CINXE.COM

Search results for: plasma gasification

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plasma gasification</title> <meta name="description" content="Search results for: plasma gasification"> <meta name="keywords" content="plasma gasification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plasma gasification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plasma gasification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1113</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plasma gasification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1113</span> Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20James">Gloria James</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nema"> S. K. Nema</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vadivel%20Murugan"> P. Vadivel Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=tyre%20waste" title=" tyre waste"> tyre waste</a> </p> <a href="https://publications.waset.org/abstracts/103318/plasma-gasification-as-a-sustainable-way-for-energy-recovery-from-scrap-tyre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1112</span> Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Messerle">V. E. Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Ustimenko"> A. B. Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Lavrichshev"> O. A. Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20gasification" title=" plasma gasification"> plasma gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20calculation" title=" thermodynamic calculation"> thermodynamic calculation</a> </p> <a href="https://publications.waset.org/abstracts/185728/thermodynamic-analysis-and-experimental-study-of-agricultural-waste-plasma-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1111</span> Arc Plasma Application for Solid Waste Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Messerle">Vladimir Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Mosse"> Alfred Mosse</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Ustimenko"> Alexandr Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Lavrichshev"> Oleg Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-fuel%20system" title=" plasma-fuel system"> plasma-fuel system</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20generator" title=" plasma generator"> plasma generator</a> </p> <a href="https://publications.waset.org/abstracts/57398/arc-plasma-application-for-solid-waste-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1110</span> Plasma Treatment of a Lignite Using Water-Stabilized Plasma Torch at Atmospheric Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20Serov">Anton Serov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Maslani"> Alan Maslani</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Hlina"> Michal Hlina</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Kopecky"> Vladimir Kopecky</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Hrabovsky"> Milan Hrabovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if the raw material for the fuel production can be obtained as the result of that recycling. A process of high-temperature decomposition of a lignite (a non-hydrolysable complex organic compound) was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was selected 30 and 60 kg per hour that could be compared with small industrial production. An efficiency estimation of the thermal decomposition process was done. A balance of the torch energy distribution was studied as well as an influence of the lignite particle size and an addition of methane (CH4) in a reaction volume on the syngas composition (H2+CO). It was found that the ratio H2:CO had values in the range of 1,5 to 2,5 depending on the experimental conditions. The recycling process occurred at atmospheric pressure that was one of the important benefits because of the lack of expensive vacuum pump systems. The work was supported by the Grant Agency of the Czech Republic under the project GA15-19444S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20pressure" title="atmospheric pressure">atmospheric pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=lignite" title=" lignite"> lignite</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20treatment" title=" plasma treatment"> plasma treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water-stabilized%20plasma%20torch" title=" water-stabilized plasma torch"> water-stabilized plasma torch</a> </p> <a href="https://publications.waset.org/abstracts/47529/plasma-treatment-of-a-lignite-using-water-stabilized-plasma-torch-at-atmospheric-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1109</span> The Temperature Influence for Gasification in the Advanced Biomass Gasifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narsimhulu%20Sanke">Narsimhulu Sanke</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Reddy"> D. N. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is to discuss about the influence of the temperature in the advanced biomass gasifier for gasification, when tested four different biomass fuels individually in the gasification laboratory of Centre for Energy Technology (CET). The gasifier is developed in CET to test any kind of biomass fuel for gasification without changing the gasifier. The gasifier can be used for batch operations and observed and found that there were no operational problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20fuels" title="biomass fuels">biomass fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20downdraft%20gasifier" title=" advanced downdraft gasifier"> advanced downdraft gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a> </p> <a href="https://publications.waset.org/abstracts/13216/the-temperature-influence-for-gasification-in-the-advanced-biomass-gasifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1108</span> Effect of Minerals in Middlings on the Reactivity of Gasification-Coke by Blending a Large Proportion of Long