CINXE.COM

Search results for: electrolyzed oxidizing water (EOW)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electrolyzed oxidizing water (EOW)</title> <meta name="description" content="Search results for: electrolyzed oxidizing water (EOW)"> <meta name="keywords" content="electrolyzed oxidizing water (EOW)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electrolyzed oxidizing water (EOW)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electrolyzed oxidizing water (EOW)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8701</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electrolyzed oxidizing water (EOW)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8701</span> The Impact of Low-Concentrated Acidic Electrolyzed Water on Foodborne Pathogens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Brychcy">Ewa Brychcy</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Ulbin-Figlewicz"> Natalia Ulbin-Figlewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Kulig"> Dominika Kulig</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%BBaneta%20Kr%C3%B3l"> Żaneta Król</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Jarmoluk"> Andrzej Jarmoluk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acidic electrolyzed water (AEW) is an alternative with environmentally friendly broad spectrum microbial decontamination. It is produced by membrane electrolysis of a dilute NaCl solution in water ionizers. The aim of the study was to evaluate the effectiveness of low-concentrated AEW in reducing selected foodborne pathogens and to examine its bactericidal effect on cellular structures of Escherichia coli. E. coli and S. aureus cells were undetectable after 10 minutes of contact with electrolyzed salt solutions. Non-electrolyzed solutions did not inhibit the growth of bacteria. AE water was found to destroy the cellular structures of the E. coli. The use of more concentrated salt solutions and prolonged electrolysis time from 5 to 10 minutes resulted in a greater changes of rods shape as compared to the control and non-electrolyzed NaCl solutions. This research showed that low-concentrated acid electrolyzed water is an effective method to significantly reduce pathogenic microorganisms and indicated its potential application for decontamination of meat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidic%20electrolyzed%20water" title="acidic electrolyzed water">acidic electrolyzed water</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20pathogens" title=" foodborne pathogens"> foodborne pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=meat%20decontamination" title=" meat decontamination"> meat decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20electrolysis" title=" membrane electrolysis"> membrane electrolysis</a> </p> <a href="https://publications.waset.org/abstracts/7517/the-impact-of-low-concentrated-acidic-electrolyzed-water-on-foodborne-pathogens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8700</span> Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Pintaric">Robert Pintaric</a>, <a href="https://publications.waset.org/abstracts/search?q=Joze%20Matela"> Joze Matela</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Pintaric"> Stefan Pintaric</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanka%20Vadnjal"> Stanka Vadnjal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocide" title="biocide">biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29" title=" electrolyzed oxidizing water (EOW)"> electrolyzed oxidizing water (EOW)</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=OPTI-JET%20CS%20MD1MR" title=" OPTI-JET CS MD1MR"> OPTI-JET CS MD1MR</a> </p> <a href="https://publications.waset.org/abstracts/35512/use-of-opti-jet-cs-md1mr-device-for-biocide-aerosolisation-in-3t-magnetic-resonance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8699</span> Interventions to Control Listeria Monocytogenes on Sliced Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alanna%20Goodman">Alanna Goodman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Murray"> Kayla Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Warriner"> Keith Warriner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following reports on a comparative study on the efficacy of different decontamination technologies to decrease Listeria monocytogenes inoculated onto white sliced mushrooms and assesses the fate of residual levels during posttreatment storage under aerobic conditions at 8uC. The treatments were chemical (hydrogen peroxide, peroxyacetic acid, ozonated water, electrolyzed water, chitosan, lactic acid), biological (Listeria bacteriophages), and physical (UV-C, UV:hydrogen peroxide). None of the treatments achieved .1.2 log CFU reduction in L. monocytogenes levels; bacteriophages at a multiplicity of infection of 100 and 3% (vol/vol) hydrogen peroxide were the most effective of the treatments tested. However, growth of residual L. monocytogenes during posttreatment storage attained levels equal to or greater than levels in the nontreated controls. The growth of L. monocytogenes was inhibited on mushrooms treated with chitosan, electrolyzed water, peroxyacetic acid, or UV. Yet, L. monocytogenes inoculated onto mushrooms and treated with UV:hydrogen peroxide decreased during posttreatment storage, through a combination of sublethal injury and dehydration of the mushroom surface. Although mushrooms treated with UV:hydrogen peroxide became darker during storage, the samples were visually acceptable relative to controls. In conclusion, of the treatments evaluated, UV:hydrogen peroxide holds promise to control L. monocytogenes on mushroom surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listeria%20monocytogenes" title="listeria monocytogenes">listeria monocytogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=sliced%20mushrooms" title=" sliced mushrooms"> sliced mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriophages" title=" bacteriophages"> bacteriophages</a>, <a href="https://publications.waset.org/abstracts/search?q=UV" title=" UV"> UV</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitizers" title=" sanitizers"> sanitizers</a> </p> <a href="https://publications.waset.org/abstracts/29760/interventions-to-control-listeria-monocytogenes-on-sliced-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8698</span> Degradation