXXs4OpR4QeGtdYheN3FxImdxrRqkzS7sTcKWlGw7T0G0AQmnnfbxroDibg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":389161,"name":"Diode","url":"https://www.academia.edu/Documents/in/Diode"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685678,"url":"http://link.springer.com/content/pdf/10.1007/s11664-018-6593-y.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode"><img alt="Research paper thumbnail of Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode" class="work-thumbnail" src="https://attachments.academia-assets.com/101167098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode">Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="43315d38ab291a96708eedea44dbe901" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167098,"asset_id":100307015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307015]").text(description); $(".js-view-count[data-work-id=100307015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307015, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "43315d38ab291a96708eedea44dbe901" } } $('.js-work-strip[data-work-id=100307015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307015,"title":"Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Frequency Dependent Properties of Au/P3HT:PCBM:n-Si Diode","grobid_abstract":"TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitancevoltage (C-V) and conductance-voltage (G/x-V) measurements in the frequency range of 10 kHz-2 MHz. The C-V-f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states (N ss). The values of N ss located in semiconductor bandgap at the organic film/ semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant (e¢) and dielectric loss (e¢¢) decrease with increasing frequency, whereas loss tangent (tand) remains nearly the same. The decrease in e¢ and e¢¢ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity (r ac) and electric modulus (M¢ and M¢¢) increase with increasing frequency.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Electronic Materials","grobid_abstract_attachment_id":101167098},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode","translated_internal_url":"","created_at":"2023-04-17T00:00:06.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167098/thumbnails/1.jpg","file_name":"s11664-017-5294-220230417-1-v9fjot.pdf","download_url":"https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_Dependent_Electrical_and_Diele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167098/s11664-017-5294-220230417-1-v9fjot-libre.pdf?1681731220=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_Dependent_Electrical_and_Diele.pdf\u0026Expires=1733205649\u0026Signature=criJXsDG7l69kRYXCW0BBRQgvarwV2X7sDGeoaOv0kFTQdtxcCChOIFqdWu4QSq53XFiwoNgaWHTFEfFr~il90iW~FYK3ma-sYJxL-D~WR0TrxYvs9AGEjAOCvsGSaUhKuAqqI2K7YD4abKHVFWV8nLXK2AtFqQOn7CWPqaTzvQSkDPzAPjzUtGzncJjSr5WcNGVeroLGzSdMH8ZCvNAa7hVtKaayewDV8AdmGiX2JBKSvCkO14D~JO9fHNyAtzefuwMAffHbsWKL6gajL8iwLWIrGOtnhUI7y67ki4VGwy~rBaT-kcBTEOoSm8PuvfOhEuArpzY20yTtnrD-8xBSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167098/thumbnails/1.jpg","file_name":"s11664-017-5294-220230417-1-v9fjot.pdf","download_url":"https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_Dependent_Electrical_and_Diele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167098/s11664-017-5294-220230417-1-v9fjot-libre.pdf?1681731220=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_Dependent_Electrical_and_Diele.pdf\u0026Expires=1733205649\u0026Signature=criJXsDG7l69kRYXCW0BBRQgvarwV2X7sDGeoaOv0kFTQdtxcCChOIFqdWu4QSq53XFiwoNgaWHTFEfFr~il90iW~FYK3ma-sYJxL-D~WR0TrxYvs9AGEjAOCvsGSaUhKuAqqI2K7YD4abKHVFWV8nLXK2AtFqQOn7CWPqaTzvQSkDPzAPjzUtGzncJjSr5WcNGVeroLGzSdMH8ZCvNAa7hVtKaayewDV8AdmGiX2JBKSvCkO14D~JO9fHNyAtzefuwMAffHbsWKL6gajL8iwLWIrGOtnhUI7y67ki4VGwy~rBaT-kcBTEOoSm8PuvfOhEuArpzY20yTtnrD-8xBSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":389161,"name":"Diode","url":"https://www.academia.edu/Documents/in/Diode"},{"id":390049,"name":"Electrical Conductivity","url":"https://www.academia.edu/Documents/in/Electrical_Conductivity"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685677,"url":"http://link.springer.com/content/pdf/10.1007/s11664-017-5294-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="9134370" id="papers"><div class="js-work-strip profile--work_container" data-work-id="116791469"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements"><img alt="Research paper thumbnail of The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements">The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan &#945; fazından polar &#946; fazına bir geçiş yapmasına neden olmaktadır. Bu &#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="116791469"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="116791469"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 116791469; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=116791469]").text(description); $(".js-view-count[data-work-id=116791469]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 116791469; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='116791469']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 116791469, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=116791469]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":116791469,"title":"The Fabrication And Characterization Of Polyvinylidene Fluoride Nanocomposite Piezomaterials Doped Graphene, Boron And Rare Earth Elements","translated_title":"","metadata":{"abstract":"Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan \u0026#945; fazından polar \u0026#946; fazına bir geçiş yapmasına neden olmaktadır. Bu \u0026#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...","publication_date":{"day":null,"month":null,"year":2015,"errors":{}}},"translated_abstract":"Piezoelektrik özelliği olan poliviniliden florür (PVDF) malzemenin; sertlik, termal dayanıklık ve elektriksel özelliğini geliştirmek bu çalışmanın esas amacını oluşturmaktadır. PVDF, elektriksel olarak yalıtkan, yüksek korozyona dirençli, esnek, düşük üretim maliyeti ve zehirsiz olması nedeniyle yeni nesil piezoelektrik malzeme uygulamalarında tercih edilen polimerdir. Ancak piezoelektrik yük sabiti ve sertlik değerlerinin istenilen seviyelerde olmaması bu malzemenin kullanılmasına bazı kısıtlamalar getirmiştir. Bu nedenle yapılan bu çalışmada grafen, bor, seryum ve erbiyum katkı maddesi olarak polimer içine eklenip nanokompozit malzeme üretilmiştir ve elektro-eğirme tekniğini kullanarak tamamen homojen bir yapı elde edilmiştir. Dört kristal fazından oluşan yarı kristal PVDF polimere, grafen katkılaması; bu polimerin polar olmayan \u0026#945; fazından polar \u0026#946; fazına bir geçiş yapmasına neden olmaktadır. Bu \u0026#946; fazı, malzemenin piezoelektrik özelliğinden sorumludur, dolayısıyla gr...","internal_url":"https://www.academia.edu/116791469/The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements","translated_internal_url":"","created_at":"2024-03-28T02:07:19.015-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Fabrication_And_Characterization_Of_Polyvinylidene_Fluoride_Nanocomposite_Piezomaterials_Doped_Graphene_Boron_And_Rare_Earth_Elements","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[],"urls":[{"id":40672324,"url":"http://hdl.handle.net/20.500.12602/151123"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107984358"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating"><img alt="Research paper thumbnail of Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating">Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating</a></div><div class="wp-workCard_item"><span>Journal of Building Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107984358"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107984358"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107984358; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107984358]").text(description); $(".js-view-count[data-work-id=107984358]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107984358; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107984358']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107984358, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107984358]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107984358,"title":"Analysis of a spiral-formed solar air heating system with ceria nanoparticles-enhanced absorber coating","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Building Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/107984358/Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating","translated_internal_url":"","created_at":"2023-10-11T06:50:34.526-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Analysis_of_a_spiral_formed_solar_air_heating_system_with_ceria_nanoparticles_enhanced_absorber_coating","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":93150,"name":"Coating","url":"https://www.academia.edu/Documents/in/Coating"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":174347,"name":"Thermal","url":"https://www.academia.edu/Documents/in/Thermal"},{"id":914665,"name":"Building Engineering","url":"https://www.academia.edu/Documents/in/Building_Engineering"}],"urls":[{"id":34595323,"url":"https://api.elsevier.com/content/article/PII:S2352710223007131?