CINXE.COM
Search results for: TiO2 nanoparticles
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: TiO2 nanoparticles</title> <meta name="description" content="Search results for: TiO2 nanoparticles"> <meta name="keywords" content="TiO2 nanoparticles"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="TiO2 nanoparticles" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="TiO2 nanoparticles"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1707</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: TiO2 nanoparticles</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1707</span> Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohong%20Yang">Xiaohong Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Fu"> Haitao Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xizhong%20An"> Xizhong An</a>, <a href="https://publications.waset.org/abstracts/search?q=Aibing%20Yu"> Aibing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ag%40TiO2%20core-shell%20nanoparticles" title="Ag@TiO2 core-shell nanoparticles">Ag@TiO2 core-shell nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag%20surface%20doped%20TiO2%20nanoparticles" title=" Ag surface doped TiO2 nanoparticles"> Ag surface doped TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a> </p> <a href="https://publications.waset.org/abstracts/21864/is-ag-at-tio2-core-shell-nanoparticles-superior-to-ag-surface-doped-tio2-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1706</span> Genotoxicity Induced by Nanoparticles on Human Lymphoblast Cells (TK6)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyaporn%20Buaklang">Piyaporn Buaklang</a>, <a href="https://publications.waset.org/abstracts/search?q=Narisa%20Kengtrong%20Bordeerat"> Narisa Kengtrong Bordeerat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nanoparticles is increasing worldwide and there are many nanotech-based daily products available in the market. The toxicity of nanoparticles results from their extremely small size which can be transported easily into the blood stream and other organs. We aimed to study the genotoxicity of two nanoparticles, Titanium dioxide (TiO2-NPs) and Zinc oxide (ZnO-NPs), in TK6 cells by micronucleus assay. The cells were tested at 8, 24, and 48 hours after exposed to 0.10, 0.25, 0.50 and 1.00 µg/mL of TiO2-NPs particles size < 25 nm and < 100 nm and to ZnO-NPs at 1, 10, 50, and 100 µg/mL, particles size < 50 nm and < 100 nm. At 24 hours of incubation transmission electron microscope (TEM) revealed that the nanoparticles TiO2-NPs at 1.00 µg/mL and ZnO-NPs at 10 µg/mL were able to be taken into the cells and induced the production of increasing amount of micronucleus in dose-dependent manner. The effect of the two nanoparticles on chromosome aberration indicated that TiO2-NPs and ZnO-NPs are genotoxic. In addition, the toxicity of TiO2-NPs was found to be 10 times more toxic than ZnO-NPs after 24 hours exposure. Analysis showed that the TiO2-NPs induced formation of micronucleus was both time and dose dependent, whereas the genotoxicity of ZnO-NPs was only dose dependent. In conclusion, TiO2-NPs and ZnO-NPs were able to transport through the cells membrane and directly genotoxic to TK6 cells in dose-dependent manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20lymphoblast%20cells%20%28TK6%29" title=" human lymphoblast cells (TK6)"> human lymphoblast cells (TK6)</a>, <a href="https://publications.waset.org/abstracts/search?q=micronucleus" title=" micronucleus"> micronucleus</a> </p> <a href="https://publications.waset.org/abstracts/49966/genotoxicity-induced-by-nanoparticles-on-human-lymphoblast-cells-tk6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1705</span> Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Saroj">Sudhakar Saroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Vir%20Singh"> Satya Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20blue%20199" title="direct blue 199">direct blue 199</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a> </p> <a href="https://publications.waset.org/abstracts/85357/synthesis-characterization-and-application-of-undoped-and-fe-doped-tio2-ti1feo2-x001-002-003-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1704</span> Light Harvesting Titanium Nanocatalyst for Remediation of Methyl Orange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brajesh%20Kumar">Brajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Cumbal"> Luis Cumbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An eco-friendly Citrus paradisi peel extract mediated synthesis of TiO2 nanoparticles is reported under sonication. U.V.-vis, Transmission Electron Microscopy, Dynamic Light Scattering and X-ray analyses are performed to characterize the formation of TiO2 nanoparticles. It is almost spherical in shape, having a size of 60–140 nm and the XRD peaks at 2θ = 25.363° confirm the characteristic facets for anatase form. The synthesized nano catalyst is highly active in the decomposition of methyl orange (64 mg/L) in sunlight (~73%) for 2.5 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=citrus%20%20paradisi" title=" citrus paradisi"> citrus paradisi</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/6603/light-harvesting-titanium-nanocatalyst-for-remediation-of-methyl-orange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1703</span> Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Bazrafshan">Hamed Bazrafshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Dabirnia"> Saeideh Dabirnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alipour%20Tesieh"> Zahra Alipour Tesieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Alavi"> Samaneh Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Dabir"> Bahram Dabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-doped" title=" Ag-doped"> Ag-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/149150/photocatalytic-degradation-of-produced-water-hydrocarbon-of-an-oil-field-by-using-ag-doped-tio2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1702</span> Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eko%20S.