CINXE.COM
Search results for: fault classification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fault classification</title> <meta name="description" content="Search results for: fault classification"> <meta name="keywords" content="fault classification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fault classification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fault classification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2706</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fault classification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2706</span> Characterization and Monitoring of the Yarn Faults Using Diametric Fault System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Ishtiaque">S. M. Ishtiaque</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Yadav"> V. K. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20D.%20Joshi"> S. D. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Chatterjee"> J. K. Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen鈥揕o猫ve Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20distance" title="Euclidean distance">Euclidean distance</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20classification" title=" fault classification"> fault classification</a>, <a href="https://publications.waset.org/abstracts/search?q=KLT" title=" KLT"> KLT</a>, <a href="https://publications.waset.org/abstracts/search?q=Radon%20Transform" title=" Radon Transform"> Radon Transform</a> </p> <a href="https://publications.waset.org/abstracts/65167/characterization-and-monitoring-of-the-yarn-faults-using-diametric-fault-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2705</span> Application of Support Vector Machines in Fault Detection and Diagnosis of Power Transmission Lines </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Farhat">I. A. Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bin%20Hasan"> M. Bin Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A developed approach for the protection of power transmission lines using Support Vector Machines (SVM) technique is presented. In this paper, the SVM technique is utilized for the classification and isolation of faults in power transmission lines. Accurate fault classification and location results are obtained for all possible types of short circuit faults. As in distance protection, the approach utilizes the voltage and current post-fault samples as inputs. The main advantage of the method introduced here is that the method could easily be extended to any power transmission line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transmission%20line%20protection" title=" power transmission line protection"> power transmission line protection</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machines%20%28SVM%29" title=" support vector machines (SVM)"> support vector machines (SVM)</a> </p> <a href="https://publications.waset.org/abstracts/13818/application-of-support-vector-machines-in-fault-detection-and-diagnosis-of-power-transmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2704</span> Application of Fuzzy Approach to the Vibration Fault Diagnosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Khelil">Jalel Khelil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20classification%20k-nearest%20neighbor" title=" fuzzy classification k-nearest neighbor"> fuzzy classification k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration "> vibration </a> </p> <a href="https://publications.waset.org/abstracts/3115/application-of-fuzzy-approach-to-the-vibration-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2703</span> Evaluation and Fault Classification for Healthcare Robot during Sit-To-Stand Performance through Center of Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyi%20Wang">Tianyi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieyong%20Jeong"> Hieyong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=An%20Guo"> An Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuko%20Ohno"> Yuko Ohno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Healthcare robot for assisting sit-to-stand (STS) performance had aroused numerous research interests. To author鈥檚 best knowledge, knowledge about how evaluating healthcare robot is still unknown. Robot should be labeled as fault if users feel demanding during STS when they are assisted by robot. In this research, we aim to propose a method to evaluate sit-to-stand assist robot through center of pressure (CoP), then classify different STS performance. Experiments were executed five times with ten healthy subjects under four conditions: two self-performed STSs with chair heights of 62 cm and 43 cm, and two robot-assisted STSs with chair heights of 43 cm and robot end-effect speed of 2 s and 5 s. CoP was measured using a Wii Balance Board (WBB). Bayesian classification was utilized to classify STS performance. The results showed that faults occurred when decreased the chair height and slowed robot assist speed. Proposed method for fault classification showed high probability of classifying fault classes form others. It was concluded that faults for STS assist robot could be detected by inspecting center of pressure and be classified through proposed classification algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20of%20pressure" title="center of pressure">center of pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20classification" title=" fault classification"> fault classification</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20robot" title=" healthcare robot"> healthcare robot</a>, <a href="https://publications.waset.org/abstracts/search?q=sit-to-stand%20movement" title=" sit-to-stand movement"> sit-to-stand movement</a> </p> <a href="https://publications.waset.org/abstracts/93907/evaluation-and-fault-classification-for-healthcare-robot-during-sit-to-stand-performance-through-center-of-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2702</span> ANFIS Approach for Locating Faults in Underground Cables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdy%20B.