CINXE.COM
Search results for: reactive power cost
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reactive power cost</title> <meta name="description" content="Search results for: reactive power cost"> <meta name="keywords" content="reactive power cost"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reactive power cost" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reactive power cost"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12209</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reactive power cost</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12209</span> Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Walkey">A. S. Walkey</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Patidar"> N. P. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title="reactive power">reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost" title=" reactive power cost"> reactive power cost</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20security%20margins" title=" voltage security margins"> voltage security margins</a>, <a href="https://publications.waset.org/abstracts/search?q=capability%20curve" title=" capability curve"> capability curve</a>, <a href="https://publications.waset.org/abstracts/search?q=FACTS%20devices" title=" FACTS devices"> FACTS devices</a> </p> <a href="https://publications.waset.org/abstracts/16924/reactive-power-cost-evaluation-with-facts-devices-in-restructured-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12208</span> A Succinct Method for Allocation of Reactive Power Loss in Deregulated Scenario</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Savier">J. S. Savier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real power is the component power which is converted into useful energy whereas reactive power is the component of power which cannot be converted to useful energy but it is required for the magnetization of various electrical machineries. If the reactive power is compensated at the consumer end, the need for reactive power flow from generators to the load can be avoided and hence the overall power loss can be reduced. In this scenario, this paper presents a succinct method called JSS method for allocation of reactive power losses to consumers connected to radial distribution networks in a deregulated environment. The proposed method has the advantage that no assumptions are made while deriving the reactive power loss allocation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deregulation" title="deregulation">deregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20loss%20allocation" title=" reactive power loss allocation"> reactive power loss allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20systems" title=" radial distribution systems"> radial distribution systems</a>, <a href="https://publications.waset.org/abstracts/search?q=succinct%20method" title=" succinct method"> succinct method</a> </p> <a href="https://publications.waset.org/abstracts/47667/a-succinct-method-for-allocation-of-reactive-power-loss-in-deregulated-scenario" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12207</span> A Three Phase Shunt Active Power Filter for Currents Harmonics Elimination and Reactive Power Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Omeiri">Amar Omeiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a three-phase shunt active power filter for current harmonics suppression and reactive power compensation using the supply current as reference. The proposed APF has a simple control circuit; it consists of detecting the supply current instead of the load current. The advantages of this APF are simplicity of control circuits and low implementation cost. The simulation results show that the proposed APF can compensate the reactive power and suppress current harmonics with two types of non-linear loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20filter" title="active power filter">active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20harmonics%20and%20reactive%20power%20compensation" title=" current harmonics and reactive power compensation"> current harmonics and reactive power compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM%20inverter" title=" PWM inverter"> PWM inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Total%20Harmonic%20Distortion" title=" Total Harmonic Distortion"> Total Harmonic Distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/23921/a-three-phase-shunt-active-power-filter-for-currents-harmonics-elimination-and-reactive-power-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12206</span> Optimized Techniques for Reducing the Reactive Power Generation in Offshore Wind Farms in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardhasaradhi%20Gudla">Pardhasaradhi Gudla</a>, <a href="https://publications.waset.org/abstracts/search?q=Imanual%20A."> Imanual A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generated electrical power in offshore needs to be transmitted to grid which is located in onshore by using subsea cables. Long subsea cables produce reactive power, which should be compensated in order to limit transmission losses, to optimize the transmission capacity, and to keep the grid voltage within the safe operational limits. Installation cost of wind farm includes the structure design cost and electrical system cost. India has targeted to achieve 175GW of renewable energy capacity by 2022 including offshore wind power generation. Due to sea depth is more in India, the installation cost will be further high when compared to European countries where offshore wind energy is already generating successfully. So innovations are required to reduce the offshore wind power project cost. This paper presents the optimized techniques to reduce the installation cost of offshore wind firm with respect to electrical transmission systems. This technical paper provides the techniques for increasing the current carrying capacity of subsea cable by decreasing the reactive power generation (capacitance effect) of the subsea cable. There are many methods for reactive power compensation in wind power plants so far in execution. The main reason for the need of reactive power compensation is capacitance effect of subsea cable. So if we diminish the cable capacitance of cable then the requirement of the reactive power compensation will be reduced or optimized by avoiding the intermediate substation at midpoint of the transmission network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20wind%20power" title="offshore wind power">offshore wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=optimized%20techniques" title=" optimized techniques"> optimized techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=sub%20sea%20cable" title=" sub sea cable"> sub sea cable</a> </p> <a href="https://publications.waset.org/abstracts/91131/optimized-techniques-for-reducing-the-reactive-power-generation-in-offshore-wind-farms-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12205</span> Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manisha%20Dubey">Manisha Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Gupta"> Gaurav Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Arya"> Anoop Arya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interline%20power%20flow%20controller" title="interline power flow controller">interline power flow controller</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20pricing" title=" transmission pricing"> transmission pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20power%20flow%20controller" title=" unified power flow controller"> unified power flow controller</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20allocation" title=" cost allocation"> cost allocation</a> </p> <a href="https://publications.waset.org/abstracts/109581/influence-of-power-flow-controller-on-energy-transaction-charges-in-restructured-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12204</span> Variable Shunt Reactors for Reactive Power Compensation of HV Subsea Cables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20A.%20AlGhamdi">Saeed A. AlGhamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Habli"> Nabil Habli</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinoj%20Somasanran"> Vinoj Somasanran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an application of 230 kV Variable Shunt Reactors (VSR) used to compensate reactive power of dual 90 KM subsea cables. VSR integrates an on-load tap changer (OLTC) that adjusts reactive power compensation to maintain acceptable bus voltages under variable load profile and network configuration. An automatic voltage regulator (AVR) or a power management system (PMS) that allows VSR rating to be changed in discrete steps typically controls the OLTC. Typical regulation range start as minimum as 20% up to 100% and are available for systems up to 550kV. The regulation speed is normally in the order of seconds per step and approximately a minute from maximum to minimum rating. VSR can be bus or line connected depending on line/cable length and compensation requirements. The flexible reactive compensation ranges achieved by recent VSR technologies have enabled newer facilities design to deploy line connected VSR through either disconnect switches, which saves space and cost, or through circuit breakers. Lines with VSR are typically energized with lower taps (reduced reactive compensation) to minimize or remove the presence of delayed zero crossing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20management" title="power management">power management</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=subsea%20cables" title=" subsea cables"> subsea cables</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20shunt%20reactors" title=" variable shunt reactors"> variable shunt reactors</a> </p> <a href="https://publications.waset.org/abstracts/143206/variable-shunt-reactors-for-reactive-power-compensation-of-hv-subsea-cables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12203</span> Reactive Power Control with Plug-In Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Dastori">Mostafa Dastori</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirus%20Mohammadi"> Sirus Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While plug-in electric vehicles (PEVs) potentially have the capability to fulfill the energy storage needs of the electric grid, the degradation on the battery during this operation makes it less preferable by the auto manufacturers and consumers. On the other hand, the on-board chargers can also supply energy storage system applications such as reactive power compensation, voltage regulation, and power factor correction without the need of engaging the battery with the grid and thereby preserving its lifetime. It presents the design motives of single-phase on-board chargers in detail and makes a classification of the chargers based on their future vehicle-to-grid usage. The pros and cons of each different ac–dc topology are discussed to shed light on their suit- ability for reactive power support. This paper also presents and analyzes the differences between charging-only operation and capacitive reactive power operation that results in increased demand from the dc-link capacitor (more charge/discharge cycles and in- creased second harmonic ripple current). Moreover, battery state of charge is spared from losses during reactive power operation, but converter output power must be limited below its rated power rating to have the same stress on the dc-link capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system" title="energy storage system">energy storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20unit" title=" battery unit"> battery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sizing" title=" optimal sizing"> optimal sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=plug-in%20electric%20vehicles%20%28PEVs%29" title=" plug-in electric vehicles (PEVs)"> plug-in electric vehicles (PEVs)</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/44195/reactive-power-control-with-plug-in-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12202</span> Optimal Reactive Power Dispatch under Various Contingency Conditions Using Whale Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ben%20Oualid%20Medani">Khaled Ben Oualid Medani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Sayah"> Samir Sayah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Optimal Reactive Power Dispatch (ORPD) problem has been solved and analysed usually in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20reactive%20power%20dispatch" title="optimal reactive power dispatch">optimal reactive power dispatch</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20analysis" title=" power system analysis"> power system analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20power%20loss%20minimization" title=" real power loss minimization"> real power loss minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=contingency%20condition" title=" contingency condition"> contingency condition</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20technique" title=" metaheuristic technique"> metaheuristic technique</a>, <a href="https://publications.waset.org/abstracts/search?q=whale%20optimization%20algorithm" title=" whale optimization algorithm"> whale optimization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/104814/optimal-reactive-power-dispatch-under-various-contingency-conditions-using-whale-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12201</span> Using Power Flow Analysis for Understanding UPQC’s Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Abdelkhalek">O. Abdelkhalek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Naimi"> A. Naimi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rami"> M. Rami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Tandjaoui"> M. N. Tandjaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kechich"> A. Kechich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UPQC" title="UPQC">UPQC</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20flow%20analysis" title=" Power flow analysis"> Power flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20filter" title=" shunt filter"> shunt filter</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20filter." title=" series filter."