of EE2 by Different Consortium of Enriched Nitrifying Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pantip%20Kayee">Pantip Kayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 17α-ethinylestradiol (EE2) is a recalcitrant micropollutant which is found in small amounts in municipal wastewater. But these small amounts still adversely affect for the reproductive function of aquatic organisms. Evidence in the past suggested that full-scale WWTPs equipped with nitrification process enhanced the removal of EE2 in the municipal wastewater. EE2 has been proven to be able to be transformed by ammonia oxidizing bacteria (AOB) via co-metabolism. This research aims to clarify the EE2 degradation pattern by different consortium of ammonia oxidizing microorganism (AOM) including AOA (ammonia oxidizing archaea) and investigate contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM. The result showed that AOA or AOB of N. oligotropha cluster in enriched nitrifying activated sludge (NAS) from 2mM and 5mM, commonly found in municipal WWTPs, could degrade EE2 in wastewater via co-metabolism. Moreover, the investigation of the contribution between the existing ammonia monooxygenase (AMO) and new synthesized AOM demonstrated that the new synthesized AMO enzyme may perform ammonia oxidation rather than the existing AMO enzyme or the existing AMO enzyme may has a small amount to oxidize ammonia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=17%CE%B1-ethinylestradiol" title="17α-ethinylestradiol">17α-ethinylestradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20oxidizing%20bacteria" title=" ammonia oxidizing bacteria"> ammonia oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia%20oxidizing%20archaea" title=" ammonia oxidizing archaea"> ammonia oxidizing archaea</a> </p> <a href="https://publications.waset.org/abstracts/2840/degradation-of-ee2-by-different-consortium-of-enriched-nitrifying-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8697</span> Leaching of Copper from Copper Ore Using Sulphuric Acid in the Presence of Hydrogen Peroxide as an Oxidizing Agent: An Optimized Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaching with acids are the most commonly reagents used to remove copper ions from its copper ores. It is important that the process conditions are optimized to improve the leaching efficiency. In the present study the effects of pH, oxidizing agent (hydrogen peroxide), stirring speed, solid to liquid ratio and acid concentration on the leaching of copper ions from it ore were investigated using a pH Stat apparatus. Copper ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. Results showed that leaching efficiency improved with an increase in acid concentration, stirring speed, oxidizing agent, pH and decreased with an increase in the solid to liquid ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidizing%20agent" title=" oxidizing agent"> oxidizing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stat%20apparatus" title=" pH stat apparatus"> pH stat apparatus</a> </p> <a href="https://publications.waset.org/abstracts/22113/leaching-of-copper-from-copper-ore-using-sulphuric-acid-in-the-presence-of-hydrogen-peroxide-as-an-oxidizing-agent-an-optimized-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8696</span> Mobility and Speciation of Iron in the Alluvial Sheet of Nil River (North-Eastern Algerian)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amiour"> S. Amiour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chine"> A. Chine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khelili"> S. Khelili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron is naturally present in groundwater, it comes from the dissolution of the geological formations (clay, schist, mica-schist, gneiss…). Its chemical form and mobility in water are controlled mainly by two physicochemical parameters (Eh and pH). In order to determine its spatiotemporal evolution in groundwater, a two-monthly monitoring of the physicochemical parameters and major elements in the water of the alluvial sheet of Nil river (North-eastern Algerian) was carried out during the period from November 2013 to January 2015. The results show that iron is present in weak concentrations in the upstream part of the alluvial sheet and with raised concentrations, which can exceed the standard of potable drinking water (0.2 mg/L), in the central and downstream parts of the alluvial sheet. This variation of the concentrations is related to the important variation of Eh between the upstream part (200 mV) where the aquiver is unconfined (oxidizing medium) and the central and downstream parts (-100 mV) where the aquifer is confined (reducing medium). Iron in the oxidizing part is presented with the complexes form, where it precipitates or/and adsorbed by the geological formations. On the other hand in the reducing parts, it is released in water. In this study, one will discuss also the mobility and the chemical forms of iron according to the rains and pumping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/48259/mobility-and-speciation-of-iron-in-the-alluvial-sheet-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8695</span> Formation of Volatile Iodine from Cesium Iodide Aerosols: A DFT Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houssam%20Hijazi">Houssam Hijazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Cantrel"> Laurent Cantrel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Fran%C3%A7ois%20Paul"> Jean-François Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodic DFT calculations were performed to study the chemistry of CsI particles and the possible release of volatile iodine from CsI surfaces for nuclear safety interest. The results show that water adsorbs at low temperature associatively on the (011) surface of CsI, while water desorbs at higher temperatures. On the other hand, removing iodine species from the surface requires oxidizing the surface one time for each removed iodide atom. The activation energy of removing I<sub>2</sub> from the surface in the presence of two OH is 1,2 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=CSI" title=" CSI"> CSI</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20adsorption" title=" water adsorption"> water adsorption</a> </p> <a href="https://publications.waset.org/abstracts/72283/formation-of-volatile-iodine-from-cesium-iodide-aerosols-a-dft-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8694</span> The Gasification of Acetone via Partial Oxidation in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Ting%20Hsieh"> Kai-Ting Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=SCW" title=" SCW"> SCW</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a> </p> <a href="https://publications.waset.org/abstracts/7938/the-gasification-of-acetone-via-partial-oxidation-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8693</span> Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluyemi%20O.