CINXE.COM

Search results for: permanent magnet synchronous generator

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: permanent magnet synchronous generator</title> <meta name="description" content="Search results for: permanent magnet synchronous generator"> <meta name="keywords" content="permanent magnet synchronous generator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="permanent magnet synchronous generator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="permanent magnet synchronous generator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1296</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: permanent magnet synchronous generator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Development of an Analytical Model for a Synchronous Permanent Magnet Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Sahbani">T. Sahbani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouteraa"> M. Bouteraa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wamkeue"> R. Wamkeue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title="MATLAB">MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20permanent%20magnet%20generator" title=" synchronous permanent magnet generator"> synchronous permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/23479/development-of-an-analytical-model-for-a-synchronous-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Solomon">Olusegun Solomon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator" title="permanent magnet synchronous generator">permanent magnet synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20system" title=" wind power system"> wind power system</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title=" wind turbine"> wind turbine</a> </p> <a href="https://publications.waset.org/abstracts/65956/the-design-control-and-dynamic-performance-of-an-interior-permanent-magnet-synchronous-generator-for-wind-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> Thermal Assessment of Outer Rotor Direct Drive Gearless Small-Scale Wind Turbines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Yasa">Yusuf Yasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Erkan%20Mese"> Erkan Mese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the thermal issue of permanent magnet synchronous generator which is frequently used in direct drive gearless small-scale wind turbine applications. Permanent magnet synchronous generator (PMSG) is designed with 2.5 kW continuous and 6 kW peak power. Then considering generator geometry, mechanical design of wind turbine is performed. Thermal analysis and optimization is carried out considering all wind turbine components to reach realistic results. These issue is extremely important in research and development(R&D) process for wind turbine applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20drive" title="direct drive">direct drive</a>, <a href="https://publications.waset.org/abstracts/search?q=gearless%20wind%20turbine" title=" gearless wind turbine"> gearless wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator%20%28PMSG%29" title=" permanent magnet synchronous generator (PMSG)"> permanent magnet synchronous generator (PMSG)</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20wind%20turbine" title=" small-scale wind turbine"> small-scale wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/29834/thermal-assessment-of-outer-rotor-direct-drive-gearless-small-scale-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">696</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Eissa">Eman M. Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Hasanin"> Hany M. Hasanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abd-Elhamid"> Mahmoud Abd-Elhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Muyeen"> S. M. Muyeen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Fernando"> T. Fernando</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20C.%20Iu"> H. H. C. Iu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20and%20optimization%20techniques" title="control and optimization techniques">control and optimization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator" title=" permanent magnet synchronous generator"> permanent magnet synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20speed%20wind%20turbines" title=" variable speed wind turbines"> variable speed wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20conversion%20system" title=" wind energy conversion system"> wind energy conversion system</a> </p> <a href="https://publications.waset.org/abstracts/74248/a-review-on-control-of-a-grid-connected-permanent-magnet-synchronous-generator-based-variable-speed-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> Permanent Magnet Generator – One Phase Regime Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Pistelok">Pawel Pistelok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the concept of an electromagnetic circuit of a 3-phase surface-mounted permanent magnet generator designed for a single phase operation. A cross section of electromagnetic circuit and a field-circuit model of generator used for computations are shown. The paper presents comparative analysis of simulation results obtained for two different versions of generator regarding construction of armature winding. In the first version of generator the voltages generated in each of three winding phases have different rms values (different number of turns in each of phases), three winding phases are connected in series and one phase load is connected to the two output terminals of generator. The second version of generator is very similar, i.e. three winding phases are connected in series and one phase load is powered by generator, but in this version the voltages generated in each of winding phases have exactly the same rms values (the same number of turns in each of phases). The time waveforms of voltages, currents and electromagnetic torques in the airgaps of two machine versions for rated power are shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generator" title="permanent magnet generator">permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20of%20torque" title=" course of torque"> course of torque</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20work" title=" single phase work"> single phase work</a>, <a href="https://publications.waset.org/abstracts/search?q=unsymmetrical%20operation%20point" title=" unsymmetrical