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107984357"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios"><img alt="Research paper thumbnail of Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios">Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios</a></div><div class="wp-workCard_item"><span>International Journal of Numerical Methods for Heat &amp; Fluid Flow</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or i...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107984357"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107984357"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107984357; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107984357]").text(description); $(".js-view-count[data-work-id=107984357]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107984357; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107984357']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107984357, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107984357]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107984357,"title":"Numerical and experimental investigation for enhancing thermal performance of a concentric heat exchanger using different scenarios","translated_title":"","metadata":{"abstract":"Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...","publisher":"Emerald","publication_name":"International Journal of Numerical Methods for Heat \u0026amp; Fluid Flow"},"translated_abstract":"Purpose Heat exchangers (HEs) which provide heat transfer and transfer energy through direct or indirect contact between fluids have an essential role in many processes as a part of various industries from pharmaceutical production to electronic devices. Using nanofluid as working fluid and integrating different types of turbulators could be used to upgrade the thermal effectiveness of HEs. Recently, to obtain more increment in thermal effectiveness, hybrid nanofluids are used that are prepared by mixing two or more various nanoparticles. The purpose of this experimental and numerical study is investigating different scenarios for improving the effectiveness of a concentric U-tube type HE. Design/methodology/approach In the numerical section of this study, different turbulator modifications, including circular and quarter circular rings, were modeled to determine the effect of adding turbulator on thermal performance. In addition, Al2O3/water and SiO2/water single and Al2O3–SiO2/wat...","internal_url":"https://www.academia.edu/107984357/Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios","translated_internal_url":"","created_at":"2023-10-11T06:50:34.322-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Numerical_and_experimental_investigation_for_enhancing_thermal_performance_of_a_concentric_heat_exchanger_using_different_scenarios","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":8067,"name":"Heat Transfer","url":"https://www.academia.edu/Documents/in/Heat_Transfer"},{"id":19517,"name":"Heat Exchanger","url":"https://www.academia.edu/Documents/in/Heat_Exchanger"},{"id":144723,"name":"Nanofluid","url":"https://www.academia.edu/Documents/in/Nanofluid"},{"id":359085,"name":"Heat transfer enhancement","url":"https://www.academia.edu/Documents/in/Heat_transfer_enhancement"},{"id":437832,"name":"Distilled Water","url":"https://www.academia.edu/Documents/in/Distilled_Water"},{"id":1900043,"name":"Turbulator","url":"https://www.academia.edu/Documents/in/Turbulator"}],"urls":[{"id":34595322,"url":"https://www.emerald.com/insight/content/doi/10.1108/HFF-10-2022-0588/full/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107983595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es"><img alt="Research paper thumbnail of Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es">Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-k...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (&#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, &#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss&#8210;(Ec-Ess)); doğru beslem (I&#8210;V), voltaja bağlı bariyer yüksekliği (&#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)&#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C&#8210;V ve G/&#61559;&#8210;V ölçümleri de yapılmıştır. Ters beslem C-2&#8210;V...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107983595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107983595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107983595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107983595]").text(description); $(".js-view-count[data-work-id=107983595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107983595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107983595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 107983595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107983595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107983595,"title":"Preparatıon Of Au/(Bi2o3-X:Pva)/4h-Sic Structures By Usıng Dıfferent X Materıals And Investıgatıon Of Electrıcal And Dıelectrıc Propertıes","translated_title":"","metadata":{"abstract":"Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (\u0026#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, \u0026#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss\u0026#8210;(Ec-Ess)); doğru beslem (I\u0026#8210;V), voltaja bağlı bariyer yüksekliği (\u0026#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)\u0026#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C\u0026#8210;V ve G/\u0026#61559;\u0026#8210;V ölçümleri de yapılmıştır. Ters beslem C-2\u0026#8210;V...","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Farklı nanokompozit arayüzey tabakalı Au/(Bi2O3-x:PVA)/4H-SiC (MPS) (x=Sm, Sn, Mo) yapılar spin-kaplama yöntemi ile üretilmiştir. Hazırlanan yapıların I-V karakteristiklerden elde edilen doygunluk akımı (I0), engel yüksekliği (\u0026#61510;B0), idealite faktörü (n), seri ve şönt dirençleri (Rs ve Rsh) ve rektifiye oranı (RR) gibi ana elektriksel parametreleri, arayüzey tabakada kullanılan farklı nanomateryale bağlı olarak değişimi incelenmiştir. Tüm yapılar için cheung ve norde fonksiyonlarından elde edilen n, \u0026#61510; B0 and Rs değerleri karşılaştırılmıştır. Arayüzey durumlarının enerji dağılım profili (Nss\u0026#8210;(Ec-Ess)); doğru beslem (I\u0026#8210;V), voltaja bağlı bariyer yüksekliği (\u0026#61510;e(V)) ve idealite faktörü (n(V)) verileri dikkate alınarak elde edilmiştir. Ek olarak, hazırlanan yapıların muhtemel akım iletim mekanizmasını belirlemek için Ln(I)\u0026#8210;Ln(V) eğrileri çizilmiştir. Ayrıca tüm yapıların C\u0026#8210;V ve G/\u0026#61559;\u0026#8210;V ölçümleri de yapılmıştır. Ters beslem C-2\u0026#8210;V...","internal_url":"https://www.academia.edu/107983595/Preparat%C4%B1on_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Us%C4%B1ng_D%C4%B1fferent_X_Mater%C4%B1als_And_Invest%C4%B1gat%C4%B1on_Of_Electr%C4%B1cal_And_D%C4%B1electr%C4%B1c_Propert%C4%B1es","translated_internal_url":"","created_at":"2023-10-11T06:31:05.294-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Preparatıon_Of_Au_Bi2o3_X_Pva_4h_Sic_Structures_By_Usıng_Dıfferent_X_Materıals_And_Investıgatıon_Of_Electrıcal_And_Dıelectrıc_Propertıes","translated_slug":"","page_count":null,"language":"tr","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[],"urls":[{"id":34594807,"url":"http://hdl.handle.net/20.500.12602/151093"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact"><img alt="Research paper thumbnail of Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact">Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact</a></div><div class="wp-workCard_item"><span>IEEE Sensors Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307030]").text(description); $(".js-view-count[data-work-id=100307030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307030, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307030,"title":"Vertical CdTe:PVP/p-Si-Based Temperature Sensor by Using Aluminum Anode Schottky Contact","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_name":"IEEE Sensors Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307030/Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact","translated_internal_url":"","created_at":"2023-04-17T00:00:08.831-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Vertical_CdTe_PVP_p_Si_Based_Temperature_Sensor_by_Using_Aluminum_Anode_Schottky_Contact","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685691,"url":"http://xplorestaging.ieee.org/ielx7/7361/9966666/09918658.pdf?arnumber=9918658"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface"><img alt="Research paper thumbnail of The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface">The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface</a></div><div class="wp-workCard_item"><span>Polymer Bulletin</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307029]").text(description); $(".js-view-count[data-work-id=100307029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307029, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307029,"title":"The photoresponse behavior of a Schottky structure with a transition metal oxide-doped organic polymer (RuO2:PVC) interface","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_name":"Polymer