%20Eteiba">Magdy B. Eteiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ismael%20Wahba"> Wael Ismael Wahba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20Barakat"> Shimaa Barakat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location" title=" fault location"> fault location</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/11080/anfis-approach-for-locating-faults-in-underground-cables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2701</span> Feature Extraction and Classification Based on the Bayes Test for Minimum Error</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasar%20Aldian%20Ambark%20Shashoa">Nasar Aldian Ambark Shashoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification with a dimension reduction based on Bayesian approach is proposed in this paper . The first step is to generate a sample (parameter) of fault-free mode class and faulty mode class. The second, in order to obtain good classification performance, a selection of important features is done with the discrete karhunen-loeve expansion. Next, the Bayes test for minimum error is used to classify the classes. Finally, the results for simulated data demonstrate the capabilities of the proposed procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20redundancy" title="analytical redundancy">analytical redundancy</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title=" fault detection"> fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%0D%0Aextraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a> </p> <a href="https://publications.waset.org/abstracts/22067/feature-extraction-and-classification-based-on-the-bayes-test-for-minimum-error" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2700</span> Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Praveenkumar">T. Praveenkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulpreet%20Singh"> Kulpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Divy%20Bhanpuriya"> Divy Bhanpuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saimurugan"> M. Saimurugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20belief%20networks" title="deep belief networks">deep belief networks</a>, <a href="https://publications.waset.org/abstracts/search?q=DBN" title=" DBN"> DBN</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20feed%20forward%20neural%20network" title=" deep feed forward neural network"> deep feed forward neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=DFFNN" title=" DFFNN"> DFFNN</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fusion%20of%20algorithm" title=" fusion of algorithm"> fusion of algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signal" title=" vibration signal"> vibration signal</a> </p> <a href="https://publications.waset.org/abstracts/126562/performance-enrichment-of-deep-feed-forward-neural-network-and-deep-belief-neural-networks-for-fault-detection-of-automobile-gearbox-using-vibration-signal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2699</span> Effect of Fault Depth on Near-Fault Peak Ground Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Yu">Yanyan Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haiping%20Ding"> Haiping Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengjun%20Chen"> Pengjun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiou%20Sun"> Yiou Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20depth" title="fault depth">fault depth</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault" title=" near-fault"> near-fault</a>, <a href="https://publications.waset.org/abstracts/search?q=PGV" title=" PGV"> PGV</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/73475/effect-of-fault-depth-on-near-fault-peak-ground-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2698</span> A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawfik%20Thelaidjia">Tawfik Thelaidjia</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Chenikher"> Salah Chenikher </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal鈥檚 Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approach <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title="condition monitoring">condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=kurtosis" title=" kurtosis"> kurtosis</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=roller%20bearing" title=" roller bearing"> roller bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20machines" title=" rotating machines"> rotating machines</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20measurement" title=" vibration measurement "> vibration measurement </a> </p> <a href="https://publications.waset.org/abstracts/2554/a-new-approach-of-preprocessing-with-svm-optimization-based-on-pso-for-bearing-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Rodriguez-Guerra">Jorge Rodriguez-Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Calleja"> Carlos Calleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Aron%20Pujana"> Aron Pujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Iker%20Elorza"> Iker Elorza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Maria%20Macarulla"> Ana Maria Macarulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault-tolerant%20control" title="fault-tolerant control">fault-tolerant control</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-hydraulic%20actuator" title=" electro-hydraulic actuator"> electro-hydraulic actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20re-design" title=" control re-design"> control re-design</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time" title=" real-time"> real-time</a> </p> <a href="https://publications.waset.org/abstracts/99692/fault-tolerant-control-study-and-classification-case-study-of-a-hydraulic-press-model-simulated-in-real-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bowei%20Yuan">Bowei Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi%20Li"> Shi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Liuyang%20Song"> Liuyang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaqing%20Wang"> Huaqing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingli%20Cui"> Lingli Cui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signal%20down-sampling" title=" vibration