operation point"> unsymmetrical operation point</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20connection%20of%20winding%20phase" title=" serial connection of winding phase"> serial connection of winding phase</a> </p> <a href="https://publications.waset.org/abstracts/29809/permanent-magnet-generator-one-phase-regime-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">695</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> Permanent Magnet Synchronous Generator: Unsymmetrical Point Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Pistelok">P. Pistelok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the concept of an electromagnetic circuit generator with permanent magnets mounted on the surface rotor core designed for single phase work. Computation field-circuit model was shown. The spectrum of time course of voltages in the idle work was presented. The cross section with graphically presentation of magnetic induction in particular parts of electromagnetic circuits was presented. Distribution of magnetic induction at the rated load point for each phase were shown. The time course of voltages and currents for each phases for rated power were displayed. An analysis of laboratory results and measurement of load characteristics of the generator was discussed. The work deals with three electromagnetic circuits of generators with permanent magnet where output voltage characteristics versus rated power were expressed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generator" title="permanent magnet generator">permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=course%20of%20torque" title=" course of torque"> course of torque</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20phase%20work" title=" single phase work"> single phase work</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetrical%20three%20phase%20work" title=" asymmetrical three phase work"> asymmetrical three phase work</a> </p> <a href="https://publications.waset.org/abstracts/13061/permanent-magnet-synchronous-generator-unsymmetrical-point-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yi-Fei">Yang Yi-Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Luo%20Min-Zhou"> Luo Min-Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Fu-Chun"> Zhang Fu-Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=He%20Nai-Bao"> He Nai-Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xing%20Shao-Bang"> Xing Shao-Bang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20linear%20motor" title="permanent magnet synchronous linear motor">permanent magnet synchronous linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20search" title=" chaotic search"> chaotic search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20design" title=" optimization design"> optimization design</a> </p> <a href="https://publications.waset.org/abstracts/48599/chaotic-search-optimal-design-and-modeling-of-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1289</span> Optimization of High Flux Density Design for Permanent Magnet Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang">Dong-Woo Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an optimal magnet shape of a spoke-shaped interior permanent magnet synchronous motor by using ferrite magnets. Generally, the permanent magnet motor used the ferrite magnets has lower output power and efficiency than a rare-earth magnet motor, because the ferrite magnet has lower magnetic energy than the rare-earth magnet. Nevertheless, the ferrite magnet motor is used to many industrial products owing to cost effectiveness. In this paper, the authors propose a high power density design of the ferrite permanent magnet synchronous motor. Furthermore, because the motor design has to be taken a manufacturing process into account, the design is simulated by using the finite element method for analyzing the demagnetization, the magnetizing, and the structure stiffness. Especially, the magnet shape and dimensions are decided for satisfying these properties. Finally, the authors design an optimal motor for applying our system. That final design is manufactured and evaluated from experimentations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title="demagnetization">demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20analysis" title=" magnetic analysis"> magnetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20motors" title=" permanent magnet motors"> permanent magnet motors</a> </p> <a href="https://publications.waset.org/abstracts/51581/optimization-of-high-flux-density-design-for-permanent-magnet-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1288</span> Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naeimi">M. Naeimi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aghazadeh"> H. Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Afjei"> E. Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Siadatan"> A. Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synchronous%20reluctance%20motor%20%28SynRM%29" title="synchronous reluctance motor (SynRM)">synchronous reluctance motor (SynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor%20%28PMaSynRM%29" title=" permanent magnet assisted synchronous reluctance motor (PMaSynRM)"> permanent magnet assisted synchronous reluctance motor (PMaSynRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20analysis" title=" fault analysis"> fault analysis</a> </p> <a href="https://publications.waset.org/abstracts/87636/static-eccentricity-fault-diagnosis-in-synchronous-reluctance-motor-and-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1287</span> Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lehr">Marcel Lehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder"> Andreas Binder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly-salient-permanent-magnet-machine" title="doubly-salient-permanent-magnet-machine">doubly-salient-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-reversal-permanent-magnet-machine" title=" flux-reversal-permanent-magnet-machine"> flux-reversal-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-switching-permanent-magnet-machine" title=" flux-switching-permanent-magnet-machine"> flux-switching-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20drive" title=" industrial drive"> industrial drive</a> </p> <a