CINXE.COM

Search results for: porphyrin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: porphyrin</title> <meta name="description" content="Search results for: porphyrin"> <meta name="keywords" content="porphyrin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="porphyrin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="porphyrin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: porphyrin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Prediction of a Nanostructure Called Porphyrin-Like Buckyball, Using Density Functional Theory and Investigating Electro Catalytic Reduction of Co₂ to Co by Cobalt– Porphyrin-Like Buckyball</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Asadpour">Mohammad Asadpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Sadeghi"> Maryam Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Jafari"> Mahmoud Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transformation of carbon dioxide into fuels and commodity chemicals is considered one of the most attractive methods to meet energy demands and reduce atmospheric CO₂ levels. Cobalt complexes have previously shown high faradaic efficiency in the reduction of CO₂ to CO. In this study, a nanostructure, referred to as a porphyrin-like buckyball, is simulated and analyzed for its electrical properties. The investigation aims to understand the unique characteristics of this material and its potential applications in electronic devices. Through computational simulations and analysis, the electrocatalytic reduction of CO₂ to CO by Cobalt-porphyrin-like buckyball is explored. The findings of this study offer valuable insights into the electrocatalytic properties of this predicted structure, paving the way for further research and development in the field of nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porphyrin-like%20buckyball" title="porphyrin-like buckyball">porphyrin-like buckyball</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20to%20CO" title=" CO₂ to CO"> CO₂ to CO</a> </p> <a href="https://publications.waset.org/abstracts/186943/prediction-of-a-nanostructure-called-porphyrin-like-buckyball-using-density-functional-theory-and-investigating-electro-catalytic-reduction-of-co2-to-co-by-cobalt-porphyrin-like-buckyball" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> A Density Functional Theory Study of Metal-Porphyrin Graphene for CO2 Hydration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manju%20Verma">Manju Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Parag%20A.%20Deshpande"> Parag A. Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electronic structure calculations of hydrogen terminated metal-porphyrin graphene were carried out to explore the catalytic activity for CO2 hydration reaction. A ruthenium atom was substituted in place of carbon atom of graphene and ruthenium chelated carbon atoms were replaced by four nitrogen atoms in metal-porphyrin graphene system. Ruthenium atom created the active site for CO2 hydration reaction. Ruthenium-porphyrin graphene followed the mechanism of carbonic anhydrase enzyme for CO2 conversion to HCO3- ion. CO2 hydration reaction over ruthenium-porphyrin graphene proceeded via the elementary steps: OH- formation from H2O dissociation, CO2 bending in presence of nucleophilic attack of OH- ion, HCO3- ion formation from proton migration, HCO3- ion desorption by H2O addition. Proton transfer to yield HCO3- ion was observed as a rate limiting step from free energy landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ruthenium-porphyrin%20graphene" title="ruthenium-porphyrin graphene">ruthenium-porphyrin graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20hydration" title=" CO2 hydration"> CO2 hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonic%20anhydrase" title=" carbonic anhydrase"> carbonic anhydrase</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a> </p> <a href="https://publications.waset.org/abstracts/60222/a-density-functional-theory-study-of-metal-porphyrin-graphene-for-co2-hydration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Synthesis, Characterization, Antioxidant and Anti-inflammatory Studies of Modern Synthetic Tetra Phenyl Porphyrin Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mian%20Gul%20Sayed">Mian Gul Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahim%20Shah"> Rahim Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fazal%20Mabood"> Fazal Mabood</a>, <a href="https://publications.waset.org/abstracts/search?q=Najeeb%20Ur%20Rahman"> Najeeb Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maher%20Noor"> Maher Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Embarking on the frontier of molecular advancement, this study focuses on the synthesis and characterization of a distinct class of porphyrin derivatives—specifically, the 5, 10, 15, 20-tetrakis (3-bromopropoxyphenyl) porphyrins. Through meticulous synthetic methodologies, these derivatives are crafted, strategically incorporating bromopropoxyphenyl moieties at distinct positions within the porphyrin framework. This research aims to unravel the structural intricacies and explore the potential applications of these compounds through a detailed characterization utilizing advanced analytical techniques. 5, 10, 15, 20, tetrakis (4-hydroxyphenyl) porphyrin was synthesized by treating pyrrole and p- hydroxylbenzaldehyde. 5, 10, 15, 20, tetrakis-(4-hydroxyphenyl) was converted into 5, 10, 15, 20, tetrakis (4-bromoalkoxyphenyl) porphyrin. 5,10,15, 20-Tetrakis -(4-bromoalkoxyphenyl) porphyrin was treated with Isopropyl phenol, para-Aminophenol, hydroquinone, 2-Naphthol, 1-Naphthol and Hydroquinone and different derivatives of ether-linked were obtained. The synthesized compounds were analyzed using contemporary spectroscopic techniques like UV-Vis, NMR and Mass spectrometry. The synthesized compounds were also tested for their biological activities like antioxidants and anti-inflammatory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tetraphenyl%20porphyrin" title="tetraphenyl porphyrin">tetraphenyl porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory" title=" anti-inflammatory"> anti-inflammatory</a> </p> <a href="https://publications.waset.org/abstracts/192685/synthesis-characterization-antioxidant-and-anti-inflammatory-studies-of-modern-synthetic-tetra-phenyl-porphyrin-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Applying Cationic Porphyrin Derivative 5, 10-Dihexyl-15, 20bis Porphyrin, as Transfection Reagent for Gene Delivery into Mammalian Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hajar%20Hosseini%20Khorami">Hajar Hosseini Khorami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porphyrins are organic, aromatic compounds found in heme, cytochrome, cobalamin, chlorophyll , and many other