%20Kunarti">Eko S. Kunarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhmad%20Syoufian"> Akhmad Syoufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Indriana%20Kartini"> Indriana Kartini</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnes"> Agnes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%E2%82%83O%E2%82%84%2FSiO%E2%82%82%2FTiO%E2%82%82" title="Fe₃O₄/SiO₂/TiO₂">Fe₃O₄/SiO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=Au%28III%29%20and%20Cu%28II%29%20mixture" title=" Au(III) and Cu(II) mixture"> Au(III) and Cu(II) mixture</a> </p> <a href="https://publications.waset.org/abstracts/84909/fe3o4sio2tio2-nanoparticles-as-catalyst-for-recovery-of-gold-from-the-mixture-of-auiii-and-cuii-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1701</span> Synthesis of a Hybrid Material (PVA/SiO₂/TiO₂) by Sol-Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gueridi%20Bachir">Gueridi Bachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Dadache%20Derradji"> Dadache Derradji</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Farid"> Rouabah Farid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on the preparation and characterization of poly (vinyl alcohol)/silica gel/Nano-TiO₂, and the study of titanium dioxide (TiO₂) nanoparticles 1% on the properties of poly (vinyl alcohol) (PVA)/silica films. Fourier transform infrared (FT-IR), water contact angle, ultraviolet-visible spectrometry (UV-VIS)) were used to characterize the hybrid films obtained. The PVA/SiO₂/Nano-TiO₂ films were successfully synthesized. Owing to the FT-IR Analysis, the chemical bonds have clearly shown that the PVA backbone is linked to the (SiO₂-TiO₂) network. UV-VIS tests indicated that the hybrid films' UV shielding properties were drastically enhanced as a result of the addition of TiO₂. The water contact angle results revealed that TiO₂ nanoparticles used as a doping compound possess an important influence on the hydrophilicity of PVA/SiO₂ as thin films. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title="sol-gel method">sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20materials" title=" hybrid materials"> hybrid materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FSIO%E2%82%82%2FTiO%E2%82%82" title=" PVA/SIO₂/TiO₂"> PVA/SIO₂/TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopical%20characterization" title=" spectroscopical characterization"> spectroscopical characterization</a> </p> <a href="https://publications.waset.org/abstracts/194584/synthesis-of-a-hybrid-material-pvasio2tio2-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1700</span> Elaboration and Characterization of PVDF/TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Z.%20Benabid">F. Z. Benabid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kridi"> S. Kridi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zouai"> F. Zouai</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Benachour"> D. Benachour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present work is to characterize the PVDF/TiO2 blends as nanocomposites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the crystallinity of the PVDF/neat TiO2 nanocomposite containing 1 wt% loading of filler, due to the nucleation effect of TiO2 nanoparticles. A good dispersion was obtained in PVDF/treated TiO2 nanocomposites. The rheological study showed an increase in the fluidity in all developed nanocomposite compositions, involved by the orientation of TiO2 nanoparticles in the flow direction. The dielectric study revealed an increase in electrical conductivity in PVDF/neat TiO2 nanocomposites. However, in PVDF/ treated TiO2 nanocomposites, the electrical conductivity was decreased by the addition of 0.5 and 2 wt% loading of filler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=comixing" title=" comixing"> comixing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatment" title=" mechanical treatment"> mechanical treatment</a> </p> <a href="https://publications.waset.org/abstracts/35087/elaboration-and-characterization-of-pvdftio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1699</span> Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emi%20Govor%C4%8Din%20Bajsi%C4%87a">Emi Govorčin Bajsića</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Oceli%C4%87%20Bulatovi%C4%87"> Vesna Ocelić Bulatović</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Slouf"> Miroslav Slouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20%C5%A0itum"> Ana Šitum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/7940/characterization-of-biodegradable-polycaprolactone-containing-titanium-dioxide-micro-and-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1698</span> Photocatalytic Hydrogen Production from Butanol over Ag/TiO2 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thabelo%20Nelushi">Thabelo Nelushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Scurrell"> Michael Scurrell</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumelo%20Seadira"> Tumelo Seadira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global warming is one of the most important environmental issues which arise from occurrence of gases such as carbon dioxide (CO2) and methane (CH4) in the atmosphere. Exposure to these greenhouse gases results in