signal down-sampling"> vibration signal down-sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=1D-CNN" title=" 1D-CNN"> 1D-CNN</a> </p> <a href="https://publications.waset.org/abstracts/135216/a-mechanical-diagnosis-method-based-on-vibration-fault-signal-down-sampling-and-the-improved-one-dimensional-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Ali%20Saud%20Al%20Tobi">Maamar Ali Saud Al Tobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraint%20Bevan"> Geraint Bevan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Ramachandran"> K. P. Ramachandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Wallace"> Peter Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Harrison"> David Harrison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump%20setup" title="centrifugal pump setup">centrifugal pump setup</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/66155/experimental-set-up-for-investigation-of-fault-diagnosis-of-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Cui">Weiwei Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejian%20Lin"> Dejian Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leigang%20Zhang"> Leigang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Wang"> Yao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zheng%20Sun"> Zheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianfeng%20Li"> Lianfeng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=false%20alarm" title="false alarm">false alarm</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=k-means" title=" k-means"> k-means</a>, <a href="https://publications.waset.org/abstracts/search?q=BIT" title=" BIT"> BIT</a> </p> <a href="https://publications.waset.org/abstracts/87531/a-method-for-false-alarm-recognition-based-on-multi-classification-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> Multiple Fault Detection and Classification in a Coupled Motor with Rotor Using Artificial Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Nouri%20Khajavi">Mehrdad Nouri Khajavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gollamhassan%20%20Payganeh"> Gollamhassan Payganeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Fallah%20Tafti"> Mohsen Fallah Tafti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fault diagnosis is an important aspect of maintaining rotating machinery health and increasing productivity. Many researches has been done in this regards. Many faults such as unbalance, misalignment, looseness, bearing faults, etc. have been considered and diagnosed with different techniques. Most of the researches in fault diagnosis of rotating machinery deal with single fault. Where as in reality faults usually occur simultaneously and it is, therefore, necessary to recognize them at the same time. In this research, two of the most common faults namely unbalance and misalignment have been considered simultaneously with different intensity and then identified and classified with the use of Multi-Layer Perception Neural Network (MLPNN). Processed Vibration signals are used as the input to the MLPNN, and the class of mixed unbalancy, and misalignment is the output of the NN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unbalance" title="unbalance">unbalance</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20misalignment" title=" parallel misalignment"> parallel misalignment</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20faults" title=" combined faults"> combined faults</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signals" title=" vibration signals"> vibration signals</a> </p> <a href="https://publications.waset.org/abstracts/59244/multiple-fault-detection-and-classification-in-a-coupled-motor-with-rotor-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Loukil">R. Loukil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chtourou"> M. Chtourou</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Damak"> T. Damak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation%20FDI" title="fault detection and isolation FDI">fault detection and isolation FDI</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20control%20FTC" title=" fault tolerant control FTC"> fault tolerant control FTC</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer" title=" sliding mode observer"> sliding mode observer</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title=" nonlinear system"> nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/41716/actuator-fault-detection-and-fault-tolerant-control-of-a-nonlinear-system-using-sliding-mode-observer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Asynchronous Sequential Machines with Fault Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seong%20Woo%20Kwak">Seong Woo Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Min%20Yang"> Jung-Min Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20sequential%20machines" title="asynchronous sequential machines">asynchronous sequential machines</a>, <a href="https://publications.waset.org/abstracts/search?q=corrective%20control" title=" corrective control"> corrective control</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis%20and%20tolerance" title=" fault diagnosis and tolerance"> fault diagnosis and tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detector" title=" fault detector"> fault detector</a> </p> <a href="https://publications.waset.org/abstracts/53634/asynchronous-sequential-machines-with-fault-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jude%20Inwumoh">Jude Inwumoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20P.%20R.%20Taylor"> Adam P. R. Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosala%20Gunawardane"> Kosala Gunawardane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMC-HVDC" title="MMC-HVDC">MMC-HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20faults" title=" DC faults"> DC faults</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20current%20limiters" title=" fault current limiters"> fault current limiters</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20scheme" title=" control scheme"> control scheme</a> </p> <a href="https://publications.waset.org/abstracts/113483/a-review-of-hvdc-modular-multilevel-converters-subjected-to-dc-and-ac-faults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duc%20V.