natural products with essential roles in biological processes that their cationic forms have been used as groups of favorable non-viral vectors recently. Cationic porphyrins are self-chromogenic reagents with a high capacity for modifications, great interaction with DNA and protection of DNA from nuclease during delivery of it into a cell with low toxicity. In order to have high efficient gene transfection into the cell while causing low toxicity, genetically manipulations of the non-viral vector, cationic porphyrin, would be useful. In this study newly modified cationic porphyrin derivative, 5, 10-dihexyl-15, 20bis (N-methyl-4-pyridyl) porphyrin was applied. Cytotoxicity of synthesized cationic porphyrin on Chinese Hamster Ovarian (CHO) cells was evaluated by using MTT assay. This cationic derivative is dose-dependent, with low cytotoxicity at the ranges from 100 μM to 0.01μM. It was uptake by cells at high concentration. Using direct non-viral gene transfection method and different concentration of cationic porphyrin were tested on transfection of CHO cells by applying derived transfection reagent with X-tremeGENE HP DNA as a positive control. However, no transfection observed by porphyrin derivative and the parameters tested except for positive control. Results of this study suggested that applying different protocol, and also trying other concentration of cationic porphyrins and DNA for forming a strong complex would increase the possibility of efficient gene transfection by using cationic porphyrins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationic%20porphyrins" title="cationic porphyrins">cationic porphyrins</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20delivery" title=" gene delivery"> gene delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=non-viral%20vectors" title=" non-viral vectors"> non-viral vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=transfection%20reagents" title=" transfection reagents"> transfection reagents</a> </p> <a href="https://publications.waset.org/abstracts/88175/applying-cationic-porphyrin-derivative-5-10-dihexyl-15-20bis-porphyrin-as-transfection-reagent-for-gene-delivery-into-mammalian-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Thermal Stabilisation of Poly(a)•Poly(U) by TMPyP4 and Zn(X)TMPyP4 Derivatives in Aqueous Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kudrev">A. Kudrev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The duplex Poly(A)-Poly(U) denaturation in an aqueous solutions in mixtures with the tetracationic MeTMPyP4 (Me = 2H, Zn(II); TMPyP4 is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin), was investigated by monitoring the changes in the UV-Vis absorbance spectrum with increasing temperatures from 20°С to 70°С (рН 7.0, I=0.15M). The absorbance data matrices were analyzed with a versatile chemometric procedure that provides the melting profile (distribution of species) and the pure spectrum for each chemical species present along the heating experiment. As revealed by the increase of Tm, the duplex structure was stabilized by these porphyrins. The values of stabilization temperature ΔTm in the presence of these porphyrins are relatively large, 1.2-8.4 °C, indicating that the porphyrins contribute differently in stabilizing the duplex Poly(A)-Poly(U) structure. Remarkable is the fact that the porphyrin TMPyP4 was less effective in the stabilization of the duplex structure than the metalloporphyrin Zn(X)TMPyP4 which suggests that metallization play an important role in porphyrin-RNA binding. Molecular Dynamics Simulations has been used to illustrate melting of the duplex dsRNA bound with a porphyrin molecule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melting" title="melting">melting</a>, <a href="https://publications.waset.org/abstracts/search?q=Poly%28A%29-Poly%28U%29" title=" Poly(A)-Poly(U)"> Poly(A)-Poly(U)</a>, <a href="https://publications.waset.org/abstracts/search?q=TMPyP4" title=" TMPyP4"> TMPyP4</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn%28X%29TMPyP4" title=" Zn(X)TMPyP4"> Zn(X)TMPyP4</a> </p> <a href="https://publications.waset.org/abstracts/75747/thermal-stabilisation-of-polyapolyu-by-tmpyp4-and-znxtmpyp4-derivatives-in-aqueous-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Covalently Conjugated Gold–Porphyrin Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Spitaleri">L. Spitaleri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20A.%20Gangemi"> C. M. A. Gangemi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Purrello"> R. Purrello</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nicotra"> G. Nicotra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Trusso%20Sfrazzetto"> G. Trusso Sfrazzetto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Casella"> G. Casella</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casarin"> M. Casarin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gulino"> A. Gulino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid molecular–nanoparticle materials, obtained with a bottom-up approach, are suitable for the fabrication of functional nanostructures showing structural control and well-defined properties, i.e., optical, electronic or catalytic properties, in the perspective of applications in different fields of nanotechnology. Gold nanoparticles (Au NPs) exhibit important chemical, electronic and optical properties due to their size, shape and electronic structures. In fact, Au NPs containing no more than 30-40 atoms are only luminescent because they can be considered as large molecules with discrete energy levels, while nano-sized Au NPs only show the surface plasmon resonance. Hence, it appears that gold nanoparticles can alternatively be luminescent or plasmonic, and this represents a severe constraint for their use as an optical material. The aim of this work was the fabrication of nanoscale assembly of Au NPs covalently anchored to each other by means of novel bi-functional porphyrin molecules that work as bridges between different gold nanoparticles. This functional architecture shows a strong surface plasmon due to the Au nanoparticles and a strong luminescence signal coming from porphyrin molecules, thus, behaving like an artificial organized plasmonic and fluorescent network. The self-assembly geometry of this porphyrin on the Au NPs was studied by investigation of the conformational properties of the porphyrin derivative at the DFT level. The morphology, electronic structure and optical properties of the conjugated Au NPs – porphyrin system were investigated by TEM, XPS, UV–vis and Luminescence. The present nanostructures can be used for plasmon-enhanced fluorescence, photocatalysis, nonlinear optics, etc., under atmospheric conditions since our system is not reactive to air nor water