Flame Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianjun%20Wu">Jianjun Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanhui%20Guo"> Fanhui Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yixin%20Zhang"> Yixin Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, gasification-coke were produced by blending the middlings (MC), and coking coal (CC) and a large proportion of long flame coal (Shenfu coal, SC), the effects of blending ratio were investigated. Mineral evolution and crystalline order obtained by XRD methods were reproduced within reasonable accuracy. Structure characteristics of partially gasification-coke such as surface area and porosity were determined using the N₂ adsorption and mercury porosimetry. Experimental data of gasification-coke was dominated by the TGA results provided trend, reactivity differences between gasification-cokes are discussed in terms of structure characteristic, crystallinity, and alkali index (AI). The first-order reaction equation was suitable for the gasification reaction kinetics of CO₂ atmosphere which was represented by the volumetric reaction model with linear correlation coefficient above 0.985. The differences in the microporous structure of gasification-coke and catalysis caused by the minerals in parent coals were supposed to be the main factors which affect its reactivity. The addition of MC made the samples enriched with a large amount of ash causing a higher surface area and a lower crystalline order to gasification-coke which was beneficial to gasification reaction. The higher SiO₂ and Al₂O₃ contents, causing a decreasing AI value and increasing activation energy, which reduced the gasification reaction activity. It was found that the increasing amount of MC got a better performance on the coke gasification reactivity by blending > 30% SC with this coking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-rank%20coal" title="low-rank coal">low-rank coal</a>, <a href="https://publications.waset.org/abstracts/search?q=middlings" title=" middlings"> middlings</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20characteristic" title=" structure characteristic"> structure characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20evolution" title=" mineral evolution"> mineral evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=alkali%20index" title=" alkali index"> alkali index</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification-coke" title=" gasification-coke"> gasification-coke</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification%20kinetics" title=" gasification kinetics"> gasification kinetics</a> </p> <a href="https://publications.waset.org/abstracts/100113/effect-of-minerals-in-middlings-on-the-reactivity-of-gasification-coke-by-blending-a-large-proportion-of-long-flame-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1107</span> Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Marcantonio">Vera Marcantonio</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcello%20De%20Falco"> Marcello De Falco</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Capocelli"> Mauro Capocelli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Amado-Fierro"> Álvaro Amado-Fierro</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresa%20A.%20Centeno"> Teresa A. Centeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Bocci"> Enrico Bocci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20gasification" title="biomass gasification">biomass gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title=" aspen plus"> aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20enhance%20gasification" title=" sorption enhance gasification"> sorption enhance gasification</a> </p> <a href="https://publications.waset.org/abstracts/164537/modelling-and-optimization-of-a-combined-sorption-enhanced-biomass-gasification-with-hydrothermal-carbonization-hot-gas-cleaning-and-dielectric-barrier-discharge-plasma-reactor-to-produce-pure-h2-and-methanol-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1106</span> Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Messerle">V. E. Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Lavrichshev"> O. A. Lavrichshev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Ustimenko"> A. B. Ustimenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification" title="gasification">gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20mass" title=" mineral mass"> mineral mass</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20mass" title=" organic mass"> organic mass</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20fuel" title=" solid fuel"> solid fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis%20gas" title=" synthesis gas"> synthesis gas</a>, <a href="https://publications.waset.org/abstracts/search?q=valuable%20components" title=" valuable components"> valuable components</a> </p> <a href="https://publications.waset.org/abstracts/26477/plasma-chemical-gasification-of-solid-fuel-with-mineral-mass-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1105</span> Evaluation of Biomass Introduction Methods in Coal Co-Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruwaida%20Abdul%20Rasid">Ruwaida Abdul Rasid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20J.%20Hughes"> Kevin J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Henggs"> Peter J. Henggs</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Pourkashanian"> Mohamed Pourkashanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (co-feeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modeled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20HYSYS" title="aspen HYSYS">aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=co-gasification%20modelling" title=" co-gasification modelling"> co-gasification modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17080/evaluation-of-biomass-introduction-methods-in-coal-co-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1104</span> A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Ismail">T. M. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20El-Salam"> M. A. El-Salam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20fuel" title=" biomass fuel"> biomass fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed%20gasifier" title=" fixed bed gasifier"> fixed bed gasifier</a> </p> <a href="https://publications.waset.org/abstracts/4947/a-numerical-model-simulation-for-an-updraft-gasifier-using-high-temperature-steam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1103</span> Cracking of Tar Analogue in N₂ Carrier Gas Using Non-Thermal Plasma Dielectric Barrier Discharge Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Saleem">Faisal Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kui%20Zhang"> Kui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Harvey"> Adam Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The role of N₂ carrier gas towards the conversion of tar analogue was studied in a non-thermal plasma dielectric barrier discharge (DBD) reactor. The important parameters such as power (5-40W), residence time (1.41-4.23 s), concentration (20-82 g/Nm³), and temperature (Ambient-400°C) were explored. The present study demonstrated that plasma power and residence time played a key role in the decomposition of toluene, and almost complete removal of toluene was observed at 40w and 4.23 s. H₂ is obtained as a major gaseous product with a maximum selectivity of 40% along with some lighter hydrocarbons (5.5%). The removal efficiency of toluene slightly decreases with increasing the concentration of toluene from 20 g/Nm³ to 82 g/Nm³. The solid residue formation takes place inside the plasma reactor. The selectivity of LHC (lower hydrocarbons) increased up to 15% by increasing the temperature to 400°C. Introducing H₂ to the gas at elevated temperature opens up new reaction routes to raise the selectivity to lower hydrocarbons. The selectivity to methane reaches to 42% using 35% H₂ at 400°C and total selectivity of LHC increases to 57%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20gasification%20tar" title="biomass gasification tar">biomass gasification tar</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20barrier%20discharge" title=" dielectric barrier discharge"> dielectric barrier discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a> </p> <a href="https://publications.waset.org/abstracts/94699/cracking-of-tar-analogue-in-n2-carrier-gas-using-non-thermal-plasma-dielectric-barrier-discharge-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1102</span> Catalytic Soot Gasification in Single and Mixed Atmospheres of CO2 and H2O in the Presence of CO and H2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yeidy%20Sorani%20Montenegro%20Camacho">Yeidy Sorani Montenegro Camacho</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Bensaid"> Samir Bensaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nunzio%20Russo"> Nunzio Russo</a>, <a href="https://publications.waset.org/abstracts/search?q=Debora%20Fino"> Debora Fino </a> </p> <p class="card-text"><strong>Abstract:</strong></p> LiFeO2 nano-powders were prepared via solution combustion synthesis (SCS) method and were used as carbon gasification catalyst in a reduced atmosphere. The gasification of soot with CO2 and H2O in the presence of CO and H2 (syngas atmosphere) were also investigated under atmospheric conditions using a fixed-bed micro-reactor placed in an electric, PID-regulated oven. The catalytic bed was composed of 150 mg of inert silica, 45 mg of carbon (Printex-U) and 5 mg of catalyst. The bed was prepared by ball milling the mixture at 240 rpm for 15 min to get an intimate contact between the catalyst and soot. A Gas Hourly Space Velocity (GHSV) of 38.000 h-1 was used for the tests campaign. The furnace was heated up to the desired temperature, a flow of 120 mL/min was sent into the system and at the same time the concentrations of CO, CO2 and H2 were recorded at the reactor outlet using an EMERSON X-STREAM XEGP analyzer. Catalytic and non-catalytic soot gasification reactions were studied in a temperature range of 120°C – 850°C with a heating rate of 5 °C/min (non-isothermal case) and at 650°C for 40 minutes (isothermal case). Experimental results show that the gasification of soot with H2O and CO2 are inhibited by the H2 and CO, respectively. The soot conversion at 650°C decreases from 70.2% to 31.6% when the CO is present in the feed. Besides, the soot conversion was 73.1% and 48.6% for H2O-soot and H2O-H2-soot gasification reactions, respectively. Also, it was observed that the carbon gasification in mixed atmosphere, i.e., when simultaneous carbon gasification with CO2 and steam take place, with H2 and CO as co-reagents; the gasification reaction is strongly inhibited by CO and H2, as well has been observed in single atmospheres for the isothermal and non-isothermal reactions. Further, it has been observed that when CO2 and H2O react with carbon at the same time, there is a passive cooperation of steam and carbon dioxide in the gasification reaction, this means that the two gases operate on separate active sites without influencing each other. Finally, despite the extreme reduced operating conditions, it has been demonstrated that the 32.9% of the initial carbon was gasified using LiFeO2-catalyst, while in the non-catalytic case only 8% of the soot was gasified at 650°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soot%20gasification" title="soot gasification">soot gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20catalyst" title=" nanostructured catalyst"> nanostructured catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20environment" title=" reducing environment"> reducing environment</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/74154/catalytic-soot-gasification-in-single-and-mixed-atmospheres-of-co2-and-h2o-in-the-presence-of-co-and-h2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1101</span> Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Messerle">Vladimir