%20Nguyen">Duc V. Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=induction%20motor" title=" induction motor"> induction motor</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title=" predictive maintenance"> predictive maintenance</a> </p> <a href="https://publications.waset.org/abstracts/134923/fourier-transform-and-machine-learning-techniques-for-fault-detection-and-diagnosis-of-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Analysis of Microstructure around Opak River Pleret Area, Bantul Regency, Special Region of Yogyakarta Province, Indonesia, as a Result of Opak Fault Reactivation, Using Stereographic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gayus%20Pratama%20Polunggu">Gayus Pratama Polunggu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pamela%20Felita%20Adibrata"> Pamela Felita Adibrata</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafidh%20Fathur%20Riza"> Hafidh Fathur Riza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Opak Fault is a large fault that extends from the northeast to the southwest of Yogyakarta Special Region. Opak Fault allegedly re-active after the 2006 Yogyakarta earthquake, about eleven years ago. Opak Fault is a big fault, therefore the activation will bring up the microstructure around the Opak River. This microstructure will reveal a different direction of force from the Opak Fault because the trigger for the emergence of the microstructure is the reactivation of the Opak Fault. In other words, this microstructure is a potentially severe weak area during a tectonic disaster. This research was conducted to find out the impact from the reactivation of Opak Fault that triggered the emergence of microstructure around Opak River which is very useful for disaster mitigation information around research area. This research used the approach from literature study in the form of the journal of structural geology and field study. The method used is a laboratory analysis in the form of stereographic analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Opak%20fault" title="Opak fault">Opak fault</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivation" title=" reactivation"> reactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=stereographic" title=" stereographic"> stereographic</a> </p> <a href="https://publications.waset.org/abstracts/82273/analysis-of-microstructure-around-opak-river-pleret-area-bantul-regency-special-region-of-yogyakarta-province-indonesia-as-a-result-of-opak-fault-reactivation-using-stereographic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Cross Project Software Fault Prediction at Design Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Singh">Pradeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrish%20Verma"> Shrish Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. The earlier we predict the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Na茂ve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven data sets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20metrics" title="software metrics">software metrics</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20prediction" title=" fault prediction"> fault prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20project" title=" cross project"> cross project</a>, <a href="https://publications.waset.org/abstracts/search?q=within%20project." title=" within project. "> within project. </a> </p> <a href="https://publications.waset.org/abstracts/27206/cross-project-software-fault-prediction-at-design-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalaf%20Khatatneh">Khalaf Khatatneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20Al-Milli"> Nabeel Al-Milli</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Hudaib"> Amjad Hudaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Monther%20Ali%20Tarawneh"> Monther Ali Tarawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20fault%20prediction" title=" software fault prediction"> software fault prediction</a> </p> <a href="https://publications.waset.org/abstracts/167733/a-hybrid-feature-selection-algorithm-with-neural-network-for-software-fault-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jithendra%20Gowd">K. Jithendra Gowd</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sai%20Babu"> Ch. Sai Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sivanagaraju"> S. Sivanagaraju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generation" title="distributed generation">distributed generation</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20distribution%20systems" title=" electrical distribution systems"> electrical distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20resistance" title=" fault resistance"> fault resistance</a> </p> <a href="https://publications.waset.org/abstracts/14877/voltage-profile-enhancement-in-the-unbalanced-distribution-systems-during-fault-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Akrad">Ahmad Akrad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Sehab"> Rabia Sehab</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadi%20Alyoussef"> Fadi Alyoussef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=induction%20machine" title="induction machine">induction machine</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20nonlinear%20model" title=" asymmetric nonlinear model"> asymmetric nonlinear model</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-turn%20short-circuit%20fault" title=" inter-turn short-circuit fault"> inter-turn short-circuit fault</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20mean%20square" title=" root mean square"> root mean square</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20sensor%20fault" title=" current sensor fault"> current sensor fault</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a> </p> <a href="https://publications.waset.org/abstracts/133081/root-mean-square-based-method-for-fault-diagnosis-and-fault-detection-and-isolation-of-current-fault-sensor-in-an-induction-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghasemi">S. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component" title="component">component</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20flight%20of%20satellites" title=" formation flight of satellites"> formation flight of satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20detection%20and%20isolation" title=" fault detection and isolation"> fault detection and isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=actuator%20fault" title=" actuator fault"> actuator fault</a> </p> <a href="https://publications.waset.org/abstracts/26418/fault-detection-and-isolation-in-attitude-control-subsystem-of-spacecraft-formation-flying-using-extended-kalman-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungsik%20Jo">Sungsik Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeonwoo%20Kim"> Hyeonwoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Iksu%20Choi"> Iksu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunmo%20Kim"> Hunmo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20hybrid%20powerpack%20%28SHP%29" title="smart hybrid powerpack (SHP)">smart hybrid powerpack (SHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20actuator%20%28EHA%29" title=" electro hydraulic actuator (EHA)"> electro hydraulic actuator (EHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20sensor%20fault%20tolerance" title=" permanent sensor fault tolerance"> permanent sensor fault tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20observer%20%28SMO%29" title=" sliding mode observer (SMO)"> sliding mode observer (SMO)</a>, <a href="https://publications.waset.org/abstracts/search?q=graphic%20user%20interface%20%28GUI%29" title=" graphic user interface (GUI)"> graphic user interface (GUI)</a> </p> <a href="https://publications.waset.org/abstracts/9250/design-of-permanent-sensor-fault-tolerance-algorithms-by-sliding-mode-observer-for-smart-hybrid-powerpack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Application of Neural Petri Net to Electric Control System Fault Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadiq%20J.%20Abou-Loukh">Sadiq J. Abou-Loukh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petri%20net" title="petri net">petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20petri%20net" title=" neural petri net"> neural petri net</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20control%20system" title=" electric control system"> electric control system</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/16653/application-of-neural-petri-net-to-electric-control-system-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Sobhani-Tehrani">E. Sobhani-Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Khorasani"> K. Khorasani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Meskin"> N. Meskin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fault%20diagnosis" title="hybrid fault diagnosis">hybrid fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20neural%20networks" title=" dynamic neural networks"> dynamic neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tolerant%20observer" title=" fault tolerant observer"> fault tolerant observer</a> </p> <a href="https://publications.waset.org/abstracts/23088/fault-diagnosis-of-nonlinear-systems-using-dynamic-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> Application of the Seismic Reflection Survey to an Active Fault Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nomin-Erdene%20Erdenetsogt">Nomin-Erdene Erdenetsogt</a>, <a href="https://publications.waset.org/abstracts/search?q=Tseedulam%20Khuut"> Tseedulam Khuut</a>, <a href="https://publications.waset.org/abstracts/search?q=Batsaikhan%20Tserenpil"> Batsaikhan Tserenpil</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayarsaikhan%20Enkhee"> Bayarsaikhan Enkhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the framework of 60 years of development of Astronomical and Geophysical science in modern Mongolia, various geophysical methods (electrical tomography, ground-penetrating radar, and high-resolution reflection seismic profiles) were used to image an active fault in-depth range between few decimeters to few tens meters. An active fault was fractured by an earthquake magnitude 7.6 during 1967. After geophysical investigations, trench excavations were done at the sites to expose the fault surfaces. The complex geophysical survey in the Mogod fault, Bulgan region of central Mongolia shows an interpretable reflection arrivals range of < 5 m to 50 m with the potential for increased resolution. Reflection profiles were used to help interpret the significance of neotectonic surface deformation at earthquake active fault. The interpreted profiles show a range of shallow fault structures and provide subsurface evidence with support of paleoseismologic trenching photos, electrical surveys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogod%20fault" title="Mogod fault">Mogod fault</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20processing" title=" seismic processing"> seismic processing</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reflection%20survey" title=" seismic reflection survey"> seismic reflection survey</a> </p> <a href="https://publications.waset.org/abstracts/121026/application-of-the-seismic-reflection-survey-to-an-active-fault-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> Evaluating Classification with Efficacy Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guofan%20Shao">Guofan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Tang"> Lina Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Zhang"> Hao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title="accuracy assessment">accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/142555/evaluating-classification-with-efficacy-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=90">90</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=91">91</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fault%20classification&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>