Bulletin"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307029/The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface","translated_internal_url":"","created_at":"2023-04-17T00:00:08.685-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_photoresponse_behavior_of_a_Schottky_structure_with_a_transition_metal_oxide_doped_organic_polymer_RuO2_PVC_interface","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33912,"name":"Doping","url":"https://www.academia.edu/Documents/in/Doping"},{"id":347722,"name":"Photodetector","url":"https://www.academia.edu/Documents/in/Photodetector"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":397201,"name":"Thermionic Emission","url":"https://www.academia.edu/Documents/in/Thermionic_Emission"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"}],"urls":[{"id":30685690,"url":"https://link.springer.com/content/pdf/10.1007/s00289-023-04725-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface"><img alt="Research paper thumbnail of The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface">The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface</a></div><div class="wp-workCard_item"><span>Synthetic Metals</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307028]").text(description); $(".js-view-count[data-work-id=100307028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307028, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307028,"title":"The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Synthetic Metals"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307028/The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface","translated_internal_url":"","created_at":"2023-04-17T00:00:08.559-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_capacitance_conductance_and_surface_state_intensity_characteristics_of_the_Schottky_structures_with_ruthenium_dioxide_doped_organic_polymer_interface","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":33912,"name":"Doping","url":"https://www.academia.edu/Documents/in/Doping"},{"id":58527,"name":"Polymer","url":"https://www.academia.edu/Documents/in/Polymer"},{"id":183411,"name":"Conductance","url":"https://www.academia.edu/Documents/in/Conductance"},{"id":389570,"name":"Capacitance","url":"https://www.academia.edu/Documents/in/Capacitance"},{"id":2540146,"name":"Ruthenium","url":"https://www.academia.edu/Documents/in/Ruthenium"}],"urls":[{"id":30685689,"url":"https://api.elsevier.com/content/article/PII:S0379677922002375?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode"><img alt="Research paper thumbnail of 21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode">21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode</a></div><div class="wp-workCard_item"><span>IEEE Sensors Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307027]").text(description); $(".js-view-count[data-work-id=100307027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307027, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307027,"title":"21.2 mV/K High-Performance Ni(50 nm)-Au(100 nm)/Ga2O3/p-Si Vertical MOS Type Diode and the Temperature Sensing Characteristics With a Novel Drive Mode","translated_title":"","metadata":{"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","publication_name":"IEEE Sensors Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307027/21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode","translated_internal_url":"","created_at":"2023-04-17T00:00:08.437-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"21_2_mV_K_High_Performance_Ni_50_nm_Au_100_nm_Ga2O3_p_Si_Vertical_MOS_Type_Diode_and_the_Temperature_Sensing_Characteristics_With_a_Novel_Drive_Mode","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":60,"name":"Mechanical Engineering","url":"https://www.academia.edu/Documents/in/Mechanical_Engineering"},{"id":483393,"name":"Notation","url":"https://www.academia.edu/Documents/in/Notation"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685688,"url":"http://xplorestaging.ieee.org/ielx7/7361/9984967/09944651.pdf?arnumber=9944651"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics"><img alt="Research paper thumbnail of Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics">Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics</a></div><div class="wp-workCard_item"><span>Journal of Physics and Chemistry of Solids</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307026]").text(description); $(".js-view-count[data-work-id=100307026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307026, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307026,"title":"Plasma-enhanced atomic layer deposition of amorphous Ga2O3 gate dielectrics","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"Journal of Physics and Chemistry of Solids"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307026/Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics","translated_internal_url":"","created_at":"2023-04-17T00:00:08.293-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Plasma_enhanced_atomic_layer_deposition_of_amorphous_Ga2O3_gate_dielectrics","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":30488,"name":"Atomic Layer Deposition","url":"https://www.academia.edu/Documents/in/Atomic_Layer_Deposition"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":117555,"name":"Plasma","url":"https://www.academia.edu/Documents/in/Plasma"}],"urls":[{"id":30685687,"url":"https://api.elsevier.com/content/article/PII:S0022369722003961?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency"><img alt="Research paper thumbnail of Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency">Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307025]").text(description); $(".js-view-count[data-work-id=100307025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307025, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307025,"title":"Basic Electrical Parameters of the Au/(Pvc:Ruo2)/N-Si (Mps) Structures as a Function of Frequency","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"SSRN Electronic Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307025/Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency","translated_internal_url":"","created_at":"2023-04-17T00:00:08.205-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Basic_Electrical_Parameters_of_the_Au_Pvc_Ruo2_N_Si_Mps_Structures_as_a_Function_of_Frequency","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction"><img alt="Research paper thumbnail of Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction" class="work-thumbnail" src="https://attachments.academia-assets.com/101167100/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction">Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction</a></div><div class="wp-workCard_item"><span>Journal of Physics and Chemistry of Solids</span><span>, 2021</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40015a3be4de20230c7c303f7de246e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167100,"asset_id":100307024,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307024]").text(description); $(".js-view-count[data-work-id=100307024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307024, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40015a3be4de20230c7c303f7de246e1" } } $('.js-work-strip[data-work-id=100307024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307024,"title":"Current transport properties of (Au/Ni)/HfAlO3/n-Si metal–insulator–semiconductor junction","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this study, HfAlO 3 ternary alloy thin film was grown on n-type silicon using the atomic layer deposition method. The current transport mechanisms in the (Au/Ni)/HfAlO 3 /n-Si junction were examined over a wide temperature range (80-360 K). The values obtained for the ideality factor (n) varied from 22.93 to 3.94 and the barrier height at zero bias (Ф B0) ranged from 0.221 eV to 0.821 eV as the temperature changed from 80 to 360 K. The Φ B0-n and Φ B0-q/2 kT characteristics were investigated to explain the higher n values and non-ideal behavior of the Richardson curves. Two linear regions were found at low temperatures (LTs; 80-180 K) and high temperatures (HTs; 200-360 K), which indicated the presence of a Gaussian distribution barrier height and the average barrier heights (Φ B0) were identified. The values obtained for Φ Bo were 0.734 eV for LTs and 1.125 eV for HTs, and the values of σ s were 0.085 V for LTs and 0.140 V for HTs. The values obtained for N ss decreased as the temperature increased and they varied between ~10 12 and 10 13 eV − 1 cm − 2. Finally, the dielectric behavior and conductivity of the (Au/Ni)/HfAlO 3 /n-Si junction were investigated at frequencies between 5 kHz and 2 MHz at room temperature. The values determined for ε ′ and ε ′ ′ at − 1 V and 5 kHz were 2.1 and 3.53, respectively.","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Physics and Chemistry of Solids","grobid_abstract_attachment_id":101167100},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307024/Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction","translated_internal_url":"","created_at":"2023-04-17T00:00:08.096-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167100/thumbnails/1.jpg","file_name":"Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction.pdf","download_url":"https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_transport_properties_of_Au_Ni_Hf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167100/Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction-libre.pdf?1681731226=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_transport_properties_of_Au_Ni_Hf.pdf\u0026Expires=1733205649\u0026Signature=QG7gqoozJZZ2IVwC7gQCgwAOBItnq8QkNQWs636neprmKxnFEEfd8gWZDHcoOsy1ykhAN73DoWE1f7VECF3u3UR0lF~x1b-0hTf11yuKLa95vLBbClKMWFcck9dmEf6SiVsBRDXySxOSFHJ--Xvi8fp4fKOfnI7qLHFXQ8y-EOVT1mBCauW-qWAd~kzjVpled1VqihxZXSQc4NT9K9QobWSD29OMVrKhNlZDlmPZi08HpZUbm6coINDwpO-CZMO7bpMG1Syc68EjCJZ3FNdJtKdtXQatmLoeDqD~V~sN~X4PW0A9tqCcUqIZLekeAHIEsVKhl2bOcf~yUYErDeKawg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Current_transport_properties_of_Au_Ni_HfAlO3_n_Si_metal_insulator_semiconductor_junction","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167100,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167100/thumbnails/1.jpg","file_name":"Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction.pdf","download_url":"https://www.academia.edu/attachments/101167100/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_transport_properties_of_Au_Ni_Hf.