CINXE.COM

Search results for: Yoshiharu Fujii

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Yoshiharu Fujii</title> <meta name="description" content="Search results for: Yoshiharu Fujii"> <meta name="keywords" content="Yoshiharu Fujii"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Yoshiharu Fujii" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Yoshiharu Fujii"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Yoshiharu Fujii</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparison of Allelopathic Activity of Some Edible Mushroom and Wild Mushroom in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Osivand">Asma Osivand</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mardani"> Hossein Mardani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Araya"> Hiroshi Araya</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Fujii"> Yoshiharu Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wild mushrooms have always been considered as valuable source of bioactive compounds, while edible mushrooms have been known for their importance as food source. However, their interaction with plants through chemicals that could lead to find new biochemical have not been well undertaken. A special bioassay method (Sandwich method) was applied to compare eight common edible mushrooms (Pleurotus eryngii, Pleurotus citrinopileatus, Pleurotus ostreatus, Lentinula edodes, Grifola frondosa, Flammulina velutipes, Hypsizygus tessellatus and Pholiota namako) with some wild species (Ganoderma appelanatum, Amanita pantherina, Artomyces pyxidatus, Morchella conica, Tricholosporum porphyrophyllum, Trametes hirsuta) for their phytotoxicity against lettuce. Among all tested edible mushrooms, application of 5 mg of P. ostreatus showed stronger allelopathic activity by inhibiting the growth of radicle and hypocotyl of lettuce by 84% and 63% respectively. Moreover, same amount of T. porphyrophyllum exerted 77% and 67% growth inhibition on radicle and hypocotyl of lettuce. In general, biochemicals contributed in tested mushrooms could be the main cause for their inhibitory activity and could lead to find new allelochemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=phytotoxicity" title=" phytotoxicity"> phytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleurotus%20sp." title=" Pleurotus sp."> Pleurotus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20method" title=" sandwich method"> sandwich method</a> </p> <a href="https://publications.waset.org/abstracts/56667/comparison-of-allelopathic-activity-of-some-edible-mushroom-and-wild-mushroom-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ansong%20Richard%20Omari">Ansong Richard Omari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosei%20Oikawa"> Yosei Oikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Fujii"> Yoshiharu Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothea%20Sonoko%20Bellingrath-Kimura"> Dorothea Sonoko Bellingrath-Kimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterioration%20index" title="deterioration index">deterioration index</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilization%20scheme" title=" fertilization scheme"> fertilization scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20biomass" title=" microbial biomass"> microbial biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20agroecological%20zone" title=" tropical agroecological zone"> tropical agroecological zone</a> </p> <a href="https://publications.waset.org/abstracts/61689/evaluation-of-different-fertilization-practices-and-their-impacts-on-soil-chemical-and-microbial-properties-in-two-agroecological-zones-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> A Perspective on Allelopathic Potential of Corylus avellana L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugba%20G.%20Isin%20Ozkan">Tugba G. Isin Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Fujii"> Yoshiharu Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important constrains that decrease the crop yields are weeds. Increased amount and number of chemical herbicides are being utilized every day to control weeds. Chemical herbicides which cause environmental effects, and limitations on implementation of them have led to the nonchemical alternatives in the management of weeds. It is needed increasingly the application of allelopathy as a nonherbicidal innovation to control weed populations in integrated weed management. It is not only because of public concern about herbicide use, but also increased agricultural costs and herbicide resistance weeds. Allelopathy is defined as a common biological phenomenon, direct or indirect interaction which one plant or organism produces biochemicals influence the physiological processes of another neighboring plant or organism. Biochemicals involved in allelopathy are called allelochemicals that influence beneficially or detrimentally the growth, survival, development, and reproduction of other plant or organisms. All plant parts could have allelochemicals which are secondary plant metabolites. Allelochemicals are released to environment, influence the germination and seedling growth of neighbors' weeds; that is the way how allelopathy is applied for weed control. Crop cultivars have significantly different ability for inhibiting the growth of certain