and does not need to be stored in a vacuum or inert gas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticle" title="gold nanoparticle">gold nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a> </p> <a href="https://publications.waset.org/abstracts/142391/covalently-conjugated-gold-porphyrin-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Binding Ability of Carbazolylphenyl Dendrimers with Zinc (II) Tetraphenylporphyrin Core towards Cryptands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Galina%20Mamardashvili">Galina Mamardashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nugzar%20Mamardashvili"> Nugzar Mamardashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Win%20Dehaen"> Win Dehaen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The processes of complexation of the Zn-tetraarylporphyrins with eight 4-(4-(3,6-bis(t-butyl)carbazol-9-yl-phenyl)-1,2,3-triazole (ZnP1) and eight 4-(4-(3,6-di-tert-butyl-9-H-carbazol-9-yl)phenoxy)methyl)-2,4,6-trimethylphenyl (ZnP2)with the 1,10-diaza-4,7,13,18tetraoxabicyclo[8.5.5]eicosane (L1),1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (L2)and 1,10-diaza-5,6,14,15-dibenzo-4,7,13,16,21,24 hexaoxabicyclo[8.8.8] hexacosane (L3) were investigated by the method of spectrophotometric titration and <sup>1</sup>H NMR-spectroscopy. We determined the structures of the host-guest complexes, and their stability constants in toluene were calculated. It was found out that the ZnP1 interacts with the guest molecules L1, L2 with the formation of stable &quot;nest&quot; type complexes and does not form similar complexes with the L3 (presumably due to the fact that the L3 does not match the size of the porphyrin ZnP(1) cavity). On the other hand, the porphyrin ZnP2 binds all of the ligands L1-L3, however complexes thus formed are less stable than complexes ZnP1-L1, ZnP1-L2. In the report, we will also discuss the influence of the alkali cations additives on the stability of the complexes between the porphyrin ZnP1, ZnP2 hosts and guest molecules of the ligands L1-L3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title="porphyrin">porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptand" title=" cryptand"> cryptand</a>, <a href="https://publications.waset.org/abstracts/search?q=cation" title=" cation"> cation</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20guest-host" title=" complex guest-host"> complex guest-host</a> </p> <a href="https://publications.waset.org/abstracts/63116/binding-ability-of-carbazolylphenyl-dendrimers-with-zinc-ii-tetraphenylporphyrin-core-towards-cryptands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Synthesis of Star Compounds Bearing a Porphyrin Core and Cholic Acid Units by Using Click Chemistry: Study of the Optical Properties and Aggregation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Aguilar-Ort%C3%ADz">Edgar Aguilar-Ortíz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20L%C3%A9varay"> Nicolas Lévaray</a>, <a href="https://publications.waset.org/abstracts/search?q=Mireille%20Vonlanthen"> Mireille Vonlanthen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20G.%20Morales-Espinoza"> Eric G. Morales-Espinoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Rivera"> Ernesto Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Xia%20Zhu"> Xiao Xia Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Four new star compounds bearing a porphyrin core and cholic acid units, (TPPh(Zn) tetra-CA, TPPh(2H) tetra-CA, TPPh(Zn) octa-CA and TPPh(2H) octa-CA), have been synthesized using the Click Chemistry approach, which consist on azide-alkyne couplings. These novel functionalized porphyrins were characterized by 1H and 13C NMR spectroscopy and their structure was confirmed by MALDI-TOF. The optical properties of these compounds were studied by absorption and fluorescence spectroscopy. On the other hand, order to evaluate the amphiphilic properties of the cholic acid units combined with the optical response of the porphyrin core, we performed absorption and fluorescence studies in function of the polarity of the environment. It was found that as soon as we increase the polarity of the solvent, the Zn-metallated porphyrins, (TPPh(Zn) tetra-CA and TPPh(Zn) octa-CA), are able to form J aggregates, whereas the free-base porphyrins, TPPh(2H) tetra-CA and TPPh(2H) octa-CA, behaved differently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregates" title="aggregates">aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic" title=" amphiphilic"> amphiphilic</a>, <a href="https://publications.waset.org/abstracts/search?q=cholic%20acid" title=" cholic acid"> cholic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=click-chemistry" title=" click-chemistry"> click-chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a> </p> <a href="https://publications.waset.org/abstracts/44614/synthesis-of-star-compounds-bearing-a-porphyrin-core-and-cholic-acid-units-by-using-click-chemistry-study-of-the-optical-properties-and-aggregation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atena%20Naeimi">Atena Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asghar%20Amiri"> Asghar Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghasemi"> Zahra Ghasemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxidation" title="oxidation">oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoaggregates" title=" nanoaggregates"> nanoaggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrinoids" title=" porphyrinoids"> porphyrinoids</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a> </p> <a href="https://publications.waset.org/abstracts/38183/nanohybride-porphyrin-and-silver-as-an-efficient-catalyst-for-oxidation-of-alcohols-by-tetrabutylammonium-peroxomonosulfate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Synthesis of Porphyrin-Functionalized Beads for Flow Cytometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20E.