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167100/Current_transport_properties_of_AuNiHfAlO3n_Si_metal_insulator_semiconductor_junction-libre.pdf?1681731226=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_transport_properties_of_Au_Ni_Hf.pdf\u0026Expires=1733205649\u0026Signature=QG7gqoozJZZ2IVwC7gQCgwAOBItnq8QkNQWs636neprmKxnFEEfd8gWZDHcoOsy1ykhAN73DoWE1f7VECF3u3UR0lF~x1b-0hTf11yuKLa95vLBbClKMWFcck9dmEf6SiVsBRDXySxOSFHJ--Xvi8fp4fKOfnI7qLHFXQ8y-EOVT1mBCauW-qWAd~kzjVpled1VqihxZXSQc4NT9K9QobWSD29OMVrKhNlZDlmPZi08HpZUbm6coINDwpO-CZMO7bpMG1Syc68EjCJZ3FNdJtKdtXQatmLoeDqD~V~sN~X4PW0A9tqCcUqIZLekeAHIEsVKhl2bOcf~yUYErDeKawg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"}],"urls":[{"id":30685686,"url":"https://api.elsevier.com/content/article/PII:S0022369720308817?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures"><img alt="Research paper thumbnail of Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures">Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures</a></div><div class="wp-workCard_item"><span>Applied Physics A</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">To determine the influence of the thin polymer interface film on the electrical and dielectric ch...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307023]").text(description); $(".js-view-count[data-work-id=100307023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307023, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307023,"title":"Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures","translated_title":"","metadata":{"abstract":"To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Applied Physics A"},"translated_abstract":"To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using I–V and Z–f analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the I–V experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (e* = e′ − je″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the C–f and G/ω–f experiments for both structures at 102–106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and e′.","internal_url":"https://www.academia.edu/100307023/Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures","translated_internal_url":"","created_at":"2023-04-17T00:00:07.967-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Graphene_doped_Bi2Te3_Bi2O3_TeO2_PVP_dielectrics_in_metal_semiconductor_structures","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":11541,"name":"Graphene","url":"https://www.academia.edu/Documents/in/Graphene"},{"id":82551,"name":"Semiconductor","url":"https://www.academia.edu/Documents/in/Semiconductor"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":1736799,"name":"Dissipation Factor","url":"https://www.academia.edu/Documents/in/Dissipation_Factor"}],"urls":[{"id":30685685,"url":"https://link.springer.com/content/pdf/10.1007/s00339-021-04400-4.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions"><img alt="Research paper thumbnail of The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions" class="work-thumbnail" src="https://attachments.academia-assets.com/101167103/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions">The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b0ef9a587b8c25e5a6c793b73fed9a94" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167103,"asset_id":100307022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307022]").text(description); $(".js-view-count[data-work-id=100307022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307022, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b0ef9a587b8c25e5a6c793b73fed9a94" } } $('.js-work-strip[data-work-id=100307022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307022,"title":"The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"The possible current-conduction mechanism (CCMs) of the Au/CoSO 4-PVP/n-Si junctions was investigated using temperature-dependence current-voltage (I-V) experiments over 100-360 K. The experimental results showed that the value of BH increases approximately linearly with increasing temperature. Such positive temperature coefficient (a = DU B0 /DT) is in agreement with the reported negative temperature coefficient of the bandgap of Si (=-0.473 meV/K). The (n ap-1-1) vs q/2kT curves have different characters in two temperature ranges due to having separate two barrier distributions. The q 2 and q 3 values obtained from intercept and slope of these curves as 0.521 V and 0.011 V for 240-360 K temperature range and 0.737 V and 0.004 V for the 100-220 K range. This results show that the high temperature region with smaller q 2 and larger q 3 voltage deformation coefficients has a wider and greater of the barrier height distribution than the second region. As an evidence for the Gaussian distribution, the U B0 and standard deviation (r 0) were derived from the intercept and slope of the U B0-q/2kT curves as 1.14 eV and 0.163 V at high temperatures and 0.62 eV and 0.088 V at low temperatures. The Richardson constant obtained as 102 A/cm 2 K 2 for 240-360 K temperature range using standard deviation value which is similar to the theoretical Richardson constant value of silicon (112 A/cm 2 K 2). For each temperature, the profile of N ss vs (E c-E ss) was provided using the voltage-dependent effective barrier height (U e) value. It was observed that these surface conditions decreased with increasing temperature.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics","grobid_abstract_attachment_id":101167103},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307022/The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions","translated_internal_url":"","created_at":"2023-04-17T00:00:07.841-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167103/thumbnails/1.jpg","file_name":"s10854-020-04406-320230417-1-o5pmqc.pdf","download_url":"https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_possible_current_conduction_mechanis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167103/s10854-020-04406-320230417-1-o5pmqc-libre.pdf?1681731213=\u0026response-content-disposition=attachment%3B+filename%3DThe_possible_current_conduction_mechanis.pdf\u0026Expires=1733205649\u0026Signature=V-K-byM1ERuDTF~duZ8-pbsjTxvsZxdkcHkXNAH-dRLGl3EX66ojr5bKBEzM18eQse4ugUFIo-NWp4Amrmyuur9ZFZALcKUzlPYne-E4TcwgGzA~Cexz9gaGngW92K5Ae0nPhI4T27rJJFSQHAW~L-zHMyRPPuFdTuMrGCy4ze9oMBC2Up3nY7WZZQbqUJgk91DkDgbjkJforGfpWteFYbEHjCAD~6tmUgvAOR0ClBikAKmdvreyxZR1~IUIQm2bVmsf~1kzovLLwQek8-GPEKVXPxtG4-vje~4eDf7pltbZKHYYoV3EBzteYElA~qHTRrE4NFiu9mQQgNf3P5lhzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_possible_current_conduction_mechanism_in_the_Au_CoSO4_PVP_n_Si_junctions","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167103,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167103/thumbnails/1.jpg","file_name":"s10854-020-04406-320230417-1-o5pmqc.pdf","download_url":"https://www.academia.edu/attachments/101167103/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_possible_current_conduction_mechanis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167103/s10854-020-04406-320230417-1-o5pmqc-libre.pdf?1681731213=\u0026response-content-disposition=attachment%3B+filename%3DThe_possible_current_conduction_mechanis.pdf\u0026Expires=1733205649\u0026Signature=V-K-byM1ERuDTF~duZ8-pbsjTxvsZxdkcHkXNAH-dRLGl3EX66ojr5bKBEzM18eQse4ugUFIo-NWp4Amrmyuur9ZFZALcKUzlPYne-E4TcwgGzA~Cexz9gaGngW92K5Ae0nPhI4T27rJJFSQHAW~L-zHMyRPPuFdTuMrGCy4ze9oMBC2Up3nY7WZZQbqUJgk91DkDgbjkJforGfpWteFYbEHjCAD~6tmUgvAOR0ClBikAKmdvreyxZR1~IUIQm2bVmsf~1kzovLLwQek8-GPEKVXPxtG4-vje~4eDf7pltbZKHYYoV3EBzteYElA~qHTRrE4NFiu9mQQgNf3P5lhzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":119668,"name":"Thermal conduction in Nanomaterials","url":"https://www.academia.edu/Documents/in/Thermal_conduction_in_Nanomaterials"},{"id":810972,"name":"Mechanism in Biology","url":"https://www.academia.edu/Documents/in/Mechanism_in_Biology"}],"urls":[{"id":30685684,"url":"https://link.springer.com/content/pdf/10.1007/s10854-020-04406-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307021"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity"><img alt="Research