weeds. So, a high commercial value crop Corylus avellana L. and its byproducts were chosen to introduce for their allelopathic potential in this research. Edible nut of Corylus avellana L., commonly known as hazelnut is commercially valuable crop with byproducts; skin, hard shell, green leafy cover, and tree leaf. Research on allelopathic potential of a plant by using the sandwich bioassay method and investigation growth inhibitory activity is the first step to develop new and environmentally friendly alternatives for weed control. Thus, the objective of this research is to determine allelopathic potential of C. avellana L. and its byproducts by using sandwich method and to determine effective concentrations (EC) of their extracts for inducing half-maximum elongation inhibition on radicle of test plant, EC50. The sandwich method is reliable and fast bioassay, very useful for allelopathic screening under laboratory conditions. In experiments, lettuce (Lactuca sativa L.) seeds will be test plant, because of its high sensitivity to inhibition by allelochemicals and reliability for germination. In sandwich method, the radicle lengths of dry material treated lettuce seeds and control lettuce seeds will be measured and inhibition of radicle elongation will be determined. Lettuce seeds will also be treated by the methanol extracts of dry hazelnut parts to calculate EC₅₀ values, which are required to induce half-maximal inhibition of growth, as mg dry weight equivalent mL-1. Inhibitory activity of extracts against lettuce seedling elongation will be evaluated, like in sandwich method, by comparing the radicle lengths of treated seeds with that of control seeds and EC₅₀ values will be determined. Research samples are dry parts of Turkish hazelnut, C. avellana L. The results would suggest the opportunity for allelopathic potential of C. avellana L. with its byproducts in plant-plant interaction, might be utilized for further researches, could be beneficial in finding bioactive chemicals from natural products and developing of natural herbicides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Corylus%20avellana%20L." title=" Corylus avellana L."> Corylus avellana L.</a>, <a href="https://publications.waset.org/abstracts/search?q=EC50" title=" EC50"> EC50</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactuca%20sativa%20L." title=" Lactuca sativa L."> Lactuca sativa L.</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20method" title=" sandwich method"> sandwich method</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkish%20hazelnut" title=" Turkish hazelnut"> Turkish hazelnut</a> </p> <a href="https://publications.waset.org/abstracts/89822/a-perspective-on-allelopathic-potential-of-corylus-avellana-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Simulation Data Summarization Based on Spatial Histograms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhao">Jing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Ishikawa"> Yoshiharu Ishikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan%20Xiao"> Chuan Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kento%20Sugiura"> Kento Sugiura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation%20data" title="simulation data">simulation data</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20summarization" title=" data summarization"> data summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20histograms" title=" spatial histograms"> spatial histograms</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration" title=" exploration"> exploration</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/98571/simulation-data-summarization-based-on-spatial-histograms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Investigating The Effects of Utilizing Different Curing Agents on High-Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20M.%20Ahmed">Mostafa M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Nose"> Kotaro Nose</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Fujii"> Takashi Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshiki%20Ayano"> Toshiki Ayano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Study shed the light on the effects of employing varied curing agents (No.1-No.6): bleeding water, and sprinkling water, aqueous basic silica compound, modified acrylic resin, the emulsion of solid wax and nonionic surfactant, and water-based paraffin wax, on the properties of high-performance concrete (HPC) in comparison with the cured specimens according to the standard curing at 20 ± 3°C (JIS A 0203:2019). The specimens cured in accordance with standard curing exhibit a better compressive strength and higher freeze-thaw resistance compared to most non-standard-cured samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20agents" title="curing agents">curing agents</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20concrete" title=" high-performance concrete"> high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20scaling" title=" cumulative scaling"> cumulative scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw%20resistance" title=" freeze-thaw resistance"> freeze-thaw resistance</a> </p> <a href="https://publications.waset.org/abstracts/164913/investigating-the-effects-of-utilizing-different-curing-agents-on-high-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Difference