> series filter.</a> </p> <a href="https://publications.waset.org/abstracts/21038/using-power-flow-analysis-for-understanding-upqcs-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12200</span> Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Puneet%20Chawla">Puneet Chawla</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh"> Balwinder Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voltage%20stability" title="voltage stability">voltage stability</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20flow" title=" power flow"> power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=weakest%20bus" title=" weakest bus"> weakest bus</a>, <a href="https://publications.waset.org/abstracts/search?q=STATCOM" title=" STATCOM"> STATCOM</a> </p> <a href="https://publications.waset.org/abstracts/3097/voltage-stability-assessment-and-enhancement-using-statcom-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12199</span> Convergence Analysis of Reactive Power Based Schemes Used in Sensorless Control of Induction Motors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ben%20Si%20Ali">N. Ben Si Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benalia"> N. Benalia</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zerzouri"> N. Zerzouri </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many electronic drivers for the induction motor control are based on sensorless technologies. Speed and torque control is usually attained by application of a speed or position sensor which requires the additional mounting space, reduce the reliability and increase the cost. This paper seeks to analyze dynamical performances and sensitivity to motor parameter changes of reactive power based technique used in sensorless control of induction motors. Validity of theoretical results is verified by simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20observers" title="adaptive observers">adaptive observers</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20reference%20adaptive%20system" title=" model reference adaptive system"> model reference adaptive system</a>, <a href="https://publications.waset.org/abstracts/search?q=RP-based%20estimator" title=" RP-based estimator"> RP-based estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless%20control" title=" sensorless control"> sensorless control</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/21490/convergence-analysis-of-reactive-power-based-schemes-used-in-sensorless-control-of-induction-motors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12198</span> Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medani%20Khaled%20Ben%20Oualid">Medani Khaled Ben Oualid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20reactive%20power%20dispatch" title="optimal reactive power dispatch">optimal reactive power dispatch</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic%20techniques" title=" metaheuristic techniques"> metaheuristic techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=whale%20optimization%20algorithm" title=" whale optimization algorithm"> whale optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20power%20loss%20minimization" title=" real power loss minimization"> real power loss minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=contingency%20conditions" title=" contingency conditions"> contingency conditions</a> </p> <a href="https://publications.waset.org/abstracts/167025/whale-optimization-algorithm-for-optimal-reactive-power-dispatch-solution-under-various-contingency-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12197</span> Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20power%20standard" title="electric power standard">electric power standard</a>, <a href="https://publications.waset.org/abstracts/search?q=factor" title=" factor"> factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ore%20grinding" title=" ore grinding"> ore grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20consumption" title=" power consumption"> power consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=technological" title=" technological"> technological</a> </p> <a href="https://publications.waset.org/abstracts/69150/assessing-the-ways-of-improving-the-power-saving-modes-in-the-ore-grinding-technological-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12196</span> Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Bengourina">M. R. Bengourina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahli"> M. Rahli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hassaine"> L. Hassaine</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saadi"> S. Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shunt%20active%20power%20filter" title="shunt active power filter">shunt active power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=VF-DPC" title=" VF-DPC"> VF-DPC</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a> </p> <a href="https://publications.waset.org/abstracts/74510/renewable-energy-interfaced-shunt-active-filter-using-a-virtual-flux-direct-power-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12195</span> Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Moualdia">A. Moualdia</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Boudana"> D. J. Boudana</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Bouchhida"> O. Bouchhida</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Medjber"> A. Medjber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.F.I.G" title="D.F.I.G">D.F.I.G</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20wind%20speed" title=" variable wind speed"> variable wind speed</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersynchrone" title=" hypersynchrone"> hypersynchrone</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20quality" title=" energy quality"> energy quality</a>, <a href="https://publications.waset.org/abstracts/search?q=hyposynchrone" title=" hyposynchrone"> hyposynchrone</a> </p> <a href="https://publications.waset.org/abstracts/36670/control-of-a-wind-energy-conversion-system-works-in-tow-operating-modes-hyper-synchronous-and-hypo-synchronous" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12194</span> A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20M.