paper thumbnail of Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity" class="work-thumbnail" src="https://attachments.academia-assets.com/101167095/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity">Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f33c39481cf3d1e2edee70b9e4eef345" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167095,"asset_id":100307021,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307021"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307021"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307021; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307021]").text(description); $(".js-view-count[data-work-id=100307021]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307021; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307021']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307021, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f33c39481cf3d1e2edee70b9e4eef345" } } $('.js-work-strip[data-work-id=100307021]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307021,"title":"Intersection behavior of the current–voltage (I–V) characteristics of the (Au/Ni)/HfAlO3/n-Si (MIS) structure depends on the lighting intensity","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"I-V Characteristics of MIS Structures under Varying Light Intensity","grobid_abstract":"The current-voltage (I-V) and capacitance-voltage (C-V) behaviors of the (Au/Ni)/HfAlO 3 /n-Si (MIS) junctions at room temperature under white light with various intensities were investigated. The ln(I)-V curves show two linear behavior regions at about 1 V before and after the point of intersection that can be defined as two separate current-conduction (CMs) Mechanisms. The values of the ideality factor (n) and the zero-bias barrier height (Φ B0) were extracted using the slope and intercept of the ln(I)-V curve before and after the intersection point based on lighting power. Although the Φ B0 values decrease with increasing light power, n increases for two regions, and there is a strong linear relationship between them. The values of photo-current (I ph) increase with the increasing lighting power due to the formation of electron-hole pairs. The slope of the double-logarithmic I ph-P was changed from 0.422 to 0.852, respectively, at − 2 V and − 9 V, which indicates the ongoing distribution of N ss. In addition, the profile of surface states (N ss) ionized by light was obtained from the capacitance measured in dark and under lighting at 1 MHz. The N ss-V curve has two characteristic peaks that correspond to the region of depletion and accumulation due to a special distribution of N ss and their restructuring and reordering under the effects of lighting and an electric field.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics","grobid_abstract_attachment_id":101167095},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307021/Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity","translated_internal_url":"","created_at":"2023-04-17T00:00:07.712-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167095/thumbnails/1.jpg","file_name":"15143.pdf","download_url":"https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Intersection_behavior_of_the_current_vol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167095/15143-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DIntersection_behavior_of_the_current_vol.pdf\u0026Expires=1733205649\u0026Signature=FPzphhdzqcSPQO9PiqAiKzoZrOKwVOSLgng9Ci5I1du-GeJUOEfe7KpnB3LGeh0TdoDpIM0pWKyN7V26ZoxAGa4P2cCIq45GSbKkxbIJBb55VQISzZPBwbDTbysj7eoXhL0rrZh9dJnGXBdxfdpm4hwDZotA3UgqeKqSyHlM-ShUA56KsoNfpp7h28l3z-Hte-fOWNrSEA9L8S0vCu2ffFFSr0Mt8pxMXICq~CpWui7eVrXnwhKXo0zpk78cXS-v--TTG92ZzFiNwCeMWrGypxA66P32N~oXJFtOEhEMa~DmjOffB88soL5PDkod91vNCDyscS5E4suxIErfuNz8-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Intersection_behavior_of_the_current_voltage_I_V_characteristics_of_the_Au_Ni_HfAlO3_n_Si_MIS_structure_depends_on_the_lighting_intensity","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167095,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167095/thumbnails/1.jpg","file_name":"15143.pdf","download_url":"https://www.academia.edu/attachments/101167095/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Intersection_behavior_of_the_current_vol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167095/15143-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DIntersection_behavior_of_the_current_vol.pdf\u0026Expires=1733205649\u0026Signature=FPzphhdzqcSPQO9PiqAiKzoZrOKwVOSLgng9Ci5I1du-GeJUOEfe7KpnB3LGeh0TdoDpIM0pWKyN7V26ZoxAGa4P2cCIq45GSbKkxbIJBb55VQISzZPBwbDTbysj7eoXhL0rrZh9dJnGXBdxfdpm4hwDZotA3UgqeKqSyHlM-ShUA56KsoNfpp7h28l3z-Hte-fOWNrSEA9L8S0vCu2ffFFSr0Mt8pxMXICq~CpWui7eVrXnwhKXo0zpk78cXS-v--TTG92ZzFiNwCeMWrGypxA66P32N~oXJFtOEhEMa~DmjOffB88soL5PDkod91vNCDyscS5E4suxIErfuNz8-g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":389165,"name":"Voltage","url":"https://www.academia.edu/Documents/in/Voltage"}],"urls":[{"id":30685683,"url":"https://link.springer.com/content/pdf/10.1007/s10854-020-03868-9.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307020"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters"><img alt="Research paper thumbnail of Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters">Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters</a></div><div class="wp-workCard_item"><span>Journal of Materials Science: Materials in Electronics</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulato...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307020"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307020"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307020; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307020]").text(description); $(".js-view-count[data-work-id=100307020]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307020; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307020']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307020, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=100307020]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307020,"title":"Investigation of the effect of different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface-layer materials on diode parameters","translated_title":"","metadata":{"abstract":"In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Journal of Materials Science: Materials in Electronics"},"translated_abstract":"In this work, Au/4H–SiC Schottky diodes with different Bi2O3–x:PVA (x = Sm, Sn, Mo) thin insulator interface layer were produced for the fabrication of metal/insulator/semiconductor (MIS) structures. The effect of different Bi2O3–x:PVA interfacial layer deposited between metal and semiconductor on important optical and electrical parameters of Schottky diodes was investigated. The main electrical parameters of the prepared structures such as the saturation current (I0), the barrier height (ΦB0), ideality factor (n), and series and shunt resistance (Rs and Rsh) were obtained from the I‒V characteristics. The discrepancies in these parameters can be ascribed to the use of different nanomaterials as an interlayer. Moreover, the values of n, ΦB0, and Rs were also extracted by using Cheung and Norde functions and obtained results were compared with each other. The energy dependence of interface states [Nss vs (Ec − Ess)] was investigated by taking into account the voltage dependence of Φe(V) and n(V). In addition, Ln(I)–Ln(V) plots were drawn to specify the possible current transport mechanisms of the prepared structures. Experimental results show that the Schottky structures with (Bi2O3–Sn:PVA) and (Bi2O3–Sm:PVA) interlayers yield higher RR and Rsh values and lower Io values. This provides an evidence to performance increase in MS structures.","internal_url":"https://www.academia.edu/100307020/Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters","translated_internal_url":"","created_at":"2023-04-17T00:00:07.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Investigation_of_the_effect_of_different_Bi2O3_x_PVA_x_Sm_Sn_Mo_thin_insulator_interface_layer_materials_on_diode_parameters","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":101573,"name":"Thin Film","url":"https://www.academia.edu/Documents/in/Thin_Film"}],"urls":[{"id":30685682,"url":"http://link.springer.com/content/pdf/10.1007/s10854-020-03343-5.