between Riding a Bicycle on a Sidewalk or in the Street by Usual Traveling Means</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ai%20Fujii">Ai Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Kan%20Shimazaki"> Kan Shimazaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bicycle users must ride on the street according the law in Japan, but in practice, many bicycle users ride on the sidewalk. Drivers generally feel that bicycles riding in the street are in the way. In contrast, pedestrians generally feel that bicycles riding on the sidewalk are in the way. That seems to make sense. What, then, is the difference between riding a bicycle on the sidewalk or in the street by usual traveling means. We made 3D computer graphics models of pedestrians, a car, and a bicycle at an intersection. The bicycle was positioned to choose between advancing to the sidewalk or the street after a few seconds. We then made a 2D stimulus picture by changing the point of view of the 3DCG model pictures. Attitudes were surveyed using this 2D stimulus picture, and we compared attitudes between three groups, people traveling by car, on foot, or by bicycle. Here we report the survey result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bicycle" title="bicycle">bicycle</a>, <a href="https://publications.waset.org/abstracts/search?q=sidewalk" title=" sidewalk"> sidewalk</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrians" title=" pedestrians"> pedestrians</a>, <a href="https://publications.waset.org/abstracts/search?q=driver" title=" driver"> driver</a>, <a href="https://publications.waset.org/abstracts/search?q=intersection" title=" intersection"> intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/75886/difference-between-riding-a-bicycle-on-a-sidewalk-or-in-the-street-by-usual-traveling-means" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Detoxification of Hazardous Organic/Inorganic Contaminants in Automobile Shredder Residue by Multi-Functioned Nano-Size Metallic Calcium Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati">Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung%20Ho%20Lee"> Byoung Ho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiharu%20Mitoma"> Yoshiharu Mitoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Simion%20Cristian"> Simion Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, environmental nanotechnology has risen to the forefront and the new properties and enhanced reactivates offered by nanomaterial may offer a new, low-cost paradigm to solving complex environmental pollution problems. This study assessed the synthesis and application of multi-functioned nano-size metallic calcium (nMC) composite for detoxification of hazardous inorganic (heavy metals (HMs)/organic chlorinated/brominated compound (CBCs) contaminants in automobile shredder residue (ASR). ASR residues ball milled with nMC composite can achieve about 90-100% of HMs immobilization and CBCs decomposition. The results highlight the low quantity of HMs leached from ASR residues after treatment with nMC, which was found to be lower than the standard regulatory limit for hazardous waste landfills. The use of nMC composite in a mechanochemical process to treat hazardous ASR (dry conditions) is a simple and innovative approach to remediate hazardous inorganic/organic cross-contaminates in ASR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-sized%20metallic%20calcium" title="nano-sized metallic calcium">nano-sized metallic calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile%20shredder%20residue" title=" automobile shredder residue"> automobile shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%2Finorganic%20contaminants" title=" organic/inorganic contaminants"> organic/inorganic contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=detoxification" title=" detoxification"> detoxification</a> </p> <a href="https://publications.waset.org/abstracts/72507/detoxification-of-hazardous-organicinorganic-contaminants-in-automobile-shredder-residue-by-multi-functioned-nano-size-metallic-calcium-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Verification of the Effect of the Hazard-Perception Training Tool for Drivers Ported from a Tablet Device to a Smartphone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shimazaki">K. Shimazaki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mishina"> M. Mishina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fujii"> A. Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a previous study, we developed a hazard-perception training tool for drivers using a tablet device and verified its effectiveness. Accident movies recorded by drive recorders were separated into scenes before and after the collision. The scene before the collision is presented to the driver. The driver then touches the screen to point out where he/she feels danger. After the screen is touched, the tool presents the collision scene and tells the driver if what he/she pointed out is correct. Various effects were observed such as this tool increased the discovery rate of collision targets and reduced the reaction time. In this study, we optimized this tool for the smartphone and verified its effectiveness. Verifying in the same way as in the previous study on tablet