%20Ragab">Dana M. Ragab</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasim%20A.%20Ghaeb"> Jasim A. Ghaeb </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three-phase%20power%20system" title="three-phase power system">three-phase power system</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20control" title=" reactive power control"> reactive power control</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20unbalance%20factor" title=" voltage unbalance factor"> voltage unbalance factor</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title=" power quality"> power quality</a> </p> <a href="https://publications.waset.org/abstracts/104856/a-neural-network-control-for-voltage-balancing-in-three-phase-electric-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12193</span> Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baghdasaryan%20Marinka">Baghdasaryan Marinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulikyan%20Azatuhi"> Ulikyan Azatuhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transition%20process" title="transition process">transition process</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20motor" title=" synchronous motor"> synchronous motor</a>, <a href="https://publications.waset.org/abstracts/search?q=excitation%20mode" title=" excitation mode"> excitation mode</a>, <a href="https://publications.waset.org/abstracts/search?q=regulator" title=" regulator"> regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a> </p> <a href="https://publications.waset.org/abstracts/108125/investigating-the-regulation-system-of-the-synchronous-motor-excitation-mode-serving-as-a-reactive-power-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12192</span> An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malinwo%20Estone%20Ayikpa">Malinwo Estone Ayikpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photovoltaic%20system" title="Photovoltaic system">Photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=Primal-dual%20interior%20point%20method" title=" Primal-dual interior point method"> Primal-dual interior point method</a>, <a href="https://publications.waset.org/abstracts/search?q=Three-phase%20optimal%20power%20flow" title=" Three-phase optimal power flow"> Three-phase optimal power flow</a>, <a href="https://publications.waset.org/abstracts/search?q=Voltage%20unbalance" title=" Voltage unbalance"> Voltage unbalance</a> </p> <a href="https://publications.waset.org/abstracts/65491/an-efficient-tool-for-mitigating-voltage-unbalance-with-reactive-power-control-of-distributed-grid-connected-photovoltaic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12191</span> Reliability Analysis: A Case Study in Designing Power Distribution System of Tehran Oil Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Arani">A. B. Arani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Shojaee"> R. Shojaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical power distribution system is one of the vital infrastructures of an oil refinery, which requires wide area of study and planning before construction. In this paper, power distribution reliability of Tehran Refinery’s KHDS/GHDS unit has been taken into consideration to investigate the importance of these kinds of studies and evaluate the designed system. In this regard, the authors chose and evaluated different configurations of electrical power distribution along with the existing configuration with the aim of finding the most suited configuration which satisfies the conditions of minimum cost of electrical system construction, minimum cost imposed by loss of load, and maximum power system reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20distribution%20system" title="power distribution system">power distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20refinery" title=" oil refinery"> oil refinery</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=investment%20cost" title=" investment cost"> investment cost</a>, <a href="https://publications.waset.org/abstracts/search?q=interruption%20cost" title=" interruption cost"> interruption cost</a> </p> <a href="https://publications.waset.org/abstracts/25952/reliability-analysis-a-case-study-in-designing-power-distribution-system-of-tehran-oil-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">876</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12190</span> Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharti%20Garg">Bharti Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashleigh%20Cousins"> Ashleigh Cousins</a>, <a href="https://publications.waset.org/abstracts/search?q=Pauline%20Pearson"> Pauline Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Verheyen"> Vincent Verheyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Feron"> Paul Feron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20capture" title="combined capture">combined capture</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallisation" title=" crystallisation"> crystallisation</a>, <a href="https://publications.waset.org/abstracts/search?q=CS-Cap" title=" CS-Cap"> CS-Cap</a>, <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurisation" title=" flue gas desulfurisation"> flue gas desulfurisation</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20reclamation" title=" thermal reclamation "> thermal reclamation </a> </p> <a href="https://publications.waset.org/abstracts/100335/experimental-investigation-of-absorbent-regeneration-techniques-to-lower-the-cost-of-combined-co2-and-so2-capture-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12189</span> A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yibin%20Qiu">Yibin Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yubo%20Ouyang"> Yubo Ouyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihan%20Li"> Shihan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Guorui%20Zhang"> Guorui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Li"> Qi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weirong%20Chen"> Weirong Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixture%20vine%20copula%20structure%20model" title="mixture vine copula structure model">mixture vine copula structure model</a>, <a href="https://publications.waset.org/abstracts/search?q=three-point%20estimate%20method" title=" three-point