%20Awolusi">Oluyemi O. Awolusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20M.%20Enitan"> Abimbola M. Enitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheena%20Kumari"> Sheena Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Bux"> Faizal Bux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammonia%20monooxygenase%20%CE%B1-subunit%20gene" title="Ammonia monooxygenase α-subunit gene">Ammonia monooxygenase α-subunit gene</a>, <a href="https://publications.waset.org/abstracts/search?q=amoA" title=" amoA"> amoA</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia-oxidizing%20bacteria" title=" ammonia-oxidizing bacteria"> ammonia-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=AOB" title=" AOB"> AOB</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite-oxidizing%20bacteria" title=" nitrite-oxidizing bacteria"> nitrite-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=NOB" title=" NOB"> NOB</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20nitrification%20rate" title=" specific nitrification rate"> specific nitrification rate</a> </p> <a href="https://publications.waset.org/abstracts/34054/nitrification-efficiency-and-community-structure-of-municipal-activated-sewage-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8692</span> Treatment of Acid Mine Drainage with Modified Fly Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukla%20Saha">Sukla Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Sinha"> Alok Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid mine drainage (AMD) is the generation of acidic water from active as well as abandoned mines. AMD generates due to the oxidation of pyrites present in the rock in mining areas. Sulfur oxidizing bacteria such as Thiobacillus ferrooxidans acts as a catalyst in this oxidation process. The characteristics of AMD is extreme low pH (2-3) with elevated concentration of different heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such sulfate and chloride. AMD contaminate the ground water as well as surface water which leads to the degradation of water quality. Moreover, it carries detrimental effect for aquatic organism and degrade the environment. In the present study, AMD is treated with fly ash, modified with alkaline agent (NaOH). This modified fly ash (MFA) was experimentally proven as a very effective neutralizing agent for the treatment of AMD. It was observed that pH of treated AMD raised to 9.22 from 1.51 with 100g/L of MFA dose. Approximately, 99% removal of Fe, Al, Mn, Cu and Co took place with the same MFA dose. The treated water comply with the effluent discharge standard of (IS: 2490-1981). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20fly%20ash" title=" modified fly ash"> modified fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization" title=" neutralization"> neutralization</a> </p> <a href="https://publications.waset.org/abstracts/104026/treatment-of-acid-mine-drainage-with-modified-fly-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8691</span> The Gasification of Fructose in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Cheng"> H. Y. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fructose" title=" fructose"> fructose</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water "> supercritical water </a> </p> <a href="https://publications.waset.org/abstracts/9573/the-gasification-of-fructose-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8690</span> Mobility of Metallic Trace Elements (MTE) in Water and Sediment of the Rivers: Case of Nil River, North-Eastern Algerian</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amiour"> S. Amiour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chine"> A. Chine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Khelili"> S. Khelili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The metallic trace elements (MTE) are present in water and sediments of the rivers with weak concentrations. Several physicochemical parameters (Eh, pH and oxygen dissolved) and chemical processes (adsorption, absorption, complexation and precipitation) as well as nature of the sediments control their mobility. In order to determine the effect of these factors on the mobility of some MTE (Cd, Cr, Cu, Fe, Pb and Zn) in water of the rivers, a two-monthly monitoring of the physicochemical parameters and chemistry of water and sediments of the Nil wadi (Algeria) was carried out during the period from November 2013 to January 2015. The results show that each MTE has its own conditions of mobility and generally are very influence by the variations of the pH and Eh. Under the natural conditions, neutral pH with basic and medium oxidizing, only the lead presented in water with raised values, indicating its solubility in water and its salting out of the sediments. The other MTE present raised concentrations in the sediments, indicating their trapping by adsorption and/or chemical precipitation. The chemical form of each ETM was given by Eh-pH diagrams. The spatio-temporal monitoring of these ETM shows the effect of the rains, the dry periods and the rejects in the variation of their concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20trace%20elements" title=" metallic trace elements"> metallic trace elements</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/48257/mobility-of-metallic-trace-elements-mte-in-water-and-sediment-of-the-rivers-case-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8689</span> Treatment of Acid Mine Drainage with Metallurgical Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukla%20Saha">Sukla Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Sinha"> Alok Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=Heavy%20metals" title=" Heavy