devices clarified that the same effect can be obtained on the smartphone screen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20perception" title="hazard perception">hazard perception</a>, <a href="https://publications.waset.org/abstracts/search?q=smartphone" title=" smartphone"> smartphone</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20devices" title=" tablet devices"> tablet devices</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20education" title=" driver education"> driver education</a> </p> <a href="https://publications.waset.org/abstracts/75831/verification-of-the-effect-of-the-hazard-perception-training-tool-for-drivers-ported-from-a-tablet-device-to-a-smartphone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Improvement of Frictional Coefficient of Modified Shoe Soles onto Icy and Snowy Road by Tilting of Added Glass Fibers into Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wakayama%20Shunya">Wakayama Shunya</a>, <a href="https://publications.waset.org/abstracts/search?q=Okubo%20Kazuya"> Okubo Kazuya</a>, <a href="https://publications.waset.org/abstracts/search?q=Fujii%20Toru"> Fujii Toru</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakata%20Daisuke"> Sakata Daisuke</a>, <a href="https://publications.waset.org/abstracts/search?q=Kado%20Noriyuki"> Kado Noriyuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Furutachi%20Hiroshi"> Furutachi Hiroshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to propose an effective method to improve frictional coefficient of modified shoe rubber soles with added glass fibers onto the icy and snowy road surfaces in order to prevent slip-and-fall accidents by the users. Added fibers in the rubber were uniformly tilted to the perpendicular direction of the frictional surface, where tilting angle was -60, -30, +30, +60, 90 degrees and 0 for usual specimen, respectively. It was found that horizontal arraignment was effective to improve the frictional coefficient when glass fibers were embedded in the shoe rubber, while the standing in normal direction of the embedded glass fibers on the shoe surface was also effective to do that once after they were exposed from the shoe rubber with its abrasion. These improvements were explained by the increase of stiffness against the shear deformation of the rubber at the critical frictional state and the enlargement of resistance force for extracting exposed fibers from the ice and snow, respectively. Current study suggested that effective arraignments in the tilting angle of the added fibers should be applied in designing rubber shoe soles to keep the safeties for uses in regions of cold climates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frictional%20coefficient" title="frictional coefficient">frictional coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=shoe%20soles" title=" shoe soles"> shoe soles</a>, <a href="https://publications.waset.org/abstracts/search?q=icy%20and%20snowy%20road" title=" icy and snowy road"> icy and snowy road</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibers" title=" glass fibers"> glass fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=tilting%20angle" title=" tilting angle"> tilting angle</a> </p> <a href="https://publications.waset.org/abstracts/34387/improvement-of-frictional-coefficient-of-modified-shoe-soles-onto-icy-and-snowy-road-by-tilting-of-added-glass-fibers-into-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shota%20Nagata">Shota Nagata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Okubo"> Kazuya Okubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Fujii"> Toru Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20carbon%20fiber" title=" recycled carbon fiber"> recycled carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20orientation" title=" fiber orientation"> fiber orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mechanism" title=" failure mechanism"> failure mechanism</a> </p> <a href="https://publications.waset.org/abstracts/21408/effect-of-temperature-condition-in-extracting-carbon-fibers-on-mechanical-properties-of-injection-molded-polypropylene-reinforced-by-recycled-carbon-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noboru%20Wakamoto">Noboru Wakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiyotaka%20Obunai"> Kiyotaka Obunai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Okubo"> Kazuya Okubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Fujii"> Toru Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO<sub>2</sub>) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 &deg;C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO<sub>2 </sub>powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 &deg;C. The specific wear rate decreased from 25&times;10<sup>-6</sup> mm<sup>2</sup>/N to 0.1&times;10<sup>-6</sup> mm<sup>2</sup>/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%2FC%20composites" title="C/C composites">C/C composites</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20coefficient" title=" friction coefficient"> friction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=SiC" title=" SiC"> SiC</a> </p> <a href="https://publications.waset.org/abstracts/64753/moderation-in-temperature-dependence-on-counter-frictional-coefficient-and-prevention-of-wear-of-cc-composites-by-synthesizing-sic-around-surface-and-internal-vacancies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> High