%20Bauta">William E. Bauta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Rebeles"> Jennifer Rebeles</a>, <a href="https://publications.waset.org/abstracts/search?q=Reggie%20Jacob"> Reggie Jacob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porphyrins are noteworthy in biomedical science for their cancer tissue accumulation and photophysical properties. The preferential accumulation of some porphyrins in cancerous tissue has been known for many years. This, combined with their characteristic photophysical and photochemical properties, including their strong fluorescence and their ability to generate reactive oxygen species in vivo upon laser irradiation, has led to much research into the application of porphyrins as cancer diagnostic and therapeutic agents. Porphyrins have been used as dyes to detect cancer cells both in vivo and, less commonly, in vitro. In one example, human sputum samples from lung cancer patients and patients without the disease were dissociated and stained with the porphyrin TCPP (5,10,15,20-tetrakis-(4-carboxyphenyl)-porphine). Cells were analyzed by flow cytometry. Cancer samples were identified by their higher TCPP fluorescence intensity relative to the no-cancer controls. However, quantitative analysis of fluorescence in cell suspensions stained with multiple fluorophores requires particles stained with each of the individual fluorophores as controls. Fluorescent control particles must be compatible in size with flow cytometer fluidics and have favorable hydrodynamic properties in suspension. They must also display fluorescence comparable to the cells of interest and be stable upon storage amine-functionalized spherical polystyrene beads in the 5 to 20-micron diameter range that was reacted with TCPP and EDC in aqueous pH six buffer overnight to form amide bonds. Beads were isolated by centrifugation and tested by flow cytometry. The 10-micron amine-functionalized beads displayed the best combination of fluorescence intensity and hydrodynamic properties, such as lack of clumping and remaining in suspension during the experiment. These beads were further optimized by varying the stoichiometry of EDC and TCPP relative to the amine. The reaction was accompanied by the formation of a TCPP-related particulate, which was removed, after bead centrifugation, using a microfiltration process. The resultant TCPP-functionalized beads were compatible with flow cytometry conditions and displayed a fluorescence comparable to that of stained cells, which allowed their use as fluorescence standards. The beads were stable in refrigerated storage in the dark for more than eight months. This work demonstrates the first preparation of porphyrin-functionalized flow cytometry control beads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tetraaryl%20porphyrin" title="tetraaryl porphyrin">tetraaryl porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene%20beads" title=" polystyrene beads"> polystyrene beads</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometry" title=" flow cytometry"> flow cytometry</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20coupling" title=" peptide coupling"> peptide coupling</a> </p> <a href="https://publications.waset.org/abstracts/150182/synthesis-of-porphyrin-functionalized-beads-for-flow-cytometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soraya%20Abtouche">Soraya Abtouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeyneb%20Ghoualem"> Zeyneb Ghoualem</a>, <a href="https://publications.waset.org/abstracts/search?q=Syrine%20Daoudi"> Syrine Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Ouldmohamed"> Lina Ouldmohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Assfeld"> Xavier Assfeld</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSSC" title="DSSC">DSSC</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrin" title=" porphyrin"> porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=TD-DFT" title=" TD-DFT"> TD-DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20properties" title=" electronic properties"> electronic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=donor-acceptor%20groups" title=" donor-acceptor groups"> donor-acceptor groups</a> </p> <a href="https://publications.waset.org/abstracts/164820/computational-studies-of-the-reactivity-descriptors-and-the-optoelectronic-properties-on-the-efficiency-free-base-and-zn-porphyrin-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Sun">Jun Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsz%20Tin%20Yu"> Tsz Tin Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mirabediny"> Maryam Mirabediny</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Lee"> Matthew Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Adele%20Jones"> Adele Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20M.%20O%E2%80%99Carroll"> Denis M. O’Carroll</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Manefield"> Michael J. Manefield</a>, <a href="https://publications.waset.org/abstracts/search?q=Bj%C3%B6rn%20%C3%85kermark"> Björn Åkermark</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswanath%20Das"> Biswanath Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Naresh%20Kumar"> Naresh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cationic" title="cationic">cationic</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20porphyrin" title=" soluble porphyrin"> soluble porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt" title=" cobalt"> cobalt</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20b12" title=" vitamin b12"> vitamin b12</a>, <a href="https://publications.waset.org/abstracts/search?q=pfas" title=" pfas"> pfas</a>, <a href="https://publications.waset.org/abstracts/search?q=reductive%20defluorination" title=" reductive defluorination"> reductive defluorination</a> </p> <a href="https://publications.waset.org/abstracts/166313/elevated-reductive-defluorination-of-branched-per-and-polyfluoroalkyl-substances-by-soluble-metal-porphyrins-and-new-mechanistic-insights-on-the-degradation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Synthesis, Characterization and Antibacterial Activity of Metalloporphyrins: Role of Central Metal Ion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Belete%20B.%20Beyene">Belete B. Beyene</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayenew%20M.%20Mihirteu"> Ayenew M. Mihirteu</a>, <a href="https://publications.waset.org/abstracts/search?q=Misganaw%20T.%20Ayana"> Misganaw T. Ayana</a>, <a href="https://publications.waset.org/abstracts/search?q=Amogne%20W.%20Yibeltal"> Amogne W. Yibeltal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modification of synthetic porphyrins is one of the promising strategies in an attempt to get molecules with desired properties and applications. Here in, we report synthesis, photophysical characterization and antibacterial activity of 5, 10, 15, 20-tetrakis-(4- methoxy carbonyl phenyl) porphyrin M(II); where M = Co, Fe, Ni, Zn. Metallation of the ligand was confirmed by using UV–Vis spectroscopy and ESI-Ms measurement, in which the number of Q bands in absorption spectra of the ligand decreased from four to one or two as a result of metal insertion to the porphyrin core. The antibacterial activity study of the complexes toward two Gram-positive (Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (s. pyogenes)) and two Gram-negative (Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)) bacteria by disc diffusion method showed a promising inhibitory activity. The complexes exhibited highest activities at highest concentration and were better than the activity of free base ligand, the salts, and blank solution. This could be