estimate method"> three-point estimate method</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20probability%20integral%20transform" title=" the probability integral transform"> the probability integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20backtracking%20search%20algorithm" title=" modified backtracking search algorithm"> modified backtracking search algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20optimization" title=" reactive power optimization"> reactive power optimization</a> </p> <a href="https://publications.waset.org/abstracts/66356/a-mixture-vine-copula-structures-model-for-dependence-wind-speed-among-wind-farms-and-its-application-in-reactive-power-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12188</span> Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Mohammadi%20Sanjani">Mohammad Hossein Mohammadi Sanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashknaz%20Oraee"> Ashknaz Oraee</a>, <a href="https://publications.waset.org/abstracts/search?q=Oriol%20Gomis%20Bellmunt"> Oriol Gomis Bellmunt</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinicius%20Albernaz%20Lacerda%20Freitas"> Vinicius Albernaz Lacerda Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title="renewable energy sources">renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20wind%20power%20plant" title=" optimization wind power plant"> optimization wind power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20compensator" title=" reactive power compensator"> reactive power compensator</a>, <a href="https://publications.waset.org/abstracts/search?q=double-feed%20induction%20generator" title=" double-feed induction generator"> double-feed induction generator</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/169741/development-of-power-system-stability-by-reactive-power-planning-in-wind-power-plant-with-doubley-fed-induction-generators-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12187</span> Advanced Fuzzy Control for a Doubly Fed Induction Generator in Wind Energy Conversion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kumat%20T.">Santhosh Kumat T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20E."> Priya E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of a doubly fed induction generator by fuzzy is described. The active and reactive power can be controlled by rotor and grid side converters with fuzzy controller. The main objective is to maintain constant voltage and frequency at the output of the generator. However the Line Side Converter (LSC) can be controlled to supply up to 50% of the required reactive current. When the crowbar is not activated the DFIG can supply reactive power from the rotor side through the machine as well as through the LSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doubly%20Fed%20Induction%20Generator%20%28DFIG%29" title="Doubly Fed Induction Generator (DFIG)">Doubly Fed Induction Generator (DFIG)</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotor%20Side%20Converter%20%28RSC%29" title=" Rotor Side Converter (RSC)"> Rotor Side Converter (RSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Grid%20Side%20Converter%20%28GSC%29" title=" Grid Side Converter (GSC)"> Grid Side Converter (GSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Wind%20Energy%20Conversion%20Systems%20%28WECS%29" title=" Wind Energy Conversion Systems (WECS)"> Wind Energy Conversion Systems (WECS)</a> </p> <a href="https://publications.waset.org/abstracts/21552/advanced-fuzzy-control-for-a-doubly-fed-induction-generator-in-wind-energy-conversion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12186</span> A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mohammed%20Chikouche">T. Mohammed Chikouche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Hartani"> K. Hartani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve the instantaneous power ripple and achieve better performance of direct power control (DPC) for a three-phase PWM rectifier, a control method is proposed in this paper. This control method is applied to overcome the instantaneous power ripple, to eliminate line current harmonics and therefore reduce the total harmonic distortion and to improve the power factor. A switching table is based on the analysis on the change of instantaneous active and reactive power, to select the optimum switching state of the three-phase PWM rectifier. The simulation result shows feasibility of this control method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20control" title=" direct power control"> direct power control</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20ripple" title=" power ripple"> power ripple</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20table" title=" switching table"> switching table</a>, <a href="https://publications.waset.org/abstracts/search?q=unity%20power%20factor" title=" unity power factor"> unity power factor</a> </p> <a href="https://publications.waset.org/abstracts/85214/a-strategy-of-direct-power-control-for-pwm-rectifier-reducing-ripple-in-instantaneous-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12185</span> The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ates">Y. Ates</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Boynuegri"> A. R. Boynuegri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uzunoglu"> M. Uzunoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Karakas"> A. Karakas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, wind energy conversion systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEEE%2013%20bus%20distribution%20system" title="IEEE 13 bus distribution system">IEEE 13 bus distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power%20regulation" title=" reactive power regulation"> reactive power regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20VAr%20compensator" title=" static VAr compensator"> static VAr compensator</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy%20conversion%20system" title=" wind energy conversion system"> wind energy conversion system</a> </p> <a href="https://publications.waset.org/abstracts/29831/the-transient-reactive-power-regulation-capability-of-svc-for-large-scale-wecs-connected-to-distribution-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12184</span> Apply Commitment Method in Power System to Minimize the Fuel Cost</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shaban">Mohamed Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Yahya"> Adel Yahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollution <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unit%20commitment" title="unit commitment">unit