href="https://publications.waset.org/abstracts/61399/comparison-of-different-electrical-machines-with-permanent-magnets-in-the-stator-for-use-as-an-industrial-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1286</span> Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Yogal">N. Yogal</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lehrmann"> C. Lehrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Permanent magnet (PM) is increasing in the Permanent magnet synchronous machines (PMSM) to fulfill the requirement of high efficiency machines in modern industry. PMSM is widely used in industrial application, wind power plant and automotive industry. Since the PMSM are used in different environment condition, the long-term effect of NdFeB-based magnets at high temperatures and corrosion behavior has to be studied due to irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in the climatic chamber has been presented. The magnetic moment and magnetic field of the magnet were studied experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20%28PM%29" title="permanent magnet (PM)">permanent magnet (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=NdFeB" title=" NdFeB"> NdFeB</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20behavior" title=" corrosion behavior"> corrosion behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Permanent%20magnet%20synchronous%20machine%20%28PMSM%29" title=" Permanent magnet synchronous machine (PMSM)"> Permanent magnet synchronous machine (PMSM)</a> </p> <a href="https://publications.waset.org/abstracts/16482/study-of-magnetic-properties-on-the-corrosion-behavior-and-influence-of-temperature-in-permanent-magnet-nd-fe-b-used-in-pmsm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1285</span> Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petter%20Eklund">Petter Eklund</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Sj%C3%B6lund"> Jonathan Sjölund</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Eriksson"> Sandra Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=Mats%20Leijon"> Mats Leijon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20effects" title="end effects">end effects</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20leakage%20flux" title=" end leakage flux"> end leakage flux</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machine" title=" permanent magnet machine"> permanent magnet machine</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke%20type%20rotor" title=" spoke type rotor"> spoke type rotor</a> </p> <a href="https://publications.waset.org/abstracts/65632/magnetic-end-leakage-flux-in-a-spoke-type-rotor-permanent-magnet-synchronous-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1284</span> Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Rahama%20Adam%20Hamid">Ismail Rahama Adam Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20piston%20engine" title="free piston engine">free piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title=" permanent magnet"> permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20generator" title=" linear generator"> linear generator</a>, <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title=" demagnetization"> demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/185409/temperature-rises-characteristics-of-distinct-double-sided-flat-permanent-magnet-linear-generator-for-free-piston-engines-for-hybrid-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1283</span> Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Aghazadeh">Hadi Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ebrahim%20Afjei"> Seyed Ebrahim Afjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Siadatan"> Alireza Siadatan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20assisted%20synchronous%20reluctance%20motor" title="permanent magnet assisted synchronous reluctance motor">permanent magnet assisted synchronous reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20barrier" title=" flux barrier"> flux barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20carrier" title=" flux carrier"> flux carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20torque" title=" electromagnetic torque"> electromagnetic torque</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20power%20factor" title=" and power factor"> and power factor</a> </p> <a href="https://publications.waset.org/abstracts/85367/sensitivity-analysis-of-external-rotor-permanent-magnet-assisted-synchronous-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1282</span> Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Moustafa%20Mahmoud%20Sedky">Mohamed Moustafa Mahmoud Sedky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=line%20start%20permanent%20magnet" title="line start permanent magnet">line start permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20eccentricity" title=" static eccentricity"> static eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20eccentricity" title=" dynamic eccentricity"> dynamic eccentricity</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20eccentricity" title=" mixed eccentricity"> mixed eccentricity</a> </p> <a href="https://publications.waset.org/abstracts/4065/diagnosis-of-static-dynamic-and-mixed-eccentricity-in-line-start-permanent-magnet-synchronous-motor-by-using-fem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1281</span> Analysis of Effects of Magnetic Slot Wedges on Characteristics of Permanent Magnet Synchronous Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ladghem%20Chikouche">B. Ladghem Chikouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of slot wedges permeability on the electromagnetic performance of three-phase permanent magnet synchronous machine is investigated in this paper. It is shown that the back-EMF waveform, electromagnetic torque and electromagnetic torque ripple are all significantly affected by slot wedges permeability. The paper presents an accurate analytical subdomain model and confirmed by finite-element analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exact%20analytical%20calculation" title="exact analytical calculation">exact analytical calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20method" title=" finite-element method"> finite-element method</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20distribution" title=" magnetic field distribution"> magnetic field distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20machines%20performance" title=" permanent magnet machines performance"> permanent magnet machines performance</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20slot%20wedges%20permeability" title=" stator slot wedges permeability"> stator slot wedges permeability</a> </p> <a href="https://publications.waset.org/abstracts/43206/analysis-of-effects-of-magnetic-slot-wedges-on-characteristics-of-permanent-magnet-synchronous-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1280</span> Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang-Gyun%20Kim">Yang-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Taek%20Woo"> Eun-Taek Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong-Gon%20Lee"> Myeong-Gon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hyun%20Cho"> Yun-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20permanent%20magnet%20%28AFPM%29%20generator" title=" axial flux permanent magnet (AFPM) generator"> axial flux permanent magnet (AFPM) generator</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive-type%20cooling%20system" title=" conductive-type cooling system"> conductive-type cooling system</a> </p> <a href="https://publications.waset.org/abstracts/14914/feasibility-study-on-a-conductive-type-cooling-system-for-an-axial-flux-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1279</span> Comparison of Instantaneous Short Circuit versus Step DC Voltage to Determine PMG Inductances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walter%20Evaldo%20Kuchenbecker">Walter Evaldo Kuchenbecker</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Carlos%20Teixeira"> Julio Carlos Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since efficiency became a challenge to reduce energy consumption of all electrical machines applications, the permanent magnet machine raises up as a better option, because its performance, robustness and simple control. Even though, the electrical machine was developed through analyses of magnetism effect, permanent magnet machines still not well dominated. As permanent magnet machines are becoming popular in most applications, the pressure to standardize this type of electrical machine increases. However, due limited domain, it is still nowadays without any standard to manufacture, test and application. In order to determine an inductance of the machine, a new method is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generators%20%28pmg%29" title="permanent magnet generators (pmg)">permanent magnet generators (pmg)</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine%20parameters" title=" synchronous machine parameters"> synchronous machine parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20procedures" title=" test procedures"> test procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=inductances" title=" inductances"> inductances</a> </p> <a href="https://publications.waset.org/abstracts/53174/comparison-of-instantaneous-short-circuit-versus-step-dc-voltage-to-determine-pmg-inductances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1278</span> Designing and Prototyping Permanent Magnet Generators for Wind Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Asefi">T. Asefi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Faiz"> J. Faiz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Khan"> M. A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20%EF%AC%82ux" title="axial flux">axial flux</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20generator" title=" permanent magnet generator"> permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20rotor" title=" dual rotor"> dual rotor</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite%20permanent%20magnet%20generator" title=" ferrite permanent magnet generator"> ferrite permanent magnet generator</a>, <a href="https://publications.waset.org/abstracts/search?q=%EF%AC%81nite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=cogging%20torque" title=" cogging torque"> cogging torque</a>, <a href="https://publications.waset.org/abstracts/search?q=population-based%20algorithms" title=" population-based algorithms"> population-based algorithms</a> </p> <a href="https://publications.waset.org/abstracts/79585/designing-and-prototyping-permanent-magnet-generators-for-wind-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1277</span> Magnetic Field Analysis of External Rotor Permanent-Magnet Synchronous Motors with Non Magnetic Rotor Core</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabrak%20Samir">Mabrak Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The motor performance created by permanent magnetic in a slotless air-gap of a surface mounted permanent-magnet synchronous motor with non magnetic rotor and either sinusoidal or mixed (quasi-Halbatch) magnetization is presented in this paper using polar coordinates. The analysis works for both internal and external rotor motor topologies, The effect of stator slots is introduced by modulating the magnetic field distribution in the slotless stator by the complex relative air-gap permeance, calculated from the conformal transformation of the slot geometry. We compare predicted results of flux density distribution and cogging torque with those obtained by finite-element analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-cored" title="air-cored">air-cored</a>, <a href="https://publications.waset.org/abstracts/search?q=cogging%20torque" title=" cogging torque"> cogging torque</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20magnetic%20field" title=" finite element magnetic field"> finite element magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent-magnet" title=" permanent-magnet"> permanent-magnet</a> </p> <a href="https://publications.waset.org/abstracts/43476/magnetic-field-analysis-of-external-rotor-permanent-magnet-synchronous-motors-with-non-magnetic-rotor-core" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1276</span> Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenn-Yih%20Chen">Jenn-Yih Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Bean-Yin%20Lee"> Bean-Yin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chuan%20Hsu"> Yuan-Chuan Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Cheng%20Lin"> Jui-Cheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuang-Chyi%20Lee"> Kuang-Chyi Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20law" title="adaptive