explained on the basis of Overton's concept of cell permeability and Tweed's Chelation theory. An increased lipo-solubility enhances the penetration of the complexes into the lipid membrane and interferes with the normal activities of the bacteria. Our study, therefore, showed that the growth inhibitory effect of these metalloporphyrins is generally in order of ZnTPPCOOMe > NiTPPCOOMe > CoTPPCOOMe> FeTPPCOOMe, which may be attributed to the better lipophilicity and binding of the complex with the cellular components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porphyrins" title="porphyrins">porphyrins</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloporphyrins" title=" metalloporphyrins"> metalloporphyrins</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20property" title=" spectral property"> spectral property</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/176777/synthesis-characterization-and-antibacterial-activity-of-metalloporphyrins-role-of-central-metal-ion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Khenfouch">Mohammed Khenfouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Fokotsa%20V.%20Molefe"> Fokotsa V. Molefe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakang%20M.%20Mothudi"> Bakang M. Mothudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronics" title=" optoelectronics"> optoelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanohybrids" title=" nanohybrids"> nanohybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/80659/graphene-materials-for-efficient-hybrid-solar-cells-a-spectroscopic-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehestani">M. Dehestani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Kooch"> M. Ghasemi-Kooch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorophyll" title=" chlorophyll"> chlorophyll</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotube" title=" nanotube"> nanotube</a> </p> <a href="https://publications.waset.org/abstracts/78825/investigation-of-chlorophylls-a-and-b-interaction-with-inner-and-outer-surfaces-of-single-walled-carbon-nanotube-using-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Homoleptic Complexes of a Tetraphenylporphyrinatozinc(II)-conjugated 2,2&#039;:6&#039;,6&quot;-Terpyridine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Lanzilotto">Angelo Lanzilotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Kuss-Petermann"> Martin Kuss-Petermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20E.%20Housecroft"> Catherine E. Housecroft</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20C.%20Constable"> Edwin C. Constable</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20S.%20Wenger"> Oliver S. Wenger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We recently described the synthesis of a new tetraphenylporphyrinatozinc(II)-conjugated 2,2':6',6"-terpyridine (1) in which the tpy domain enables the molecule to act as a metalloligand. The synthetic route to 1 has been optimized, the importance of selecting a particular sequence of synthetic steps will be discussed. Three homoleptic complexes have been prepared, [Zn(1)₂]²⁺, [Fe(1)₂]²⁺ and [Ru(1)₂]²⁺, and have been isolated as the hexafluoridophosphate salts. Spectroelectrochemical measurements have been performed and the spectral changes ascribed to redox processes are partitioned on either the porphyrin or the terpyridine units. Compound 1 undergoes a reversible one-electron oxidation/reduction. The removal/gain of a second electron leads to a further irreversible chemical transformation. For the homoleptic [M(1)₂]²⁺ complexes, a suitable potential can be chosen at which both the oxidation and the reduction of the {ZnTPP} core are reversible. When the homoleptic complex contains a redox active metal such as Fe or Ru, spectroelectrochemistry has been used to investigate the metal to ligand charge transfer (MLCT) transition. The latter is sensitive to the oxidation state of the metal, and electrochemical oxidation of the metal center suppresses it. Detailed spectroelectrochemical studies will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homoleptic%20complexes" title="homoleptic complexes">homoleptic complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroelectrochemistry" title=" spectroelectrochemistry"> spectroelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetraphenylporphyrinatozinc%28II%29" title=" tetraphenylporphyrinatozinc(II)"> tetraphenylporphyrinatozinc(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title=" 2"> 2</a>, <a href="https://publications.waset.org/abstracts/search?q=2%27%3A6%27" title="2&#039;:6&#039;">2&#039;:6&#039;</a>, <a href="https://publications.waset.org/abstracts/search?q=6%22-terpyridine" title="6&quot;-terpyridine">6&quot;-terpyridine</a> </p> <a href="https://publications.waset.org/abstracts/59759/homoleptic-complexes-of-a-tetraphenylporphyrinatozincii-conjugated-2266-terpyridine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Mortazavi%20Manesh">Anahita Mortazavi Manesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Bagherzadeh"> Mojtaba Bagherzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe3O4%20nanoparticle" title="Fe3O4 nanoparticle">Fe3O4 nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20metalloporphyrin" title=" immobilized metalloporphyrin"> immobilized metalloporphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20separable%20nanocatalyst" title=" magnetically separable nanocatalyst"> magnetically separable nanocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reactions" title=" oxidation reactions"> oxidation reactions</a> </p> <a href="https://publications.waset.org/abstracts/35217/nanoparticle-supported-magnetically-separable-metalloporphyrin-as-an-efficient-retrievable-heterogeneous-nanocatalyst-in-oxidation-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> E-Tongue Based on Metallo-Porphyrins for Histamine Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Iordache">A. M. Iordache</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Iordache"> S. M. Iordache</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Barna"> V. Barna</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elisa"> M. Elisa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20C.%20Vasiliu"> I. C. Vasiliu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Stefan"> C. R. Stefan</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Chilibon"> I. Chilibon</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stamatin"> I. Stamatin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Caramizoiu"> S. Caramizoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20A.