metals"> Heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=Neutralization" title=" Neutralization"> Neutralization</a> </p> <a href="https://publications.waset.org/abstracts/104096/treatment-of-acid-mine-drainage-with-metallurgical-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8688</span> Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suman%20Chaudhary">Suman Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinku%20Dhanker"> Rinku Dhanker</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanvi"> Tanvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Goyal"> Sneh Goyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulphur%20oxidizing%20bacteria" title="sulphur oxidizing bacteria">sulphur oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphate%20production" title=" sulphate production"> sulphate production</a> </p> <a href="https://publications.waset.org/abstracts/61612/characterization-and-optimization-of-culture-conditions-for-sulphur-oxidizing-bacteria-after-isolation-from-rhizospheric-mustard-soil-decomposing-sites-and-pit-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8687</span> Enhanced Photoelectrochemical Water Splitting Coupled with Pharmaceutical Pollutants Degradation on Zr:BiVO4 Photoanodes by Synergetic Catalytic Activity of NiFeOOH Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabrook%20Saleh%20Amera">Mabrook Saleh Amera</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakarn%20Arunachalama"> Prabhakarn Arunachalama</a>, <a href="https://publications.waset.org/abstracts/search?q=Maged%20N.%20Shaddadb"> Maged N. Shaddadb</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulhadi%20Al-Qadia"> Abdulhadi Al-Qadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global energy crises and water pollution have negatively impacted sustainable development in recent years. It is most promising to use Bismuth vanadate (BiVO4) as an electrode for photoelectrocatalytic (PEC) oxidation of water and pollution degradation. However, BiVO4 anodes suffer from poor charge separation and slow water oxidation. In this paper, a Zr:BiVO4/NiFeOOH heterojunction was successfully prepared by electrodeposition and photoelectrochemical transformation process. The method resulted in a notable 5-fold improvement in photocurrent features (1.27 mAcm−2 at 1.23 VRHE) and a lower onset potential of 0.6 VRHE. Photoanodes with high photocatalytic features and high photocorrosion resistance may be attributed their high conformity and amorphous nature of the coating. In this study, PEC was compared to electrocatalysis (EC), and the effect of bias potential on PEC degradation was discussed for tetracycline (TCH), riboflavin, and streptomycin. In PEC, TCH was degraded in the most efficient way (96 %) by Zr:BiVO4/NiFeOOH, three times larger than Zr:BiVO4 and EC (55 %). Thus, this study offers a potential solution for oxidizing PEC water and treating water pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photoelectrochemical" title="photoelectrochemical">photoelectrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20pollutants%20degradation" title=" pharmaceutical pollutants degradation"> pharmaceutical pollutants degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photoanodes" title=" photoanodes"> photoanodes</a>, <a href="https://publications.waset.org/abstracts/search?q=cocatalyst" title=" cocatalyst"> cocatalyst</a> </p> <a href="https://publications.waset.org/abstracts/185695/enhanced-photoelectrochemical-water-splitting-coupled-with-pharmaceutical-pollutants-degradation-on-zrbivo4-photoanodes-by-synergetic-catalytic-activity-of-nifeooh-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8686</span> The Thermochemical Conversion of Lactic Acid in Subcritical and Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Chi%20Tu"> Hung-Chi Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One way to utilize biomass is to thermochemically convert it into gases and chemicals. For conversion of biomass, glucose is a particularly popular model compound for cellulose, or more generally for biomass. The present study takes a different approach by employing lactic acid as the model compound for cellulose. Since lactic acid and glucose have identical elemental composition, they are expected to produce similar results as they go through the conversion process. In the current study, lactic acid was thermochemically converted to assess its reactivity and reaction mechanism in subcritical and supercritical water, by using a 16-ml autoclave reactor. The major operating parameters investigated include: The reaction temperature, from 673 to 873 K, the reaction pressure, 10 and 25 MPa, the dosage of oxidizing agent, 0 and 0.5 chemical oxygen demand, and the concentration of lactic acid in the feed, 0.5 and 1.0 M. Gaseous products from the conversion were generally found to be comparable to those derived from the conversion of glucose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid" title="lactic acid">lactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20water" title=" subcritical water"> subcritical water</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochemical%20conversion" title=" thermochemical conversion"> thermochemical conversion</a> </p> <a href="https://publications.waset.org/abstracts/64806/the-thermochemical-conversion-of-lactic-acid-in-subcritical-and-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8685</span> Corrosion Behavior of Fe-Ni-Cr and Zr Alloys in Supercritical Water Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igor%20Svishchev">Igor Svishchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Choudhry"> Kashif Choudhry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Progress in advanced energy technologies is not feasible without understanding how engineering materials perform under extreme environmental conditions. The corrosion behaviour of Fe-Ni-Cr and Zr alloys has been systematically examined under high-temperature and supercritical water flow conditions. The changes in elemental release rate and dissolved gas concentration provide valuable insights into the mechanism of passivation by forming oxide films. A non-intrusive method for monitoring the extent of surface oxidation based on