health risk. Hydrogen is regarded as an alternative energy source which is a clean energy carrier for the future. There are different methods to produce hydrogen such as steam reforming, coal gasification etc., however the challenge with these processes is that they emit CO and CO2 gases and are costly. Photocatalytic reforming is a substitute process which is fascinating due to the combination of solar energy and renewable sources and the use of semiconductor materials such as catalysts. TiO2 is regarded as the most promising catalysts. TiO2 nanoparticles prepared by hydrothermal method and Ag/TiO2 are being investigated for photocatalytic production of hydrogen from butanol. The samples were characterized by raman spectroscopy, TEM/SEM, XRD, XPS, EDAX, DRS and BET surface area. 2 wt% Ag-doped TiO2 nanoparticle showed enhanced hydrogen production compared to a non-doped TiO2. The results of characterization and photoactivity shows that TiO2 nanoparticles play a very important role in producing high hydrogen by utilizing solar irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butanol" title="butanol">butanol</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20particles" title=" silver particles"> silver particles</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/81621/photocatalytic-hydrogen-production-from-butanol-over-agtio2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1697</span> Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Gurum%20Gerechal">Mulugeta Gurum Gerechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20loading" title=" catalyst loading"> catalyst loading</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination%20and%20methylene%20blue" title=" calcination and methylene blue"> calcination and methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/184194/assessment-of-metal-and-nano-metal-doped-tio2-nanoparticles-for-photocatalytic-degradation-of-methylene-blue-in-almeda-textile-industry-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1696</span> Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasar%20Saleem">Qasar Saleem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condensation" title="condensation">condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomers" title=" oligomers"> oligomers</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactic" title=" polylactic"> polylactic</a> </p> <a href="https://publications.waset.org/abstracts/42713/synthesis-and-characterization-of-lactic-acid-grafted-tio2-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1695</span> Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mulugeta%20Gurum%20Gerechal">Mulugeta Gurum Gerechal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20loading" title=" catalyst loading"> catalyst loading</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a> </p> <a href="https://publications.waset.org/abstracts/193164/synthesis-and-characterization-of-tio2-n-doped-tio2-and-ag-doped-tio2-for-photocatalytic-degradation-of-methylene-blue-in-adwa-almeda-textile-industry-tigray-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1694</span> Advanced Nanostructured Materials and Their Application for Solar Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hegazy">A. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsayed"> Ahmed Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20El%20Shenawy"> Essam El Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Allam"> N. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Handal"> Hala Handal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Mahmoud"> K. R. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20annihilation" title="positron annihilation">positron annihilation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a> </p> <a href="https://publications.waset.org/abstracts/124606/advanced-nanostructured-materials-and-their-application-for-solar-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1693</span> Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arifa%20Batool">Arifa Batool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Hussain%20Bhatti"> Ghulam Hussain Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Mujtaba%20Shah"> Syed Mujtaba Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title="solar cell">solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20heterojunction" title=" bulk heterojunction"> bulk heterojunction</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitization" title=" photosensitization"> photosensitization</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20sensitized%20solar%20cell" title=" dye sensitized solar cell"> dye sensitized solar cell</a> </p> <a href="https://publications.waset.org/abstracts/73329/synthesis-characterization-and-applications-of-some-selected-dye-functionalized-p-and-n-type-nanoparticles-in-dye-sensitized-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1692</span> Investigation on Polymer Based Nano-Silver as Food Packaging Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Metak">A. M. Metak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Ajaal"> T. T. Ajaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Metak"> Amal Metak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfik%20Ajaal"> Tawfik Ajaal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-silver" title="nano-silver">nano-silver</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20food%20packaging" title=" antimicrobial food packaging"> antimicrobial food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide "> titanium dioxide </a> </p> <a href="https://publications.waset.org/abstracts/1795/investigation-on-polymer-based-nano-silver-as-food-packaging-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1691</span> Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Yathish">K. Yathish</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20G.