%20Grigorescu"> C. E. A. Grigorescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The general objective of the presentation is the development of an e-tongue like sensor based on modified screen printed electrode (SPE) structures with a receptor part made of porphyrins/metalloporphyrins chemically bound to graphene (the sensitive assembly) to act as antennas and “capture” the histamine molecules. Using a single, ultra-sensitive electrochemical sensor, we measured the concentration of histamine, a compound which is strongly connected to the level of freshness in foods (the caution level of histamine is 50 ppm, whereas the maximum accepted levels range from 200 ppm to 500 ppm). Our approach for the chemical immobilization of the porphyrins onto the surface of the graphenes was via substitution reaction: a solution of graphene in SOCl2 was heated to 800C for 6 hours. Upon cooling, the metallo-porphyrins were added and ultrasonicated for 4 hours. The solution was then allowed to cool to room temperature and then centrifuged in order to separate the deposit. The sensitive assembly was drop casted onto the carbon SPE and cyclic voltammetry was performed in the presence of histamine. The reaction is quasi-reversible and the sensor showed an oxidation potential for histamine at 600 mV. The results indicate a linear dependence of concentration of histamine as function of intensity. The results are reproducible; however the chemical stability of the sensitive assembly is low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=histamine" title="histamine">histamine</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=metallo-porphyrin" title=" metallo-porphyrin"> metallo-porphyrin</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20freshness" title=" food freshness"> food freshness</a> </p> <a href="https://publications.waset.org/abstracts/135135/e-tongue-based-on-metallo-porphyrins-for-histamine-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurlan%20Akhmetov">Nurlan Akhmetov</a>, <a href="https://publications.waset.org/abstracts/search?q=Abilmansur%20Yeshmuratov"> Abilmansur Yeshmuratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliya%20Kurbanova"> Aliya Kurbanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulnar%20Sugurbekova"> Gulnar Sugurbekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Baisariyev"> Murat Baisariyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=deasphalting%20of%20crude%20oil" title=" deasphalting of crude oil"> deasphalting of crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=demetallization%20of%20crude%20oil" title=" demetallization of crude oil"> demetallization of crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=petrolium%20engineering" title=" petrolium engineering"> petrolium engineering</a> </p> <a href="https://publications.waset.org/abstracts/77196/demetallization-of-crude-oil-comparative-analysis-of-deasphalting-and-electrochemical-removal-methods-of-ni-and-v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Proteomic Analysis of 2,4-Epibrassinolide Alleviating Low Temperature Stress in Rice Seedling Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Xu">Jiang Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoping%20Wang"> Daoping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qun%20Li"> Qun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinghong%20Pan"> Yinghong Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 2,4-Epibrassinolide (EBR), which is a kind of plant hormone Brassinosteroids (BRs), is widely studied and applied in the global scale but the proteomic characteristics of EBR alleviating low temperature stress in rice seedling leaves are still not clear. In this study, seeding rice of Nipponbare were treated with EBR and distilled water, then stressed at 4℃ or 26 ℃, and analyzed by mass spectrometry analysis, verified by parallel reaction monitoring technique (PRM). The results showed that 5778 proteins were identified in total and 4834 proteins were identified with quantitative information. Among them, 401 up-regulated and 220 down-regulated proteins may be related to EBR alleviating low temperature stress in rice seedling leaves. The molecular functions of most of up-regulated proteins are RNA binding and hydrolase activity and are mainly enriched in the pathways of carbon metabolism, folic acid synthesis, and amino acid biosynthesis. The down-regulated proteins are mainly related to catalytic activity and oxidoreductase activity and are mainly enriched in the pathways of limonene and pinene degradation, riboflavin metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase are closely related to the effect of EBR on low temperature stress. These results also suggested that BRs could relieve the effect of low temperature stress on rice seed germination in many ways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=4-Epibrassinolid" title="4-Epibrassinolid">4-Epibrassinolid</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20stress" title=" low temperature stress"> low temperature stress</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomic%20analysis" title=" proteomic analysis"> proteomic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/85350/proteomic-analysis-of-24-epibrassinolide-alleviating-low-temperature-stress-in-rice-seedling-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Chemical Sensing Properties of Self-Assembled Film Based on an Amphiphilic Ambipolar Triple-Decker (Phthalocyaninato) (Porphyrinato) Europium Semiconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Abdullah">Kiran Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanli%20Chen"> Yanli Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An amphiphilic mixed (phthalocyaninato) (porphyrinato) europium triple-decker complex Eu₂(Pc)₂(TPyP) has been synthesized and characterized. Introducing electron-withdrawing pyridyl substituents onto the meso-position of porphyrin ring in the triple-decker to ensure the sufficient hydrophilicity and suitable HOMO and LUMO energy levels and thus successfully realize amphiphilic ambipolar organic semiconductor. Importantly, high sensitive, reproducible p-type and n-type responses towards NH₃ andNO₂ respectively, based on the self-assembled film of the Eu₂(Pc)₂(TPyP) fabricated by a simple solution-based Quasi–Langmuir–Shäfer (QLS) method, have been first revealed. The good conductivity and crystallinity for the QLS film of Eu₂(Pc)₂(TPyP) render it excellent sensing property. This complex is sensitive to both electron-donating NH₃ gas in 5–30 ppm range and electron-accepting NO₂ gas 400–900 ppb range. Due to uniform nano particles there exist effective intermolecular interaction between triple decker molecules. This is the best result of Phthalocyanine–based chemical sensors at room temperature. Furthermore, the responses of the QLS film are all linearly correlated to both NH₃ and NO₂ with excellent sensitivity of 0.04% ppm⁻¹ and 