law">adaptive law</a>, <a href="https://publications.waset.org/abstracts/search?q=passivity%20theorem" title=" passivity theorem"> passivity theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor" title=" permanent magnet synchronous motor"> permanent magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a> </p> <a href="https://publications.waset.org/abstracts/10734/sliding-mode-position-control-for-permanent-magnet-synchronous-motors-based-on-passivity-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1275</span> Heat Transfer in Direct-Driven Generator for Large-Scaled Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dae-Gyun%20Ahn">Dae-Gyun Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Teak%20Woo"> Eun-Teak Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hyun%20Cho"> Yun-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind generators such as the Axial Flux Permanent Magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5MW. In this study, a newly developed conductive-type cooling system was proposed for the 2.5MW AFPM generator installed on an offshore wind turbine. Through electromagnetic thermal analysis, the efficiency of the heat transfer on the stator surface was investigated. When using the proposed cooling system, the temperatures on the stator surface and on the permanent magnet under conditions of thermal saturation were 76 and 66 C, respectively. (KETEP 20134030200320) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20permanent%20magnet" title=" axial flux permanent magnet"> axial flux permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive-type%20cooling%20system" title=" conductive-type cooling system"> conductive-type cooling system</a> </p> <a href="https://publications.waset.org/abstracts/4812/heat-transfer-in-direct-driven-generator-for-large-scaled-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1274</span> The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justas%20Dilys">Justas Dilys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unscented%20kalman%20filter" title="unscented kalman filter">unscented kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=ARM" title=" ARM"> ARM</a>, <a href="https://publications.waset.org/abstracts/search?q=PMSM" title=" PMSM"> PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a> </p> <a href="https://publications.waset.org/abstracts/143271/the-unscented-kalman-filter-implementation-for-the-sensorless-speed-control-of-a-permanent-magnet-synchronous-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1273</span> Effects of Magnetization Patterns on Characteristics of Permanent Magnet Linear Synchronous Generator for Wave Energy Converter Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-Won%20Seo">Sung-Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang-Young%20Choi"> Jang-Young Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rare earth magnets used in synchronous generators offer many advantages, including high efficiency, greatly reduced the size, and weight. The permanent magnet linear synchronous generator (PMLSG) allows for direct drive without the need for a mechanical device. Therefore, the PMLSG is well suited to translational applications, such as wave energy converters and free piston energy converters. This manuscript compares the effects of different magnetization patterns on the characteristics of double-sided PMLSGs in slotless stator structures. The Halbach array has a higher flux density in air-gap than the Vertical array, and the advantages of its performance and efficiency are widely known. To verify the advantage of Halbach array, we apply a finite element method (FEM) and analytical method. In general, a FEM and an analytical method are used in the electromagnetic analysis for determining model characteristics, and the FEM is preferable to magnetic field analysis. However, the FEM is often slow and inflexible. On the other hand, the analytical method requires little time and produces accurate analysis of the magnetic field. Therefore, the flux density in air-gap and the Back-EMF can be obtained by FEM. In addition, the results from the analytical method correspond well with the FEM results. The model of the Halbach array reveals less copper loss than the model of the Vertical array, because of the Halbach array’s high output power density. The model of the Vertical array is lower core loss than the model of Halbach array, because of the lower flux density in air-gap. Therefore, the current density in the Vertical model is higher for identical power output. The completed manuscript will include the magnetic field characteristics and structural features of both models, comparing various results, and specific comparative analysis will be presented for the determination of the best model for application in a wave energy converting system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converter" title="wave energy converter">wave energy converter</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20linear%20synchronous%20generator" title=" permanent magnet linear synchronous generator"> permanent magnet linear synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20method" title=" analytical method"> analytical method</a> </p> <a href="https://publications.waset.org/abstracts/65820/effects-of-magnetization-patterns-on-characteristics-of-permanent-magnet-linear-synchronous-generator-for-wave-energy-converter-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1272</span> Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamidi%20Ramakrishna%20Rao">Mamidi Ramakrishna Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagdish%20Mamidi"> Jagdish Mamidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20generator" title="offshore wind generator">offshore wind generator</a>, <a href="https://publications.waset.org/abstracts/search?q=PMSM" title=" PMSM"> PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20optimization" title=" PSO optimization"> PSO optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20optimization" title=" design optimization"> design optimization</a> </p> <a href="https://publications.waset.org/abstracts/113747/design-analysis-and-optimization-of-10-mw-permanent-magnet-surface-mounted-off-shore-wind-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1271</span> Extended Kalman Filter Based Direct Torque Control of Permanent Magnet Synchronous Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Qin">Liang Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20M.