%20Binu"> K. G. Binu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Shenoy"> B. S. Shenoy</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Rao"> D. S. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Pai"> R. Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=journal%20bearing" title="journal bearing">journal bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20model" title=" viscosity model"> viscosity model</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynold%27s%20equation" title=" Reynold's equation"> Reynold's equation</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carrying%20capacity" title=" load carrying capacity"> load carrying capacity</a> </p> <a href="https://publications.waset.org/abstracts/15727/study-of-tio2-nanoparticles-as-lubricant-additive-in-two-axial-groove-journal-bearing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1690</span> Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alshammari">Ahmad Alshammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulaziz%20Bagabas"> Abdulaziz Bagabas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Assulami"> Muhamad Assulami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to the environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV-A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20AuNPs" title="supported AuNPs">supported AuNPs</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20photocatalyst" title=" semiconductor photocatalyst"> semiconductor photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20B" title=" rhodamine B "> rhodamine B </a> </p> <a href="https://publications.waset.org/abstracts/20579/semiconductor-supported-gold-nanoparticles-for-photodegradation-of-rhodamine-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1689</span> Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20J.%20Rybak-Smith">Malgorzata J. Rybak-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedicte%20Thiebaut"> Benedicte Thiebaut</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Johnson"> Simon Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Bishop"> Peter Bishop</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20E.%20Townley"> Helen E. Townley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanoparticles" title=" titania nanoparticles"> titania nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/7506/flame-spray-pyrolysis-as-a-high-throughput-method-to-generate-gadolinium-doped-titania-nanoparticles-for-augmented-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1688</span> Nanoparticles Activated Inflammasome Lead to Airway Hyperresponsiveness and Inflammation in a Mouse Model of Asthma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pureun-Haneul%20Lee">Pureun-Haneul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Gon%20Kim"> Byeong-Gon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Hye%20Lee"> Sun-Hye Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Soo%20Jang"> An-Soo Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Nanoparticles may pose adverse health effects due to particulate matter inhalation. Nanoparticle exposure induces cell and tissue damage, causing local and systemic inflammatory responses. The inflammasome is a major regulator of inflammation through its activation of pro-caspase-1, which cleaves pro-interleukin-1β (IL-1β) into its mature form and may signal acute and chronic immune responses to nanoparticles. Objective: The aim of the study was to identify whether nanoparticles exaggerates inflammasome pathway leading to airway inflammation and hyperresponsiveness in an allergic mice model of asthma. Methods: Mice were treated with saline (sham), OVA-sensitized and challenged (OVA), or titanium dioxide nanoparticles. Lung interleukin 1 beta (IL-1β), interleukin 18 (IL-18), NACHT, LRR and PYD domains-containing protein 3 (NLRP3) and caspase-1 levels were assessed with Western Blot. Caspase-1 was checked by immunohistochemical staining. Reactive oxygen species were measured for the marker 8-isoprostane and carbonyl by ELISA. Results: Airway inflammation and hyperresponsiveness increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. TiO2 nanoparticles treatment increased IL-1β and IL-18 protein expression in OVA-sensitized/challenged mice. TiO2 nanoparticles augmented the expression of NLRP3 and caspase-1 leading to the formation of an active caspase-1 in the lung. Lung caspase-1 expression was increased in OVA-sensitized/challenged mice and these responses were exaggerated by TiO2 nanoparticles exposure. Reactive oxygen species was increased in OVA-sensitized/challenged mice and in OVA-sensitized/challenged plus TiO2 exposed mice. Conclusion: Our data demonstrate that inflammasome pathway activates in asthmatic lungs following nanoparticles exposure, suggesting that targeting the inflammasome may help control nanoparticles-induced airway inflammation and responsiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bronchial%20asthma" title="bronchial asthma">bronchial asthma</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammasome" title=" inflammasome"> inflammasome</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/44817/nanoparticles-activated-inflammasome-lead-to-airway-hyperresponsiveness-and-inflammation-in-a-mouse-model-of-asthma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1687</span> Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satam%20Alotibi">Satam Alotibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20J.