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307019"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties"><img alt="Research paper thumbnail of Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties" class="work-thumbnail" src="https://attachments.academia-assets.com/101167092/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties">Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ba896ec6f9a59d8f06c85f6c1050475f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167092,"asset_id":100307019,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307019"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307019"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307019; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307019]").text(description); $(".js-view-count[data-work-id=100307019]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307019; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307019']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307019, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ba896ec6f9a59d8f06c85f6c1050475f" } } $('.js-work-strip[data-work-id=100307019]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307019,"title":"Ultrasound-Assisted Method for Preparation of Ag2S Nanostructures: Fabrication of Au/Ag2S-PVA/n-Si Schottky Barrier Diode and Exploring Their Electrical Properties","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Ultrasound-Fabricated Au/Ag2S-PVA/n-Si Diode: Electrical Study","grobid_abstract":"Au/n-Si metal/semiconductor (MS) Schottky barrier diodes with and without (Ag 2 S-PVA) interlayer were prepared by the ultrasound-assisted method and their electric and dielectric properties were examined by using current-voltage (I-V) and capacitance-voltage (C-V) measuring devices. The structural, optical and morphological characteristics of the (Ag 2 S-PVA) were studied by xray diffraction (XRD), scanning electron microscopy (SEM) and UV-Visible spectroscopy. The observed peaks in the XRD pattern are related to the aphase of silver sulfide. The UV-Visible spectrum of (Ag 2 S-PVA) shows the quantum confinement and SEM image proves the grain size in nano-scale. The ideality factor (n) and barrier height (BH) at zero bias (U B0 (I-V)) were acquired from the I-V data. On the other hand; Fermi energy (E F), donor concentration atoms (N D), and BH (U B (C-V)) values were obtained from the reverse bias C-V data. The voltage-dependent resistance profile (Ln(R i)-V) was obtained by applying Ohm's law and also by the Nicollian-Brews methods. Also, considering the voltage-dependent n and BH, N ss-(E c-E ss) profile was acquired from the forward biases I-V characteristics. Depending on high, intermediate and low biases ln(I)-Ln(V) curves have three linear regions with distinct slopes for MS and MPS structures. The predominant current-transport mechanisms were obtained in related regions via trap-charge limited current and space-charge limited current, respectively. These outcomes indicate that the (Ag 2 S-PVA) interlayer enhanced the performance of the diode considerably in terms of high rectifier rate (RR), shunt resistance (R sh), and low surface states (N ss) and series resistance (R s). Thus, the (Ag 2 S-PVA) interlayer can be used in MS type diode instead of a traditional insulator layer.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Journal of Electronic Materials","grobid_abstract_attachment_id":101167092},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307019/Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties","translated_internal_url":"","created_at":"2023-04-17T00:00:07.439-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167092/thumbnails/1.jpg","file_name":"s11664-019-07708-320230417-1-unh8eo.pdf","download_url":"https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrasound_Assisted_Method_for_Preparati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167092/s11664-019-07708-320230417-1-unh8eo-libre.pdf?1681731215=\u0026response-content-disposition=attachment%3B+filename%3DUltrasound_Assisted_Method_for_Preparati.pdf\u0026Expires=1733205649\u0026Signature=Ynfo93GZScW6eicUCYWzwE3Q1pNUtnBu5FCl75MEOf~WzkeLYFOPoogkIe4Ji0lb0FzgwMGKcX4M0zhvOuUZbGvrj8gEEcYGUf~5eW0YfRnlTxhyjCvCW0Jpm2jXubC9JvcL801yiojPimIpKpLG0A6BuEwJaigDfoH06lZwzl8Y2NDY~Mw-8AgAxEGOhNvW5bmcEt00CtBjZbKo3bM-~sLCqH~ZDUqIWJdTiGXCow9~LMiO5rHDpQB6ioVnVm3sRQF5Mo9wR1Gh1bkRT8yVNutEaMzOlKOn~si-xMRc6Fkpe7T-5DnjDXB17fvmlV-e~7rPXFDGuGKjsUChGETq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ultrasound_Assisted_Method_for_Preparation_of_Ag2S_Nanostructures_Fabrication_of_Au_Ag2S_PVA_n_Si_Schottky_Barrier_Diode_and_Exploring_Their_Electrical_Properties","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167092,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167092/thumbnails/1.jpg","file_name":"s11664-019-07708-320230417-1-unh8eo.pdf","download_url":"https://www.academia.edu/attachments/101167092/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ultrasound_Assisted_Method_for_Preparati.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167092/s11664-019-07708-320230417-1-unh8eo-libre.pdf?1681731215=\u0026response-content-disposition=attachment%3B+filename%3DUltrasound_Assisted_Method_for_Preparati.pdf\u0026Expires=1733205649\u0026Signature=Ynfo93GZScW6eicUCYWzwE3Q1pNUtnBu5FCl75MEOf~WzkeLYFOPoogkIe4Ji0lb0FzgwMGKcX4M0zhvOuUZbGvrj8gEEcYGUf~5eW0YfRnlTxhyjCvCW0Jpm2jXubC9JvcL801yiojPimIpKpLG0A6BuEwJaigDfoH06lZwzl8Y2NDY~Mw-8AgAxEGOhNvW5bmcEt00CtBjZbKo3bM-~sLCqH~ZDUqIWJdTiGXCow9~LMiO5rHDpQB6ioVnVm3sRQF5Mo9wR1Gh1bkRT8yVNutEaMzOlKOn~si-xMRc6Fkpe7T-5DnjDXB17fvmlV-e~7rPXFDGuGKjsUChGETq9A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":8950,"name":"Nanoparticle","url":"https://www.academia.edu/Documents/in/Nanoparticle"},{"id":17733,"name":"Nanotechnology","url":"https://www.academia.edu/Documents/in/Nanotechnology"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"},{"id":148624,"name":"Nanostructure","url":"https://www.academia.edu/Documents/in/Nanostructure"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685681,"url":"http://link.springer.com/content/pdf/10.1007/s11664-019-07708-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307018"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures"><img alt="Research paper thumbnail of Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures" class="work-thumbnail" src="https://attachments.academia-assets.com/101167091/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures">Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures</a></div><div class="wp-workCard_item"><span>Physica B: Condensed Matter</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a9a7e3f4102ba0d35e6fd1ee48fc6c2a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167091,"asset_id":100307018,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307018"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307018"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307018; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307018]").text(description); $(".js-view-count[data-work-id=100307018]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307018; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307018']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307018, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a9a7e3f4102ba0d35e6fd1ee48fc6c2a" } } $('.js-work-strip[data-work-id=100307018]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307018,"title":"Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"In this study, simple ultrasound-assisted method was used for prepare the composite of (Cu-doped PVA) interfacial layer between metal and semiconductor (Al/p-Si). The scanning electron microscopy (SEM) images of the prepared (Cu-doped PVA) nanocomposites have shown an uniform fish scale shape, which are about 100 nm long and several tens of nm in width. Both the Al/p-Si (MS) and Al/(Cu-PVA)/p-Si (MPS) structures were fabricated on the same Si wafer to investigate the effect of this polymer layer on the electrical characteristics by using the current-voltage (I-V) and capacitance/conductance-voltage (C/G-V) measurements at room temperature. The values of reverse-saturation current (I o), ideality factor (n) and zero-bias barrier height (Φ Bo) were obtained from the liner part of the forward bias I-V plot as 6.6 × 10 −10 A, 3.67 and 0.84 eV for MS structure and 1.82 × 10 −8 A, 4.18 and 0.76 eV for MPS structure, respectively. MPS structure has a good rectifier behavior with low leakage current in comparison to the MS structure. The high values of n was attributed to the barrier inhomogeneity at Al/p-Si, special density distribution of N ss at (Cu-PVA)/p-Si interface and both the existence of native SiO 2 and deposited of (Cu-doped PVA) interlayer at M/S interface. The energy dependent values of N ss were obtained from the forward bias I-V data and they ranged from the 1.85 × 10 13 eV −1 cm −2 (0.60 eV-Ev) to 7.40 × 10 13 eV −1 cm −2 (0.40 eV-Ev) for MS structure and 9.81 × 10 12 eV −1 cm −2 (0.67 eV-Ev) to 5.26 × 10 13 eV −1 cm −2 (0.47 eV-Ev) for the MPS structure. Experimental results show that the (Cu-PVA) interlayer can be successfully used instead of traditional insulator layer because of the saturation of dangling bonds.