Messerle</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandr%20Ustimenko"> Alexandr Ustimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Lavrichshev"> Oleg Lavrichshev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal" title="coal">coal</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition" title=" ignition"> ignition</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-fuel%20system" title=" plasma-fuel system"> plasma-fuel system</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20torch" title=" plasma torch"> plasma torch</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20power%20plant" title=" thermal power plant"> thermal power plant</a> </p> <a href="https://publications.waset.org/abstracts/57021/arc-plasma-thermochemical-preparation-of-coal-to-effective-combustion-in-thermal-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1100</span> Modelling of Cavity Growth in Underground Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam">Preeti Aghalayam</a>, <a href="https://publications.waset.org/abstracts/search?q=Jay%20Shah"> Jay Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gasification%20agent" title="gasification agent">gasification agent</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB%20model" title=" MATLAB model"> MATLAB model</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification%20%28UCG%29" title=" underground coal gasification (UCG)"> underground coal gasification (UCG)</a> </p> <a href="https://publications.waset.org/abstracts/142719/modelling-of-cavity-growth-in-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girts%20Zageris">Girts Zageris</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadims%20Geza"> Vadims Geza</a>, <a href="https://publications.waset.org/abstracts/search?q=Andris%20Jakovics"> Andris Jakovics</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20particles" title="biomass particles">biomass particles</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=slag%20formation" title=" slag formation"> slag formation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20k-%CE%B5%20modelling" title=" turbulence k-ε modelling"> turbulence k-ε modelling</a> </p> <a href="https://publications.waset.org/abstracts/65049/mathematical-modelling-of-slag-formation-in-an-entrained-flow-gasifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> The Gasification of Fructose in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Cheng"> H. Y. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fructose" title=" fructose"> fructose</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water "> supercritical water </a> </p> <a href="https://publications.waset.org/abstracts/9573/the-gasification-of-fructose-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Multifluid Computational Fluid Dynamics Simulation for Sawdust Gasification inside an Industrial Scale Fluidized Bed Gasifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasujeet%20Singh">Vasujeet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pruthiviraj%20Nemalipuri"> Pruthiviraj Nemalipuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Vitankar"> Vivek Vitankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Harish%20Chandra%20Das"> Harish Chandra Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the correct prediction of thermal and hydraulic performance (bed voidage, suspension density, pressure drop, heat transfer, and combustion kinetics), one should incorporate the correct parameters in the computational fluid dynamics simulation of a fluidized bed gasifier. Scarcity of fossil fuels, and to fulfill the energy demand of the increasing population, researchers need to shift their attention to the alternative to fossil fuels. The current research work focuses on hydrodynamics behavior and gasification of sawdust inside a 2D industrial scale FBG using the Eulerian-Eulerian multifluid model. The present numerical model is validated with experimental data. Further, this model extended for the prediction of gasification characteristics of sawdust by incorporating eight heterogeneous moisture release, volatile cracking, tar cracking, tar oxidation, char combustion, CO₂ gasification, steam gasification, methanation reaction, and five homogeneous oxidation of CO, CH₄, H₂, forward and backward water gas shift (WGS) reactions. In the result section, composition of gasification products is analyzed, along with the hydrodynamics of sawdust and sand phase, heat transfer between the gas, sand and sawdust, reaction rates of different homogeneous and heterogeneous reactions is being analyzed along the height of the domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=devolatilization" title="devolatilization">devolatilization</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian-Eulerian" title=" Eulerian-Eulerian"> Eulerian-Eulerian</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20gasifier" title=" fluidized bed gasifier"> fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title=" mathematical modelling"> mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=sawdust%20gasification" title=" sawdust gasification"> sawdust gasification</a> </p> <a href="https://publications.waset.org/abstracts/158638/multifluid-computational-fluid-dynamics-simulation-for-sawdust-gasification-inside-an-industrial-scale-fluidized-bed-gasifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Nam%20Chun">Young Nam Chun</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Hyuk%20Yun"> Soo Hyuk Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeo%20Ri%20Jeong"> Byeo Ri Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title="microwave heating">microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis%20gasification" title=" pyrolysis gasification"> pyrolysis gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=precombustion%20CCS" title=" precombustion CCS"> precombustion CCS</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy" title=" biomass energy"> biomass energy</a> </p> <a