hydrogen release rate has been developed. This approach can be used for the on-line monitoring corrosion behavior of reactor materials without the need to interrupt the flow and remove corrosion coupons. Surface catalysed thermochemical reactions may generate sufficient hydrogen to have an effect on the accumulation of oxidizing species generated by radiolytic processes in the heat transport systems of the supercritical water cooled nuclear reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20corrosion" title="high-temperature corrosion">high-temperature corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=non-intrusive%20monitoring" title=" non-intrusive monitoring"> non-intrusive monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20materials" title=" reactor materials"> reactor materials</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water"> supercritical water</a> </p> <a href="https://publications.waset.org/abstracts/128855/corrosion-behavior-of-fe-ni-cr-and-zr-alloys-in-supercritical-water-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8684</span> The Reduction of Post-Blast Fumes to Improve Productivity and Safety: A Review Paper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhleko%20Monique%20Chiloane">Nhleko Monique Chiloane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gold mining industry has predominantly used ammonium nitrate fuel oil (ANFO) explosives for decades, although these are known to be “gassier” and their detonation results in toxic fumes, for example, carbon monoxide (CO), nitrogen oxides (NOx) and ammonia. Re-entry into underground workings too soon after blasting can lead to fatal exposure to toxic fumes. It is, therefore, required that the polluted air be removed from the affected areas within a reasonable period before employees' re-entry into the working area. Post-blast re-entry times have therefore been described as a productivity bottleneck. The known causes of post-blast fumes are water ingress, incorrect fuel to oxygen ratio, confinement, explosive additives etc. To prevent or minimize post-blast fumes, some researchers have used neutralization, re-burning technique and non-explosive products or different oxidizing agents. The use of commercial explosives without nitrate oxidizing agents can also minimize the production of blasting fumes and thereby reduce the time needed for the clearance of these fumes to allow workers to re-enter the underground workings safely. The reduction in non-production time directly contributes to an increase in the available time per shift for productive work, thus leading to continuous mining. However, owing to its low cost and ease of use, ANFO is still widely used in South African underground blasting operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=post-blast%20fumes" title="post-blast fumes">post-blast fumes</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20mining" title=" continuous mining"> continuous mining</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate%20explosive" title=" ammonium nitrate explosive"> ammonium nitrate explosive</a>, <a href="https://publications.waset.org/abstracts/search?q=non-explosive%20blasting" title=" non-explosive blasting"> non-explosive blasting</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entry%20period" title=" re-entry period"> re-entry period</a> </p> <a href="https://publications.waset.org/abstracts/139888/the-reduction-of-post-blast-fumes-to-improve-productivity-and-safety-a-review-paper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8683</span> The Study of Effective Microorganism&#039;s Biopreperation for Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Batsukh%20Chultem">Batsukh Chultem</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyunbileg%20Natsagdorj"> Oyunbileg Natsagdorj</a>, <a href="https://publications.waset.org/abstracts/search?q=Namsrai%20Steyrmunkh"> Namsrai Steyrmunkh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industries, tourist camps and houses, discharge aqueous effluents containing relatively high levels of heavy metals, harmful organic compounds water. Untreated effluent from these manufacturing processes has an adverse impact on the environment. A specific problem associated with waste water in the environment is accumulation in the food chain and persistence in the environment. The screening of microorganisms resistant to pollution and able to detoxification them is essential for the development of clean-up technologies. The purpose of this study is to use advanced microbiological technology products for oxidizing organic and heavy metals pollutants as a biological treatment, to reduce water pollution, which arise as a result of waste water due to day-to-day operations of industries and houses of Ulaanbaatar city and tourist camps located around the lake Hovsgol, in Hovsgol province of Mongolia. By comparing the results from tests of effective microorganism’s bio-preparation treated sewage samples and not treated sewage samples shows that the treated sewage samples pollution decreased defending on treatment period and ratio. Treated water analyses show that: the suspended solids 352 mg/l, pH 5.85-7.95, ammonium nitrate 81.25-221.2 mg NH₄/l, nitrite 0.088-0.227 mg NO₂/l, nitrate 8.5-11.5 mg NO₃/l, and orthophosphate 1.06-15.46 mg PO₄/l. Also, heavy metals were decreased and microbiological test results defined parameters, respectively show the waste water pollution was reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effective%20microorganims" title="effective microorganims">effective microorganims</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/103018/the-study-of-effective-microorganisms-biopreperation-for-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8682</span> A Study on Removal of SO3 in Flue Gas Generated from Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Y.%20Jo">E. Y. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Park"> S. M. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Yeo"> I. S. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Kim"> K. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Park"> S. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Kim"> Y. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Kim"> Y. D. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Park"> C. G. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurization" title="flue gas desulfurization">flue gas desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title=" petroleum cokes"> petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulfur%20trioxide" title=" Sulfur trioxide"> Sulfur trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=SO3%20removal" title=" SO3 removal"> SO3 removal</a> </p> <a href="https://publications.waset.org/abstracts/18701/a-study-on-removal-of-so3-in-flue-gas-generated-from-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8681</span> Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20E%C5%A1tokov%C3%A1">A. Eštoková</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Koval%C4%8D%C3%ADkov%C3%A1"> M. Kovalčíková</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lupt%C3%A1kov%C3%A1"> A. Luptáková</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Si%C4%8D%C3%A1kov%C3%A1"> A. Sičáková</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ondov%C3%A1"> M. Ondová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocorrosion" title="biocorrosion">biocorrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/8495/analysis-of-sulphur-oxidizing-bacteria-attack-on-concrete-based-on-waste-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8680</span> Sulfate Radicals Applied to the Elimination of Selected Pollutants in Water Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Javier%20Benitez">F. Javier Benitez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20L.%20Acero"> Juan L. Acero</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Real"> Francisco J. Real</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Rodriguez"> Elena Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five selected pollutants which are frequently present in waters and wastewaters have been degraded by the advanced oxidation process constituted by UV radiation activated with the additional presence of persulfate (UV/PS). These pollutants were 1H-benzotriazole (BZ), N,N-diethyl-m-toluamide or DEET (DT), chlorophene (CP), 3-methylindole (ML), and nortriptyline hydrochloride (NH).While UV radiation alone almost not degraded these substances, the addition of PS generated the very reactive and oxidizing sulfate radical SO₄⁻. The kinetic study provided the second order rate constants for the reaction between this radical and each pollutant. An increasing dose of PS led to an increase in the degradation rate, being the highest results obtained at near neutral pH. Several water matrices were tested, and the presence of bicarbonate showed different effects: a decrease in the elimination of DT, BZ, and NH; and an increase in the oxidation of CP and ML. The additional presence of humic acids (AH) decreased this degradation, because of several effects: light screening and radical scavenging. The presence of several natural substances in waters (both types, inorganic and organic matter) usually diminishes the oxidation rates of organic pollutants, but this combination UV/PS process seems to be an efficient solution for the removal of the selected contaminants when are present in contaminated waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title="water purification">water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20activated%20persulfate" title=" UV activated persulfate"> UV activated persulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20study" title=" kinetic study"> kinetic study</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20radicals" title=" sulfate radicals"> sulfate radicals</a> </p> <a href="https://publications.waset.org/abstracts/93988/sulfate-radicals-applied-to-the-elimination-of-selected-pollutants-in-water-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8679</span> Advanced Nanostructured Materials and Their Application for Solar Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hegazy">A. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elsayed"> Ahmed Elsayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20El%20Shenawy"> Essam El Shenawy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Allam"> N. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hala%20Handal"> Hala Handal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Mahmoud"> K. R. Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly crystalline, TiO₂ pristine sub-10 nm anatase nanocrystals were fabricated at low temperatures by post hydrothermal treatment of the as-prepared TiO₂ nanoparticles. This treatment resulted in bandgap narrowing and increased photocurrent density value (3.8 mA/cm²) when this material was employed in water splitting systems. The achieved photocurrent values are among the highest reported ones so far for the fabricated nanoparticles at this low temperature. This might be explained by the increased surface defects of the prepared nanoparticles. It resulted in bandgap narrowing that was further investigated using positron annihilation experiments by measuring positron lifetime and Doppler broadening. Besides, homogeneous spherical TiO₂ nanoparticles were synthesized in large diameter and high surface area and the high percentage of (001) facet by sol-gel method using potassium persulfate (K₂S₂O₈) as an oxidizing agent. The fabricated particles exhibited high exposed surface area, high photoactivity and reduced band gap. Enhanced performance for water splitting applications was displayed by formed TiO₂ nanoparticles. Their morphological and structural properties were studied to optimize their synthesis parameters in an attempt to construct more applicable fuel cells in the industry for hydrogen fuel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=positron%20annihilation" title="positron annihilation">positron annihilation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title=" TiO2 nanoparticles"> TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a> </p> <a href="https://publications.waset.org/abstracts/124606/advanced-nanostructured-materials-and-their-application-for-solar-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8678</span> Underground Coal Gasification Technology in Türkiye: A Techno-Economic Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20%C3%9Cnal">Fatma Ünal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasancan%20Okutan"> Hasancan