%20Al-Zahrani"> Muhammad J. Al-Zahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahd%20K.%20Al-Naqidan"> Fahd K. Al-Naqidan</a>, <a href="https://publications.waset.org/abstracts/search?q=Turki%20S.%20Hussein"> Turki S. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Moteb%20Alotaibi"> Moteb Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alyami"> Mohammed Alyami</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdy%20M.%20Elmahdy"> Mahdy M. Elmahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Kaiba"> Abdellah Kaiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatehia%20S.%20Alhakami"> Fatehia S. Alhakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20F.%20Qahtan"> Talal F. Qahtan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title="water pollution">water pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20clusters" title=" silver clusters"> silver clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%20nanoparticles" title=" TiO₂ nanoparticles"> TiO₂ nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20activity" title=" photocatalytic activity"> photocatalytic activity</a> </p> <a href="https://publications.waset.org/abstracts/174555/harnessing-sunlight-for-clean-water-scalable-approach-for-silver-loaded-titanium-dioxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1686</span> Thermo-Physical and Morphological Properties of Pdlcs Films Doped with Tio2 Nanoparticles.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salima%20Bouadjela">Salima Bouadjela</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Abdoune"> Fatima Zohra Abdoune</a>, <a href="https://publications.waset.org/abstracts/search?q=Lahcene%20Mechernene"> Lahcene Mechernene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> PDLCs are currently considered as promising materials for specific applications such as creation of window blinds controlled by electric field, fog simulators, UV protective glasses, high data storage device etc. We know that the electrical field inside the liquid crystal is low compare with the external electric field [1,2]. An addition of high magnetic and electrical, properties containing compounds to the polymer dispersed liquid crystal (PDLC) will enhance the electrical, optical, and magnetic properties of the PDLC [3,4]. Low Concentration of inorganic nanoparticles TiO2 added to nematic liquid crystals (E7) and also combined with monomers (TPGDA) and cured monomer/LC mixture to elaborate polymer-LC-NP dispersion. The presence of liquid crystal and nanoparticles in TPGDA matrix were conformed and the modified properties of PDLC due to doped nanoparticle were studied and explained by the results of FTIR, POM, UV. Incorporation of nanoparticles modifies the structure of PDLC and thus it makes increase the amount of droplets and decrease in droplet size. we found that the presence of TiO2 nanoparticles leads to a shift the nematic-isotropic transition temperature TNI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=PDLC" title=" PDLC"> PDLC</a>, <a href="https://publications.waset.org/abstracts/search?q=phases%20diagram" title=" phases diagram"> phases diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a> </p> <a href="https://publications.waset.org/abstracts/30428/thermo-physical-and-morphological-properties-of-pdlcs-films-doped-with-tio2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1685</span> Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirit%20Siddhapara">Kirit Siddhapara</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimple%20Shah"> Dimple Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20from%20solution" title="growth from solution">growth from solution</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides" title=" oxides"> oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20materials" title=" magnetic materials"> magnetic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20compounds" title=" titanium compounds"> titanium compounds</a> </p> <a href="https://publications.waset.org/abstracts/13501/effect-of-transition-metal-fe-mn-ion-doping-on-tio2-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> Optical and Magnetic Properties of Ferromagnetic Co-Ni Co-Doped TiO2 Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabah%20Bensaha">Rabah Bensaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Badreddine%20Toubal"> Badreddine Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the structural, optical and magnetic properties of TiO2, Co-doped TiO2, Ni-doped TiO2 and Co-Ni co-doped TiO2 thin films prepared by the sol-gel dip coating method. Fully anatase phase was obtained by adding metal ions without any detectable impurity phase or oxide formed. AFM and SEM micrographs clearly confirm that the addition of Co-Ni affects the shape of anatase nanoparticles. The crystallite sizes and surface roughness of TiO2 films increase with Co-doping, Ni-doping and Co–Ni co-doping, respectively. The refractive index, thickness and optical band gap values of the films were obtained by means of optical transmittance spectra measurements. The band gap of TiO2 sample was decreased by Co-doping, Ni-doping and Co–Ni co-doping TiO2 films. Both undoped and Co-Ni co-doped films were found to be ferromagnetic at room temperature may due to the presence of oxygen vacancy defect and the probable formation of metal clusters Co-Ni. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Ni%20co-doped" title="Co-Ni co-doped">Co-Ni co-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=anatase%20TiO2" title=" anatase TiO2"> anatase TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic" title=" ferromagnetic"> ferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/35968/optical-and-magnetic-properties-of-ferromagnetic-co-ni-co-doped-tio2-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1683</span> Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wided%20Zerguine">Wided Zerguine</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Habelhames"> Farid Habelhames </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocurrent%20density" title="photocurrent density">photocurrent density</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20nanostructures" title=" organic nanostructures"> organic nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20coating" title=" hybrid coating"> hybrid coating</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/35376/elaboration-and-characterization-of-meh-ppvpcbm-composite-film-doped-with-tio2-nanoparticles-for-photovoltaic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1682</span> Numerical Study of Heat Transfer Nanofluid TiO₂ through a Solar Flat Plate Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Maouassi">A. Maouassi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Beghidja"> A. Beghidja</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Daoud"> S. Daoud</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeraibi"> N. Zeraibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates a practical application of nanoparticles (TiO₂) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary, is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 800. Results from the application of those nonfluids are obtained versus pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20flat%20plate%20collector%20efficiency" title=" solar flat plate collector efficiency"> solar flat plate collector efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82%20nanoparticles" title=" TiO₂ nanoparticles"> TiO₂ nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/74400/numerical-study-of-heat-transfer-nanofluid-tio2-through-a-solar-flat-plate-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1681</span> Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Fereydouni">E. Fereydouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-Si" title="nano-Si">nano-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-%20Ti" title=" nano- Ti"> nano- Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2-TiO2%20nancomposite" title=" SiO2-TiO2 nancomposite"> SiO2-TiO2 nancomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fabric" title=" nylon fabric"> nylon fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant%20nylon" title=" flame retardant nylon"> flame retardant nylon</a> </p> <a href="https://publications.waset.org/abstracts/35340/multifunctional-coating-of-nylon-using-nano-si-nano-ti-and-sio2-tio2-nancomposite-properties-of-colorimetric-and-flammability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1680</span> Impacts of CuO, TiO2, SiO2 Nanoparticles on Biological Phosphorus Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shiu">H. Shiu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.S.%20Lu"> M.S. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.P.%20Tsai"> Y.P. Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explored the impacts of CuO, TiO2, SiO2 nanoparticles on biological phosphorus removal. Experimental results showed that the phosphorus removal ability of phosphorus accumulating organism (PAO) was initially inhibited when CuO nanoparticle concentration was 5 mgl-1. The inhibition of phosphorus removal for 1000 mgl-1 of TiO2 with sunlight was higher than without sunlight case. The inhibition of phosphorus removal began at 500 mgl-1 SiO2 nanoparticle concentration. Inhibition became apparent when SiO2 nanoparticle concentration was up to 1000 mgl-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20copper%20oxide" title="nano copper oxide">nano copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20titanium%20dioxide" title=" nano titanium dioxide"> nano titanium dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title=" nano silica"> nano silica</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20biological%20phosphate%20removal" title=" enhanced biological phosphate removal"> enhanced biological phosphate removal</a> </p> <a href="https://publications.waset.org/abstracts/6388/impacts-of-cuo-tio2-sio2-nanoparticles-on-biological-phosphorus-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1679</span> An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohajeri">S. Mohajeri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer" title=" multilayer"> multilayer</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse-plating" title=" pulse-plating"> pulse-plating</a> </p> <a href="https://publications.waset.org/abstracts/26116/an-investigation-on-the-pulse-electrodeposition-of-ni-tio2tio2-multilayer-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1678</span> Development of Superhydrophobic Cotton Fabrics and Their Functional Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zaman%20Khan">Muhammad Zaman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Baheti"> Vijay Baheti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Militky"> Jiri Militky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort" title="comfort">comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=functional" title=" functional"> functional</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20protective" title=" UV protective"> UV protective</a> </p> <a href="https://publications.waset.org/abstracts/108008/development-of-superhydrophobic-cotton-fabrics-and-their-functional-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>