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Physica B: Condensed Matter","grobid_abstract_attachment_id":101167091},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307018/Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures","translated_internal_url":"","created_at":"2023-04-17T00:00:07.300-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167091/thumbnails/1.jpg","file_name":"j.physb.2018.06.01920230417-1-fykyfl.pdf","download_url":"https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preparation_of_mixed_copper_PVA_nanocomp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167091/j.physb.2018.06.01920230417-1-fykyfl-libre.pdf?1681731222=\u0026response-content-disposition=attachment%3B+filename%3DPreparation_of_mixed_copper_PVA_nanocomp.pdf\u0026Expires=1733205649\u0026Signature=RSKzRwK7xBvxKjNOOmEs~mIMnOZivnP00jXx9XkqC4077JCNfIKqkeFTaGv~SiPAMlncK2f45ExcyM-hQlXP1GAEoWOPzSQp2ZhMiq1coSFdfa7egRzWRpjWMtymjm99IXQSo4N2pRDhPbRHzHpRkRF4-uPQxGr3n5Yk8QGbbKdUIZ~wFm-Blxsz1tbXTWDuP0hdalU0WOdzg~uapBYqxmHfetQSdgjWCgHEAn43pA760nnw9UZ0jR20GwosyqXy6mMYhfJLKgMxBlfbrwtPKM0KVXioevt0VKAPBXnpJns3JhtFwy5kNUxCHiDw9-UUaQu1dBKIplWrhcjUbL2OCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Preparation_of_mixed_copper_PVA_nanocomposites_as_an_interface_layer_for_fabrication_of_Al_Cu_PVA_p_Si_Schottky_structures","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167091,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167091/thumbnails/1.jpg","file_name":"j.physb.2018.06.01920230417-1-fykyfl.pdf","download_url":"https://www.academia.edu/attachments/101167091/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preparation_of_mixed_copper_PVA_nanocomp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167091/j.physb.2018.06.01920230417-1-fykyfl-libre.pdf?1681731222=\u0026response-content-disposition=attachment%3B+filename%3DPreparation_of_mixed_copper_PVA_nanocomp.pdf\u0026Expires=1733205649\u0026Signature=RSKzRwK7xBvxKjNOOmEs~mIMnOZivnP00jXx9XkqC4077JCNfIKqkeFTaGv~SiPAMlncK2f45ExcyM-hQlXP1GAEoWOPzSQp2ZhMiq1coSFdfa7egRzWRpjWMtymjm99IXQSo4N2pRDhPbRHzHpRkRF4-uPQxGr3n5Yk8QGbbKdUIZ~wFm-Blxsz1tbXTWDuP0hdalU0WOdzg~uapBYqxmHfetQSdgjWCgHEAn43pA760nnw9UZ0jR20GwosyqXy6mMYhfJLKgMxBlfbrwtPKM0KVXioevt0VKAPBXnpJns3JhtFwy5kNUxCHiDw9-UUaQu1dBKIplWrhcjUbL2OCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":505,"name":"Condensed Matter Physics","url":"https://www.academia.edu/Documents/in/Condensed_Matter_Physics"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":518,"name":"Quantum Physics","url":"https://www.academia.edu/Documents/in/Quantum_Physics"},{"id":80692,"name":"Copper","url":"https://www.academia.edu/Documents/in/Copper"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":136801,"name":"Fabrication","url":"https://www.academia.edu/Documents/in/Fabrication"}],"urls":[{"id":30685680,"url":"https://api.elsevier.com/content/article/PII:S0921452618304113?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307017"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure"><img alt="Research paper thumbnail of Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure" class="work-thumbnail" src="https://attachments.academia-assets.com/101167096/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure">Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure</a></div><div class="wp-workCard_item"><span>Materials Science in Semiconductor Processing</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11ff143523c07fb039cb6dc1b29bd828" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167096,"asset_id":100307017,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307017"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307017"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307017; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307017]").text(description); $(".js-view-count[data-work-id=100307017]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307017; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307017']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307017, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11ff143523c07fb039cb6dc1b29bd828" } } $('.js-work-strip[data-work-id=100307017]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307017,"title":"Formation of ZnO nanopowders by the simple ultrasound-assisted method: Exploring the dielectric and electric properties of the Au/(ZnO-PVA)/n-Si structure","translated_title":"","metadata":{"publisher":"Elsevier BV","ai_title_tag":"Ultrasound-Assisted ZnO Nanopowders: Dielectric and Electric Properties","grobid_abstract":"ZnO nanopowders have been prepared by a simple ultrasound-assisted method, and the prepared nanopowders have been utilized for fabrication of Au/(ZnO-PVA)/n-Si structures. Size and morphology of ZnO have been studied by X-ray diffraction and scanning electron microscopy (SEM) techniques. The average nanocrystallite size of ZnO nanopowders was estimated less than 50 nm and the XRD pattern are shown in a hexagonal lattice. Its band gap was obtained from Uv-Visible absorption spectrum as 3.15 eV. Electric and dielectric parameters of MPS structures were analyzed by impedance spectroscopy technique. The measured capacitance and conductance have a strong function of frequency and voltage in depletion and accumulation regions because of the presence of interface states (N ss), series resistance (R s), interfacial (ZnO-PVA) layer and polarization processes particularly at low frequencies. This is because the N ss and dipoles have enough time to follow external ac signal and can be turned around at low frequencies. The barrier height (Φ B) and depletion layer wides (W d) increase linearly with increasing frequency. The voltage-dependent profile of N ss extracted from the low-high frequency capacitance process and it has two distinctive peaks due to a particular distribution of interface charges at (ZnO-PVA)/n-Si in the forbidden band-gap of Si. The dielectric constants (ε′) and dielectric loss (ε′′) values increase with decreasing frequency, however the tangent loss (tanδ), real and imaginary components of the electric modulus (M′, M′′) and electrical conductivity (σ) increase with increasing frequency. The increase of σ ac with increasing frequency was attributed to the increase eddies current that leads to the increase in the energy tanδ. Interestingly, the high value of ε′ (≈30) even at 1 kHz shows that the prepared ZnO-PVA nanocomposite interlayer can capability to the storage more and more charges or energy and so it can be used instead of traditional interfacial insulator layers.","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Materials Science in Semiconductor Processing","grobid_abstract_attachment_id":101167096},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307017/Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure","translated_internal_url":"","created_at":"2023-04-17T00:00:07.181-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167096/thumbnails/1.jpg","file_name":"j.mssp.2018.06.03020230417-1-l7pp5e.pdf","download_url":"https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_of_ZnO_nanopowders_by_the_simp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167096/j.mssp.2018.06.03020230417-1-l7pp5e-libre.pdf?1681731214=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_ZnO_nanopowders_by_the_simp.pdf\u0026Expires=1733205649\u0026Signature=X5qcaYI-sU5qDRx0Wny1eUGBQKAYXQuf4XFvFIzQ5DghOnpjGhWrQWOvgoKOGaRFbnn8s6O4sURw2WbeLdUCAD18j4ZfvshBazijKuoB5Gyzp4-sG47VGIhrpcg1hX4tCRau5wUIuS2ppZa3WI10Khv2zTrEuyFCe1R3jRn7YIruwzpcGbDtVLPxieQM4N-V29rEAsdC1QKSz6ILvxTt0u-9jRGpvyx9C0lr~JTxwiWVY2ealbyrWiROC5-i3x7ga8H~jN3dq8WsDKiyX0OoAdTkZCY4gpgwZpqpVo1R857H0QPaAlgM5JOPp2Jh6Djqh-BiaV~defvjKBheqt7XNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Formation_of_ZnO_nanopowders_by_the_simple_ultrasound_assisted_method_Exploring_the_dielectric_and_electric_properties_of_the_Au_ZnO_PVA_n_Si_structure","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167096,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167096/thumbnails/1.jpg","file_name":"j.mssp.2018.06.03020230417-1-l7pp5e.pdf","download_url":"https://www.academia.edu/attachments/101167096/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Formation_of_ZnO_nanopowders_by_the_simp.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167096/j.mssp.2018.06.03020230417-1-l7pp5e-libre.pdf?1681731214=\u0026response-content-disposition=attachment%3B+filename%3DFormation_of_ZnO_nanopowders_by_the_simp.pdf\u0026Expires=1733205649\u0026Signature=X5qcaYI-sU5qDRx0Wny1eUGBQKAYXQuf4XFvFIzQ5DghOnpjGhWrQWOvgoKOGaRFbnn8s6O4sURw2WbeLdUCAD18j4ZfvshBazijKuoB5Gyzp4-sG47VGIhrpcg1hX4tCRau5wUIuS2ppZa3WI10Khv2zTrEuyFCe1R3jRn7YIruwzpcGbDtVLPxieQM4N-V29rEAsdC1QKSz6ILvxTt0u-9jRGpvyx9C0lr~JTxwiWVY2ealbyrWiROC5-i3x7ga8H~jN3dq8WsDKiyX0OoAdTkZCY4gpgwZpqpVo1R857H0QPaAlgM5JOPp2Jh6Djqh-BiaV~defvjKBheqt7XNw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":56,"name":"Materials Engineering","url":"https://www.academia.edu/Documents/in/Materials_Engineering"},{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"}],"urls":[{"id":30685679,"url":"https://api.elsevier.com/content/article/PII:S1369800118301483?