Temperature Tolerance of Chironomus Sulfurosus and Its Molecular Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tettey%20Afi%20Pamela">Tettey Afi Pamela</a>, <a href="https://publications.waset.org/abstracts/search?q=Sotaro%20Fujii"> Sotaro Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidetoshi%20Saito"> Hidetoshi Saito</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawaii%20Koichiro"> Kawaii Koichiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Organisms employ adaptive mechanisms when faced with any stressor or risk of being wiped out. This has made it possible for them to survive in harsh environmental conditions such as increasing temperature, low pH, and anoxia. Some of the mechanisms they utilize include the expression of heat shock proteins, synthesis of cryoprotectants, and anhydrobiosis. Heat shock proteins (HSPs) have been widely studied to determine their involvement in stress tolerance among various organism, of which chironomid species have been no exception. We examined the survival and expression of genes encoding five (5) heat shock proteins (HSP70, HSP67, HSP60, HSP27, and HSP23) from Chironomus sulfurosus larvae reared from 1st instar at 25°C, 30°C, 35°C, and 40°C. Results: The highest survival rate was recorded at 30°C, followed by 25°C, then 35°C. Only a small percentage of C. sulfurosus survived at 40°C (14.5%). With regards to HSPs expression, some HSPs responded to an increase in high temperature. The relative expression levels were lowest at 30°C for HSP70, HSP60, HSP27, and HSP23. At 25°C and 40°C, HSP70, HSP67, HSP60, HSP27, and HSP23 had the highest expression. At 35°C, all had the lowest expression. Discussion: The expression of heat shock proteins varies from one species to another. We designated the genes HSP 70, HSP 67, HSP 60, HSP 27, and HSP 23 genes based on transcriptome analysis of C. sulfurosus. Our study can be termed as a long-heat shock study as C. sulfurosus was reared from the first instar to the fourth instar, and this might have led to a continuous induction of HSPs at 25°C. 40°C had the lowest survival but highest HSPs expression as C. sulfurosus larvae had to utilize HSPs for sustenance. These results and future high-throughput studies at both the transcriptome and proteome level will improve the information needed to predict the future geographic distribution of these species within the context of global warming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chironomid" title="chironomid">chironomid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20proteins" title=" heat shock proteins"> heat shock proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20protein%20expression" title=" heat shock protein expression"> heat shock protein expression</a> </p> <a href="https://publications.waset.org/abstracts/152441/high-temperature-tolerance-of-chironomus-sulfurosus-and-its-molecular-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Study on Planning of Smart GRID Using Landscape Ecology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunglim%20Lee">Sunglim Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Susumu%20Fujii"> Susumu Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Okamura"> Koji Okamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landscape%20ecology" title="landscape ecology">landscape ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=IT" title=" IT"> IT</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=aerial%20photograph" title=" aerial photograph"> aerial photograph</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/3371/study-on-planning-of-smart-grid-using-landscape-ecology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Teodoro%20De%20Luna%20Carada">Paulo Teodoro De Luna Carada</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Fujii"> Toru Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Okubo"> Kazuya Okubo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fiber" title=" kenaf fiber"> kenaf fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/42345/effects-of-heat-treatment-on-the-mechanical-properties-of-kenaf-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Influencing Factors on Stability of Shale with Silt Layers at Slopes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20M.%20Badrul%20Alam">A. K. M. Badrul Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshiaki%20Fujii"> Yoshiaki Fujii</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Hasan%20Dipu"> Nahid Hasan Dipu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakil%20Ahmed%20Razo"> Shakil Ahmed Razo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shale%20rock%20masses" title="shale rock masses">shale rock masses</a>, <a href="https://publications.waset.org/abstracts/search?q=silt%20layers" title=" silt layers"> silt layers</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic%20model" title=" elasto-plastic model"> elasto-plastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20degradation" title=" temporal degradation"> temporal degradation</a> </p> <a href="https://publications.waset.org/abstracts/182094/influencing-factors-on-stability-of-shale-with-silt-layers-at-slopes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10