href="https://publications.waset.org/abstracts/56659/energy-conversion-for-sewage-sludge-by-microwave-heating-pyrolysis-and-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Atmospheric Fluid Bed Gasification of Different Biomass Fuels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Lis%C3%BD">Martin Lisý</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Bal%C3%A1%C5%A1"> Marek Baláš</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20%C5%A0pil%C3%A1%C4%8Dek"> Michal Špiláček</a>, <a href="https://publications.waset.org/abstracts/search?q=Zden%C4%9Bk%20Sk%C3%A1la"> Zdeněk Skála</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper shortly describes biomass types and growing amount in the Czech Republic. The considerable part of this paper deals with energy parameters of the most frequent utilizing biomass types and results of their gasification testing. There was chosen sixteen the most exploited "Czech" woody plants and grasses. There were determinated raw, element and biochemical analysis, basic calorimetric values, ash composition and ash characteristic temperatures. After that, each biofuel was tested by fluid bed gasification. The essential part of this paper yields results of chosen biomass types gasification experiments. Partly, there are described an operating conditions in detail with accentuation of individual fuels particularities partly, there is summarized gas composition and impurities content. The essential difference was determined mainly between woody plants and grasses both from point of view of the operating conditions and gas quality. The woody plants was evaluated as more suitable fuels for fluid bed gasifiers. This results will be able to significantly help with decision which energy plants are suitable for growing or with optimal biomass-treatment technology selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20growing" title="biomass growing">biomass growing</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20types" title=" biomass types"> biomass types</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20fuels" title=" biomass fuels"> biomass fuels</a> </p> <a href="https://publications.waset.org/abstracts/26722/atmospheric-fluid-bed-gasification-of-different-biomass-fuels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Makwana">J. P. Makwana</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Joshi"> A. K. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20N.%20Patel"> Rajesh N. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Darshil%20Patel"> Darshil Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 &deg;C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 &deg;C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sized%20biomass" title="sized biomass">sized biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized%20bed%20gasifier" title=" fluidized bed gasifier"> fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratio" title=" equivalence ratio"> equivalence ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title=" temperature profile"> temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20composition" title=" gas composition"> gas composition</a> </p> <a href="https://publications.waset.org/abstracts/46520/effect-of-equivalence-ratio-on-performance-of-fluidized-bed-gasifier-run-with-sized-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Szul">Mateusz Szul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Iluk"> Tomasz Iluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Sobolewski"> Aleksander Sobolewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ash%20fusibility" title="ash fusibility">ash fusibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=piston%20engine" title=" piston engine"> piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/91124/small-scale-waste-to-energy-systems-optimization-of-feedstock-composition-for-improved-control-of-ash-sintering-and-quality-of-generated-syngas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharminer%20Singh">Dharminer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Yadav"> Sanjeev Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravakar%20Mohanty"> Pravakar Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bubbling%20fluidized%20bed%20gasifier" title="air bubbling fluidized bed gasifier">air bubbling fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut%20shell%20powder" title=" groundnut shell powder"> groundnut shell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratio%20%28ER%29" title=" equivalence ratio (ER)"> equivalence ratio (ER)</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20gas%20efficiency" title=" cold gas efficiency"> cold gas efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20conversion%20efficiency%20%28CCE%29" title=" carbon conversion efficiency (CCE)"> carbon conversion efficiency (CCE)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20heating%20value%20%28HHV%29" title=" high heating value (HHV)"> high heating value (HHV)</a> </p> <a href="https://publications.waset.org/abstracts/58374/gasification-of-groundnut-shell-in-an-air-bubbling-fluidized-bed-gasifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Experimental Study on Effects of Addition of Rice Husk on Coal Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bharath">M. Bharath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudevan%20Raghavan"> Vasudevan Raghavan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20S.%20S.%20S.%20Prasad"> B. V. S. S. S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Chakravarthy"> S. R. Chakravarthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H<sub>2</sub> remain almost unchanged and CO<sub>2</sub> decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm<sup>3</sup>. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbling%20fluidized%20bed%20reactor" title="bubbling fluidized bed reactor">bubbling fluidized bed reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20gasification" title=" coal gasification"> coal gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/90338/experimental-study-on-effects-of-addition-of-rice-husk-on-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Condition for Plasma Instability and Stability Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Sen">Ratna Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jello" title="jello">jello</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20configuration" title=" magnetic field configuration"> magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20approximation" title=" MHD approximation"> MHD approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20principle" title=" energy principle"> energy principle</a> </p> <a href="https://publications.waset.org/abstracts/50172/condition-for-plasma-instability-and-stability-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Laboratory Scale Experimental Studies on CO₂ Based Underground Coal Gasification in Context of Clean Coal Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Kumari">Geeta Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabu%20Vairakannu"> Prabu Vairakannu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coal is the largest fossil fuel. In India, around 37 % of coal resources found at a depth of more than 300 meters. In India, more than 70% of electricity production depends on coal. Coal on combustion produces greenhouse and pollutant gases such as CO₂, SOₓ, NOₓ, and H₂S etc. Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts these unmineable coals into valuable calorific gases. The UCG syngas (mainly H₂, CO, CH₄ and some lighter hydrocarbons) which can utilized for the production of electricity and manufacturing of various useful chemical feedstock. It is an inherent clean coal technology as it avoids ash disposal, mining, transportation and storage problems. Gasification of underground coal using steam as a gasifying medium is not an easy process because sending superheated steam to deep underground coal leads to major transportation difficulties and cost effective. Therefore, for reducing this problem, we have used CO₂ as a gasifying medium, which is a major greenhouse gas. This paper focus laboratory scale underground coal gasification experiment on a coal block by using CO₂ as a gasifying medium. In the present experiment, first, we inject oxygen for combustion for 1 hour and when the temperature of the zones reached to more than 1000 ºC, and then we started supplying of CO₂ as a gasifying medium. The gasification experiment was performed at an atmospheric pressure of CO₂, and it was found that the amount of CO produced due to Boudouard reaction (C+CO₂  2CO) is around 35%. The experiment conducted to almost 5 hours. The maximum gas composition observed, 35% CO, 22 % H₂, and 11% CH4 with LHV 248.1 kJ/mol at CO₂/O₂ ratio 0.4 by volume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=underground%20coal%20gasification" title="underground coal gasification">underground coal gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20coal%20technology" title=" clean coal technology"> clean coal technology</a>, <a href="https://publications.waset.org/abstracts/search?q=calorific%20value" title=" calorific value"> calorific value</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/73112/laboratory-scale-experimental-studies-on-co2-based-underground-coal-gasification-in-context-of-clean-coal-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> In-situ Oxygen Enrichment for Underground Coal Gasification </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adesola%20O.%20Orimoloye">Adesola O. Orimoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membranes" title="membranes">membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen-enrichment" title=" oxygen-enrichment"> oxygen-enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a> </p> <a href="https://publications.waset.org/abstracts/21892/in-situ-oxygen-enrichment-for-underground-coal-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahrul%20Faizi%20M.%20S.">Zahrul Faizi M. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20A."> Ali A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhuda%20A.%20M."> Norhuda A. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon-negative%20energy" title="carbon-negative energy">carbon-negative energy</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock%20flexibility" title=" feedstock flexibility"> feedstock flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/124433/flexible-feedstock-concept-in-gasification-process-for-carbon-negative-energy-technology-a-case-study-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angga%20Pratama%20Herman">Angga Pratama Herman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Shahbaz"> Muhammad Shahbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Yusup"> Suzana Yusup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title="bottom ash">bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20steam%20gasification" title=" biomass steam gasification"> biomass steam gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20scale" title=" lab scale"> lab scale</a> </p> <a href="https://publications.waset.org/abstracts/43272/utilization-of-bottom-ash-as-catalyst-in-biomass-steam-gasification-for-hydrogen-and-syngas-production-lab-scale-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Awais">Muhammad Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li"> Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjum%20Munir"> Anjum Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20system" title=" cleaning system"> cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20filter" title=" biomass filter"> biomass filter</a> </p> <a href="https://publications.waset.org/abstracts/104807/removal-of-tar-contents-in-syngas-by-using-different-fuel-from-downdraft-biomass-gasification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasma%20gasification&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10