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307016"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K"><img alt="Research paper thumbnail of Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K" class="work-thumbnail" src="https://attachments.academia-assets.com/101167099/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K">Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a859fdc99be21c7794f14dfbe9c203f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167099,"asset_id":100307016,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307016"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307016"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307016; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307016]").text(description); $(".js-view-count[data-work-id=100307016]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307016; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307016']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307016, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a859fdc99be21c7794f14dfbe9c203f" } } $('.js-work-strip[data-work-id=100307016]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307016,"title":"Current-Transport Mechanisms of the Al/(Bi2S3-PVA Nanocomposite)/p-Si Schottky Diodes in the Temperature Range Between 220 K and 380 K","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Journal of Electronic Materials"},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307016/Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K","translated_internal_url":"","created_at":"2023-04-17T00:00:07.062-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167099/thumbnails/1.jpg","file_name":"s11664-018-6593-y20230417-1-wo6o5x.pdf","download_url":"https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_Transport_Mechanisms_of_the_Al_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167099/s11664-018-6593-y20230417-1-wo6o5x-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_Transport_Mechanisms_of_the_Al_B.pdf\u0026Expires=1733205649\u0026Signature=HmNUTtrL4QjbABB2XvoBnwxz7Da3TjTMJu6iFCN-65MNvYG-1BcVTqcERk2X7ZGCEwKJM5csGc5hHCcvegwU2NdZMDQ~UU23slJZOjOupnvLa5uHgPffO9SZqiPqmxFmf99v0CP0cBGLdEmOdV08kp2hlcOno0Ox2UHt255qd7E4F4~WEjrk6rMKUTVC5ekbF60FIQMy2Hc32hZI65R0NqxfgO68KlDOW12Ulnz8decdUAuIsTH6qJm~mgyjlxHqWOTa8dycK5VmLSDIa5r7VCpnS5idXXs4OpR4QeGtdYheN3FxImdxrRqkzS7sTcKWlGw7T0G0AQmnnfbxroDibg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Current_Transport_Mechanisms_of_the_Al_Bi2S3_PVA_Nanocomposite_p_Si_Schottky_Diodes_in_the_Temperature_Range_Between_220_K_and_380_K","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167099,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167099/thumbnails/1.jpg","file_name":"s11664-018-6593-y20230417-1-wo6o5x.pdf","download_url":"https://www.academia.edu/attachments/101167099/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Current_Transport_Mechanisms_of_the_Al_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167099/s11664-018-6593-y20230417-1-wo6o5x-libre.pdf?1681731219=\u0026response-content-disposition=attachment%3B+filename%3DCurrent_Transport_Mechanisms_of_the_Al_B.pdf\u0026Expires=1733205649\u0026Signature=HmNUTtrL4QjbABB2XvoBnwxz7Da3TjTMJu6iFCN-65MNvYG-1BcVTqcERk2X7ZGCEwKJM5csGc5hHCcvegwU2NdZMDQ~UU23slJZOjOupnvLa5uHgPffO9SZqiPqmxFmf99v0CP0cBGLdEmOdV08kp2hlcOno0Ox2UHt255qd7E4F4~WEjrk6rMKUTVC5ekbF60FIQMy2Hc32hZI65R0NqxfgO68KlDOW12Ulnz8decdUAuIsTH6qJm~mgyjlxHqWOTa8dycK5VmLSDIa5r7VCpnS5idXXs4OpR4QeGtdYheN3FxImdxrRqkzS7sTcKWlGw7T0G0AQmnnfbxroDibg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":99017,"name":"Nanocomposite","url":"https://www.academia.edu/Documents/in/Nanocomposite"},{"id":389161,"name":"Diode","url":"https://www.academia.edu/Documents/in/Diode"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685678,"url":"http://link.springer.com/content/pdf/10.1007/s11664-018-6593-y.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="100307015"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode"><img alt="Research paper thumbnail of Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode" class="work-thumbnail" src="https://attachments.academia-assets.com/101167098/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode">Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode</a></div><div class="wp-workCard_item"><span>Journal of Electronic Materials</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="43315d38ab291a96708eedea44dbe901" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":101167098,"asset_id":100307015,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="100307015"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="100307015"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 100307015; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=100307015]").text(description); $(".js-view-count[data-work-id=100307015]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 100307015; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='100307015']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 100307015, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "43315d38ab291a96708eedea44dbe901" } } $('.js-work-strip[data-work-id=100307015]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":100307015,"title":"Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Frequency Dependent Properties of Au/P3HT:PCBM:n-Si Diode","grobid_abstract":"TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitancevoltage (C-V) and conductance-voltage (G/x-V) measurements in the frequency range of 10 kHz-2 MHz. The C-V-f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states (N ss). The values of N ss located in semiconductor bandgap at the organic film/ semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant (e¢) and dielectric loss (e¢¢) decrease with increasing frequency, whereas loss tangent (tand) remains nearly the same. The decrease in e¢ and e¢¢ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity (r ac) and electric modulus (M¢ and M¢¢) increase with increasing frequency.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Journal of Electronic Materials","grobid_abstract_attachment_id":101167098},"translated_abstract":null,"internal_url":"https://www.academia.edu/100307015/Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode","translated_internal_url":"","created_at":"2023-04-17T00:00:06.941-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1303640,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":101167098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167098/thumbnails/1.jpg","file_name":"s11664-017-5294-220230417-1-v9fjot.pdf","download_url":"https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_Dependent_Electrical_and_Diele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167098/s11664-017-5294-220230417-1-v9fjot-libre.pdf?1681731220=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_Dependent_Electrical_and_Diele.pdf\u0026Expires=1733205649\u0026Signature=criJXsDG7l69kRYXCW0BBRQgvarwV2X7sDGeoaOv0kFTQdtxcCChOIFqdWu4QSq53XFiwoNgaWHTFEfFr~il90iW~FYK3ma-sYJxL-D~WR0TrxYvs9AGEjAOCvsGSaUhKuAqqI2K7YD4abKHVFWV8nLXK2AtFqQOn7CWPqaTzvQSkDPzAPjzUtGzncJjSr5WcNGVeroLGzSdMH8ZCvNAa7hVtKaayewDV8AdmGiX2JBKSvCkO14D~JO9fHNyAtzefuwMAffHbsWKL6gajL8iwLWIrGOtnhUI7y67ki4VGwy~rBaT-kcBTEOoSm8PuvfOhEuArpzY20yTtnrD-8xBSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Frequency_Dependent_Electrical_and_Dielectric_Properties_of_Au_P3HT_PCBM_F4_TCNQ_n_Si_Schottky_Barrier_Diode","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":1303640,"first_name":"Yosef","middle_initials":null,"last_name":"badali","page_name":"Yosefbadali","domain_name":"ticaret","created_at":"2012-03-15T04:00:34.975-07:00","display_name":"Yosef badali","url":"https://ticaret.academia.edu/Yosefbadali"},"attachments":[{"id":101167098,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/101167098/thumbnails/1.jpg","file_name":"s11664-017-5294-220230417-1-v9fjot.pdf","download_url":"https://www.academia.edu/attachments/101167098/download_file?st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&st=MTczMzIwMjA0OSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Frequency_Dependent_Electrical_and_Diele.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/101167098/s11664-017-5294-220230417-1-v9fjot-libre.pdf?1681731220=\u0026response-content-disposition=attachment%3B+filename%3DFrequency_Dependent_Electrical_and_Diele.pdf\u0026Expires=1733205649\u0026Signature=criJXsDG7l69kRYXCW0BBRQgvarwV2X7sDGeoaOv0kFTQdtxcCChOIFqdWu4QSq53XFiwoNgaWHTFEfFr~il90iW~FYK3ma-sYJxL-D~WR0TrxYvs9AGEjAOCvsGSaUhKuAqqI2K7YD4abKHVFWV8nLXK2AtFqQOn7CWPqaTzvQSkDPzAPjzUtGzncJjSr5WcNGVeroLGzSdMH8ZCvNAa7hVtKaayewDV8AdmGiX2JBKSvCkO14D~JO9fHNyAtzefuwMAffHbsWKL6gajL8iwLWIrGOtnhUI7y67ki4VGwy~rBaT-kcBTEOoSm8PuvfOhEuArpzY20yTtnrD-8xBSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":519,"name":"Solid State Physics","url":"https://www.academia.edu/Documents/in/Solid_State_Physics"},{"id":7579,"name":"Electronic Materials","url":"https://www.academia.edu/Documents/in/Electronic_Materials"},{"id":44299,"name":"Optoelectronics","url":"https://www.academia.edu/Documents/in/Optoelectronics"},{"id":102207,"name":"DIELECTRIC","url":"https://www.academia.edu/Documents/in/DIELECTRIC"},{"id":389161,"name":"Diode","url":"https://www.academia.edu/Documents/in/Diode"},{"id":390049,"name":"Electrical Conductivity","url":"https://www.academia.edu/Documents/in/Electrical_Conductivity"},{"id":391248,"name":"Schottky diode","url":"https://www.academia.edu/Documents/in/Schottky_diode"},{"id":398655,"name":"Schottky Barrier","url":"https://www.academia.edu/Documents/in/Schottky_Barrier"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":30685677,"url":"http://link.springer.com/content/pdf/10.1007/s11664-017-5294-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "c5c7161930e9ac614ed1a358a7197b3d539aff65dea6a50f3de7439acbab764d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="FRr/82IojRYUMZqiz2ilM9Q9qNGBd0Obmg1XhzSxDOTd+WisBCxX29q53zB4adlgiryu6H+M56GzoSgpALu4lg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ticaret.academia.edu/Yosefbadali" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="PTyTLBARNmqrJvd/L2iFCrl/RCGwCoNdHP0H+GtwrQn13wRzdhXsp2Wusu2YaflZ5/5CGE7xJ2c1UXhWX3oZew==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>