commitment</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20dynamic" title=" forward dynamic"> forward dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cost" title=" fuel cost"> fuel cost</a>, <a href="https://publications.waset.org/abstracts/search?q=programming" title=" programming"> programming</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20scheduling" title=" generation scheduling"> generation scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20cost" title=" operation cost"> operation cost</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=generating%20units" title=" generating units"> generating units</a> </p> <a href="https://publications.waset.org/abstracts/33870/apply-commitment-method-in-power-system-to-minimize-the-fuel-cost" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12183</span> The Contribution of SMES to Improve the Transient Stability of Multimachine Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ch%C3%A9rif">N. Chérif</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Allaoui"> T. Allaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benasla"> M. Benasla</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Chaib"> H. Chaib </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrialization and population growth are the prime factors for which the consumption of electricity is steadily increasing. Thus, to have a balance between production and consumption, it is necessary at first to increase the number of power plants, lines and transformers, which implies an increase in cost and environmental degradation. As a result, it is now important to have mesh networks and working close to the limits of stability in order to meet these new requirements. The transient stability studies involve large disturbances such as short circuits, loss of work or production group. The consequence of these defects can be very serious, and can even lead to the complete collapse of the network. This work focuses on the regulation means that networks can help to keep their stability when submitted to strong disturbances. The magnetic energy storage-based superconductor (SMES) comprises a superconducting coil short-circuited on it self. When such a system is connected to a power grid is able to inject or absorb the active and reactive power. This system can be used to improve the stability of power systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-circuit" title="short-circuit">short-circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20oscillations" title=" power oscillations"> power oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=multiband%20PSS" title=" multiband PSS"> multiband PSS</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=SMES" title=" SMES"> SMES</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20stability" title=" transient stability"> transient stability</a> </p> <a href="https://publications.waset.org/abstracts/1367/the-contribution-of-smes-to-improve-the-transient-stability-of-multimachine-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12182</span> State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ananthakrishnan">M. Ananthakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20K%20Patil"> Sunil K Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Koti%20Naveen"> Koti Naveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Inuganti%20Hemanth%20Kumar"> Inuganti Hemanth Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20power%20tuning" title="active power tuning">active power tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=database%20modelling" title=" database modelling"> database modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimator" title=" state estimator"> state estimator</a> </p> <a href="https://publications.waset.org/abstracts/194306/state-estimator-performance-enhancement-methods-for-identifying-errors-in-modelling-and-telemetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12181</span> Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahzouh%20Zoubir">Zahzouh Zoubir</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzaouit%20Azzeddine"> Bouzaouit Azzeddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gahgah%20Mounir"> Gahgah Mounir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Actif%20power%20filter" title="Actif power filter">Actif power filter</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a>, <a href="https://publications.waset.org/abstracts/search?q=pertub%26observe%20algorithm" title=" pertub&observe algorithm"> pertub&observe algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20array" title=" PV array"> PV array</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM-control" title=" PWM-control"> PWM-control</a> </p> <a href="https://publications.waset.org/abstracts/74962/nine-level-shunt-active-power-filter-associated-with-a-photovoltaic-array-coupled-to-the-electrical-distribution-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12180</span> Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patience%20Muchini">Patience Muchini</a>, <a href="https://publications.waset.org/abstracts/search?q=Electdom%20Matandiroya"> Electdom Matandiroya</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Mashonjowa"> Emmanuel Mashonjowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Geomagnetically induced currents have been studied in other regions and have been noted to affect the power grid network. In Zimbabwe, grid failures have been experienced, but it is yet to be proven if these failures have been due to GICs. The purpose of this paper is to characterize geomagnetically induced currents with a power grid network. This paper analyses data collected, which is geomagnetic data, which includes the Kp index, DST index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20space%20weather" title="adverse space weather">adverse space weather</a>, <a href="https://publications.waset.org/abstracts/search?q=DST%20index" title=" DST index"> DST index</a>, <a href="https://publications.waset.org/abstracts/search?q=geomagnetically%20induced%20currents" title=" geomagnetically induced currents"> geomagnetically induced currents</a>, <a href="https://publications.waset.org/abstracts/search?q=KP%20index" title=" KP index"> KP index</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20power" title=" reactive power"> reactive power</a> </p> <a href="https://publications.waset.org/abstracts/163432/analysis-of-transformer-reactive-power-fluctuations-during-adverse-space-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=406">406</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=407">407</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reactive%20power%20cost&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>