%20D.%20Habbi"> Hanan M. D. Habbi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A robust sensorless speed for permanent magnet synchronous motor (PMSM) has been presented for estimation of stator flux components and rotor speed based on The Extended Kalman Filter (EKF). The model of PMSM and its EKF models are modeled in Matlab /Sirnulink environment. The proposed EKF speed estimation method is also proved insensitive to the PMSM parameter variations. Simulation results demonstrate a good performance and robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DTC" title="DTC">DTC</a>, <a href="https://publications.waset.org/abstracts/search?q=Extended%20Kalman%20Filter%20%28EKF%29" title=" Extended Kalman Filter (EKF)"> Extended Kalman Filter (EKF)</a>, <a href="https://publications.waset.org/abstracts/search?q=PMSM" title=" PMSM"> PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless%20control" title=" sensorless control"> sensorless control</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-windup%20PI" title=" anti-windup PI"> anti-windup PI</a> </p> <a href="https://publications.waset.org/abstracts/22472/extended-kalman-filter-based-direct-torque-control-of-permanent-magnet-synchronous-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1270</span> Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20A.%20Ahmed">Abdelsalam A. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor" title="permanent magnet synchronous motor">permanent magnet synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20predictive%20control" title=" model-based predictive control"> model-based predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20source%20utilization" title=" DC source utilization"> DC source utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=cascaded%20PI%20control" title=" cascaded PI control"> cascaded PI control</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20pulse%20width%20modulation" title=" space vector pulse width modulation"> space vector pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=TMS320F2812%20DSP" title=" TMS320F2812 DSP"> TMS320F2812 DSP</a> </p> <a href="https://publications.waset.org/abstracts/26429/experimental-implementation-of-model-predictive-control-for-permanent-magnet-synchronous-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1269</span> Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassa%20Nacera">Yassa Nacera</a>, <a href="https://publications.waset.org/abstracts/search?q=Badji%20Abderrezak"> Badji Abderrezak</a>, <a href="https://publications.waset.org/abstracts/search?q=Saidoune%20Abdelmalek"> Saidoune Abdelmalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Houassine%20Hamza"> Houassine Hamza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet" title="permanent magnet">permanent magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=demagnetization" title=" demagnetization"> demagnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/182275/modelling-and-detecting-the-demagnetization-fault-in-the-permanent-magnet-synchronous-machine-using-the-current-signature-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1268</span> Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michel%20Han">Michel Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Besson"> Christophe Besson</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Savary"> Alain Savary</a>, <a href="https://publications.waset.org/abstracts/search?q=Yvan%20Becher"> Yvan Becher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variable flux permanent magnet synchronous motor (VF-PMSM), also called &quot;Memory Motor&quot;, is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20state" title=" magnetization state"> magnetization state</a>, <a href="https://publications.waset.org/abstracts/search?q=memory%20motors" title=" memory motors"> memory motors</a>, <a href="https://publications.waset.org/abstracts/search?q=performances" title=" performances"> performances</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent-magnet" title=" permanent-magnet"> permanent-magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20machine" title=" synchronous machine"> synchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=variable-flux" title=" variable-flux"> variable-flux</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20magnetization" title=" variable magnetization"> variable magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=wide%20speed%20application" title=" wide speed application"> wide speed application</a> </p> <a href="https://publications.waset.org/abstracts/100729/performance-assessment-of-a-variable-flux-permanent-magnet-memory-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1267</span> Design of Electromagnetic Field of PMSG for VTOL Series-Hybrid UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sooyoung%20Cho">Sooyoung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Gun%20Kim"> In-Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Seok%20Hong"> Hyun-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Woo%20Kang"> Dong-Woo Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20Lee"> Ju Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Series hybrid UAV(Unmanned aerial vehicle) that is proposed in this paper performs VTOL(Vertical take-off and landing) using the battery and generator, and it applies the series hybrid system with combination of the small engine and generator when cruising flight. This system can be described as the next-generation system that can dramatically increase the UAV flight times. Also, UAV systems require a large energy at the time of VTOL to be conducted for a short time. Therefore, this paper designs PMSG(Permanent Magnet Synchronous Generator) having a high specific power considering VTOL through the FEA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PMSG" title="PMSG">PMSG</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20specific%20power%20density" title=" high specific power density"> high specific power density</a> </p> <a href="https://publications.waset.org/abstracts/41236/design-of-electromagnetic-field-of-pmsg-for-vtol-series-hybrid-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20generator&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10