Okutan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing worldwide population and technological requirements lead to an increase in energy demand every year. The demand has been mainly supplied from fossil fuels such as coal and petroleum due to insufficient natural gas resources. In recent years, the amount of coal reserves has reached almost 21 billion tons in Türkiye. These are mostly lignite (%92,7), that contains high levels of moisture and sulfur components. Underground coal gasification technology is one of the most suitable methods in comparison with direct combustion techniques for the evaluation of such coal types. In this study, the applicability of the underground coal gasification process is investigated in the Eskişehir-Alpu lignite reserve as a pilot region, both technologically and economically. It is assumed that the electricity is produced from the obtained synthesis gas in an integrated gasification combined cycle (IGCC). Firstly, an equilibrium model has been developed by using the thermodynamic properties of the gasification reactions. The effect of the type of oxidizing gas, the sulfur content of coal, the rate of water vapor/air, and the pressure of the system have been investigated to find optimum process conditions. Secondly, the parallel and linear controlled recreation and injection point (CRIP) models were implemented as drilling methods, and costs were calculated under the different oxidizing agents (air and high-purity O2). In Parallel CRIP (P-CRIP), drilling cost is found to be lower than the linear CRIP (L-CRIP) since two coal beds simultaneously are gasified. It is seen that CO2 Capture and Storage (CCS) technology was the most effective unit on the total cost in both models. The cost of the synthesis gas produced varies between 0,02 $/Mcal and 0,09 $/Mcal. This is the promising result when considering the selling price of Türkiye natural gas for Q1-2023 (0.103 $ /Mcal). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite%20reserve" title=" lignite reserve"> lignite reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economic%20analysis" title=" techno-economic analysis"> techno-economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification." title=" underground coal gasification."> underground coal gasification.</a> </p> <a href="https://publications.waset.org/abstracts/176384/underground-coal-gasification-technology-in-turkiye-a-techno-economic-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8677</span> Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benessam">S. Benessam</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Debieche"> T. H. Debieche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Drouiche"> A. Drouiche</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zahi"> F. Zahi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahdid"> S. Mahdid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=speciation" title=" speciation"> speciation</a> </p> <a href="https://publications.waset.org/abstracts/48286/impact-of-agriculture-on-the-groundwater-quality-case-of-the-alluvial-plain-of-nil-river-north-eastern-algerian" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8676</span> Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hashemy%20Shahdany">S. M. Hashemy Shahdany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equitable%20water%20distribution" title="equitable water distribution">equitable water distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=precise%20agriculture" title=" precise agriculture"> precise agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20shortage" title=" water shortage"> water shortage</a> </p> <a href="https://publications.waset.org/abstracts/39301/fairly-irrigation-water-distribution-between-upstream-and-downstream-water-users-in-water-shortage-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8675</span> Effect of Water Addition on Catalytic Activity for CO2 Purification from Oxyfuel Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joudia%20Akil">Joudia Akil</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Siffert"> Stephane Siffert</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Pirault-Roy"> Laurence Pirault-Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Renaud%20Cousin"> Renaud Cousin</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Poupin"> Christophe Poupin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxyfuel combustion is a promising method that enables to obtain a CO2 rich stream, with water vapor ( ̴10%), unburned components such as CO and NO, which must be cleaned before the use of CO2. Our objective is then the final treatment of CO and NO by catalysis. Three-way catalysts are well-developed material for simultaneous conversion of NO, CO and hydrocarbons. Pt and/or Rh ensure a quasi-complete removal of NOx, CO and HC and there is also a growing interest in partly replacing Pt with less-expensive Pd. The use of alumina and ceria as support ensures, respectively, the stabilization of such species in active state and discharging or storing oxygen to control the oxidation of CO and HC and the reduction of NOx. In this work, we will compare different metals (Pd, Rh and Pt) supported on Al2O3 and CeO2, for CO2 purification from oxyfuel combustion. The catalyst must reduce NO by CO in an oxidizing environment, in the presence of CO2 rich stream and resistant to water. In this study, Al2O3 and CeO2 were used as support materials of the catalysts. 