31.9 % ppm⁻¹, respectively, indicating the great potential of semiconducting tetrapyrrole rare earth triple-decker compounds in the field of chemical sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambipolar%20semiconductor" title="ambipolar semiconductor">ambipolar semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20%28phthalocyaninato%29%20%28porphyrinato%29%20rare%20earth%20complex" title=" mixed (phthalocyaninato) (porphyrinato) rare earth complex"> mixed (phthalocyaninato) (porphyrinato) rare earth complex</a>, <a href="https://publications.waset.org/abstracts/search?q=Self-assemblies" title=" Self-assemblies"> Self-assemblies</a> </p> <a href="https://publications.waset.org/abstracts/80231/chemical-sensing-properties-of-self-assembled-film-based-on-an-amphiphilic-ambipolar-triple-decker-phthalocyaninato-porphyrinato-europium-semiconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Sonodynamic Activity of Porphyrins-SWCNT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Bosca">F. Bosca</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Foglietta"> F. Foglietta</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Turci"> F. Turci</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Calcio%20Gaudino"> E. Calcio Gaudino</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mana"> S. Mana</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Dosio"> F. Dosio</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Canaparo"> R. Canaparo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Serpe"> L. Serpe</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Barge"> A. Barge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, medical science has improved chemotherapy, radiation therapy and adjuvant therapy and has developed newer targeted therapies as well as refining surgical techniques for removing cancer. However, the chances of surviving the disease depend greatly on the type and location of the cancer and the extent of the disease at the start of treatment. Moreover, mainstream forms of cancer treatment have side effects which range from the unpleasant to the fatal. Therefore, the continuation of progress in anti-cancer therapy may depend on placing emphasis on other existing but less thoroughly investigated therapeutic approaches such as Sonodynamic Therapy (SDT). SDT is based on the local activation of a so called 'sonosensitizer', a molecule able to be excited by ultrasound, the radical production as a consequence of its relaxation processes and cell death due to different mechanisms induced by radical production. The present work deals with synthesis, characterization and preliminary in vitro test of Single Walled Carbon Nanotubes (SWCNT) decorated with porphyrins and biological vectors. The SWCNT’s surface was modified exploiting 1, 3-dipolar cycloaddition or Dies Alder reactions. For this purpose, different porphyrins scaffolds were ad-hoc synthesized using also non-conventional techniques. To increase cellular specificity of porphyrin-conjugated SWCNTs and to improve their ability to be suspended in aqueous solution, the modified nano-tubes were grafted with suitable glutamine or hyaluronic acid derivatives. These nano-sized sonosensitizers were characterized by several methodologies and tested in vitro on different cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sonodynamic%20therapy" title="sonodynamic therapy">sonodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=porphyrins%20synthesis%20and%20modification" title=" porphyrins synthesis and modification"> porphyrins synthesis and modification</a>, <a href="https://publications.waset.org/abstracts/search?q=SWNCT%20grafting" title=" SWNCT grafting"> SWNCT grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronic%20acid" title=" hyaluronic acid"> hyaluronic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20treatment" title=" anti-cancer treatment"> anti-cancer treatment</a> </p> <a href="https://publications.waset.org/abstracts/4873/sonodynamic-activity-of-porphyrins-swcnt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Oxidovanadium(IV) and Dioxidovanadium(V) Complexes: Efficient Catalyst for Peroxidase Mimetic Activity and Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mannar%20R.%20Maurya">Mannar R. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bithika%20Sarkar"> Bithika Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Avecilla"> Fernando Avecilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peroxidase activity is possibly successfully used for different industrial processes in medicine, chemical industry, food processing and agriculture. However, they bear some intrinsic drawback associated with denaturation by proteases, their special storage requisite and cost factor also. Now a day’s artificial enzyme mimics are becoming a research interest because of their significant applications over conventional organic enzymes for ease of their preparation, low price and good stability in activity and overcome the drawbacks of natural enzymes e.g serine proteases. At present, a large number of artificial enzymes have been synthesized by assimilating a catalytic center into a variety of schiff base complexes, ligand-anchoring, supramolecular complexes, hematin, porphyrin, nanoparticles to mimic natural enzymes. Although in recent years a several number of vanadium complexes have been reported by a continuing increase in interest in bioinorganic chemistry. To our best of knowledge, the investigation of artificial enzyme mimics of vanadium complexes is very less explored. Recently, our group has reported synthetic vanadium schiff base complexes capable of mimicking peroxidases. Herein, we have synthesized monoidovanadium(IV) and dioxidovanadium(V) complexes of pyrazoleone derivateis ( extensively studied on account of their broad range of pharmacological appication). All these complexes are characterized by various spectroscopic techniques like FT-IR, UV-Visible, NMR (1H, 13C and 51V), Elemental analysis, thermal studies and single crystal analysis. The peroxidase mimic activity has been studied towards oxidation of pyrogallol to purpurogallin with hydrogen peroxide at pH 7 followed by measuring kinetic parameters. The Michaelis-Menten behavior shows an excellent catalytic activity over its natural counterparts, e.g. V-HPO and HRP. The obtained kinetic parameters (Vmax, Kcat) were also compared with peroxidase and haloperoxidase enzymes making it a promising mimic of peroxidase catalyst. Also, the catalytic activity has been studied towards the oxidation of 1-phenylethanol in presence of H2O2 as an oxidant. Various parameters such as amount of catalyst and oxidant, reaction time, reaction temperature and solvent have been taken into consideration to get maximum oxidative products of 1-phenylethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oxovanadium%28IV%29%2Fdioxidovanadium%28V%29%20complexes" title="oxovanadium(IV)/dioxidovanadium(V) complexes">oxovanadium(IV)/dioxidovanadium(V) complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR%20spectroscopy" title=" NMR spectroscopy"> NMR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Crystal%20structure" title=" Crystal structure"> Crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase%20mimic%20activity%20towards%20oxidation%20of%20pyrogallol" title=" peroxidase mimic activity towards oxidation of pyrogallol"> peroxidase mimic activity towards oxidation of pyrogallol</a>, <a href="https://publications.waset.org/abstracts/search?q=Oxidation%20of%201-phenylethanol" title=" Oxidation of 1-phenylethanol"> Oxidation of 1-phenylethanol</a> </p> <a href="https://publications.waset.org/abstracts/39539/oxidovanadiumiv-and-dioxidovanadiumv-complexes-efficient-catalyst-for-peroxidase-mimetic-activity-and-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Fayed">Ahmed S. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Umima%20M.%20Mansour"> Umima M. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (<em>Bubalus bubalis</em>) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, &beta;-cyclodextrin (&beta;-CD), hydroxypropyl &beta;-cyclodextrin (HP-&beta;-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe<sup>2+</sup>, Mn<sup>2+</sup> and Zn<sup>2+</sup>, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor&rsquo;s response. For sensor 1, &beta;-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-&beta;-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10<sup>-7</sup>-10<sup>-2</sup> M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe<sup>2+</sup>, Mn<sup>2+</sup> and Zn<sup>2+</sup>) in CM using the three sensors, the samples were analyzed for the three cations and also Cu<sup>2+</sup> by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn<sup>2+</sup> composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVC%20Sensors" title="PVC Sensors">PVC Sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=buffalo-cows" title=" buffalo-cows"> buffalo-cows</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclodextrins" title=" cyclodextrins"> cyclodextrins</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20absorption%20spectrophotometry" title=" atomic absorption spectrophotometry"> atomic absorption spectrophotometry</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20insemination" title=" artificial insemination"> artificial insemination</a>, <a href="https://publications.waset.org/abstracts/search?q=OVSynch%20protocol" title=" OVSynch protocol"> OVSynch protocol</a> </p> <a href="https://publications.waset.org/abstracts/56672/miniaturized-pvc-sensors-for-determination-of-fe2-mn2-and-zn2-in-buffalo-cows-cervical-mucus-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Mitochondrial DNA Defect and Mitochondrial Dysfunction in Diabetic Nephropathy: The Role of Hyperglycemia-Induced Reactive Oxygen Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Al-Kafaji">Ghada Al-Kafaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sabry"> Mohamed Sabry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondria are the site of cellular respiration and produce energy in the form of adenosine triphosphate (ATP) via oxidative phosphorylation. They are the major source of intracellular reactive oxygen species (ROS) and are also direct target to ROS attack. Oxidative stress and ROS-mediated disruptions of mitochondrial function are major components involved in the pathogenicity of diabetic complications. In this work, the changes in mitochondrial DNA (mtDNA) copy number, biogenesis, gene expression of mtDNA-encoded subunits of electron transport chain (ETC) complexes, and mitochondrial function in response to hyperglycemia-induced ROS and the effect of direct inhibition of ROS on mitochondria were investigated in an in vitro model of diabetic nephropathy using human renal mesangial cells. The cells were exposed to normoglycemic and hyperglycemic conditions in the presence and absence of Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) or catalase for 1, 4 and 7 days. ROS production was assessed by the confocal microscope and flow cytometry. mtDNA copy number and PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 transcripts, were all analyzed by real-time PCR. PGC-1a, NRF-1, and TFAM, as well as ND2, CYTB, COI, and ATPase 6 proteins, were analyzed by Western blotting. Mitochondrial function was determined by assessing mitochondrial membrane potential and adenosine triphosphate (ATP) levels. Hyperglycemia-induced a significant increase in the production of mitochondrial superoxide and hydrogen peroxide at day 1 (P < 0.05), and this increase remained significantly elevated at days 4 and 7 (P < 0.05). The copy number of mtDNA and expression of PGC-1a, NRF-1, and TFAM as well as ND2, CYTB, CO1 and ATPase 6 increased after one day of hyperglycemia (P < 0.05), with a significant reduction in all those parameters at 4 and 7 days (P < 0.05). The mitochondrial membrane potential decreased progressively at 1 to 7 days of hyperglycemia with the parallel progressive reduction in ATP levels over time (P < 0.05). MnTBAP and catalase treatment of cells cultured under hyperglycemic conditions attenuated ROS production reversed renal mitochondrial oxidative stress and improved mtDNA, mitochondrial biogenesis, and function. These results show that hyperglycemia-induced ROS caused an early increase in mtDNA copy number, mitochondrial biogenesis and mtDNA-encoded gene expression of the ETC subunits in human mesangial cells as a compensatory response to the decline in mitochondrial function, which precede the mtDNA defect and mitochondrial dysfunction with a progressive oxidative response. Protection from ROS-mediated damage to renal mitochondria induced by hyperglycemia may be a novel therapeutic approach for the prevention/treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperglycemia" title=" hyperglycemia"> hyperglycemia</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=mtDNA" title=" mtDNA"> mtDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20dysfunction" title=" mitochondrial dysfunction"> mitochondrial dysfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese%20superoxide%20dismutase" title=" manganese superoxide dismutase"> manganese superoxide dismutase</a>, <a href="https://publications.waset.org/abstracts/search?q=catalase" title=" catalase"> catalase</a> </p> <a href="https://publications.waset.org/abstracts/65128/mitochondrial-dna-defect-and-mitochondrial-dysfunction-in-diabetic-nephropathy-the-role-of-hyperglycemia-induced-reactive-oxygen-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10