1wt% M/Support where M = Pd, Rh or Pt catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2], rhodium [Rh(NO3)3] and platinum [Pt(NO2)2(NO3)2]. Materials were characterized by BET surface area, H2 chemisorption, and TEM. Catalytic activity was evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200 mL.min−1, with same GHSV (2.24x104 h-1). The catalytic performances of the samples were investigated with and without water. It shows that the total oxidation of CO occurred over the different materials. This study evidenced an important effect of the nature of the metals, supports and the presence or absence of H2O during the reduction of NO by CO in oxyfuel combustions conditions. Rh based catalysts show that the addition of water has a very positive influence especially on the Rh catalyst on CeO2. Pt based catalysts keep a good activity despite the addition of water on the both supports studied. For the NO reduction, addition of water act as a poison with Pd catalysts. The interesting results of Rh based catalysts with water can be explained by a production of hydrogen through the water gas shift reaction. The produced hydrogen acts as a more effective reductant than CO for NO removal. Furthermore, in TWCs, Rh is the main component responsible for NOx reduction due to its especially high activity for NO dissociation. Moreover, cerium oxide is a promotor for WGSR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20chemistry" title=" environmental chemistry"> environmental chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a> </p> <a href="https://publications.waset.org/abstracts/70375/effect-of-water-addition-on-catalytic-activity-for-co2-purification-from-oxyfuel-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8674</span> Physical and Chemical Alternative Methods of Fresh Produce Disinfection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuji%20Jemal%20Ahmed">Tuji Jemal Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh produce is an essential component of a healthy diet. However, it can also be a potential source of pathogenic microorganisms that can cause foodborne illnesses. Traditional disinfection methods, such as washing with water and chlorine, have limitations and may not effectively remove or inactivate all microorganisms. This has led to the development of alternative/new methods of fresh produce disinfection, including physical and chemical methods. In this paper, we explore the physical and chemical new methods of fresh produce disinfection, their advantages and disadvantages, and their suitability for different types of produce. Physical methods of disinfection, such as ultraviolet (UV) radiation and high-pressure processing (HPP), are crucial in ensuring the microbiological safety of fresh produce. UV radiation uses short-wavelength UV-C light to damage the DNA and RNA of microorganisms, and HPP applies high levels of pressure to fresh produce to reduce the microbial load. These physical methods are highly effective in killing a wide range of microorganisms, including bacteria, viruses, and fungi. However, they may not penetrate deep enough into the product to kill all microorganisms and can alter the sensory characteristics of the product. Chemical methods of disinfection, such as acidic electrolyzed water (AEW), ozone, and peroxyacetic acid (PAA), are also important in ensuring the microbiological safety of fresh produce. AEW uses a low concentration of hypochlorous acid and a high concentration of hydrogen ions to inactivate microorganisms, ozone uses ozone gas to damage the cell membranes and DNA of microorganisms, and PAA uses a combination of hydrogen peroxide and acetic acid to inactivate microorganisms. These chemical methods are highly effective in killing a wide range of microorganisms, but they may cause discoloration or changes in the texture and flavor of some products and may require specialized equipment and trained personnel to produce and apply. In conclusion, the selection of the most suitable method of fresh produce disinfection should take into consideration the type of product, the level of microbial contamination, the effectiveness of the method in reducing the microbial load, and any potential negative impacts on the sensory characteristics, nutritional composition, and safety of the produce. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20produce" title="fresh produce">fresh produce</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenic%20microorganisms" title=" pathogenic microorganisms"> pathogenic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20illnesses" title=" foodborne illnesses"> foodborne illnesses</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection%20methods" title=" disinfection methods"> disinfection methods</a> </p> <a href="https://publications.waset.org/abstracts/165774/physical-and-chemical-alternative-methods-of-fresh-produce-disinfection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8673</span> Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucija%20Pustahija">Lucija Pustahija</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Bandl"> Christine Bandl</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Kern"> Wolfgang Kern</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Mitterer"> Christian Mitterer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20oxidation" title=" dry oxidation"> dry oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=organosilanes" title=" organosilanes"> organosilanes</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolytic%20carbon" title=" pyrolytic carbon"> pyrolytic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=resins" title=" resins"> resins</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20functionalization" title=" surface functionalization"> surface functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20oxidation" title=" wet oxidation"> wet oxidation</a> </p> <a href="https://publications.waset.org/abstracts/152210/investigation-of-different-surface-oxidation-methods-on-pyrolytic-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8672</span> Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retno%20A.%20S.%20Lestari">Retno A. S. Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20B.%20Sediawan"> Wahyudi B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Syamsiah"> Siti Syamsiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarto"> Sarto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur-oxidizing%20bacteria" title="sulfur-oxidizing bacteria">sulfur-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=salak%20fruit%20seeds" title=" salak fruit seeds"> salak fruit seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20material" title=" packing material"> packing material</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/41726/kinetics-of-hydrogen-sulfide-removal-from-biogas-using-biofilm-on-packed-bed-of-salak-fruit-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=290">290</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=291">291</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electrolyzed%20oxidizing%20water%20%28EOW%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10