CINXE.COM

向量 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>向量 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"9d09945c-3042-436a-854d-fe7002760ccf","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"向量","wgTitle":"向量","wgCurRevisionId":85045607,"wgRevisionId":85045607,"wgArticleId":69524,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["引文格式1错误:日期","含有英語的條目","有未列明来源语句的条目","向量","向量分析","基本物理概念","物理量"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"向量","wgRelevantArticleId":69524,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true, "wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44528","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font": "ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas","ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices", "ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/1200px-Vector_space_illust.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1467"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/800px-Vector_space_illust.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="978"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/640px-Vector_space_illust.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="782"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="向量 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E5%90%91%E9%87%8F"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E5%90%91%E9%87%8F"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E5%90%91%E9%87%8F"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-向量 rootpage-向量 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%90%91%E9%87%8F" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%90%91%E9%87%8F" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=spontaneous&amp;uselang=zh-hans"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E5%90%91%E9%87%8F" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E5%90%91%E9%87%8F" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-不同学科中的向量" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#不同学科中的向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>不同学科中的向量</span> </div> </a> <button aria-controls="toc-不同学科中的向量-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关不同学科中的向量子章节</span> </button> <ul id="toc-不同学科中的向量-sublist" class="vector-toc-list"> <li id="toc-数学" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#数学"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>数学</span> </div> </a> <ul id="toc-数学-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-物理学与工程学" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#物理学与工程学"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>物理学与工程学</span> </div> </a> <ul id="toc-物理学与工程学-sublist" class="vector-toc-list"> <li id="toc-固定向量" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#固定向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.1</span> <span>固定向量</span> </div> </a> <ul id="toc-固定向量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-自由向量" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#自由向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.2</span> <span>自由向量</span> </div> </a> <ul id="toc-自由向量-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-表示方法" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#表示方法"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>表示方法</span> </div> </a> <button aria-controls="toc-表示方法-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关表示方法子章节</span> </button> <ul id="toc-表示方法-sublist" class="vector-toc-list"> <li id="toc-形式表示" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#形式表示"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>形式表示</span> </div> </a> <ul id="toc-形式表示-sublist" class="vector-toc-list"> <li id="toc-带箭头字母" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#带箭头字母"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>带箭头字母</span> </div> </a> <ul id="toc-带箭头字母-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-粗体字母" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#粗体字母"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>粗体字母</span> </div> </a> <ul id="toc-粗体字母-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-几何表示" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#几何表示"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>几何表示</span> </div> </a> <ul id="toc-几何表示-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-代数表示" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#代数表示"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>代数表示</span> </div> </a> <ul id="toc-代数表示-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-特殊向量" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#特殊向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>特殊向量</span> </div> </a> <button aria-controls="toc-特殊向量-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关特殊向量子章节</span> </button> <ul id="toc-特殊向量-sublist" class="vector-toc-list"> <li id="toc-单位向量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#单位向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>单位向量</span> </div> </a> <ul id="toc-单位向量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-反向量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#反向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>反向量</span> </div> </a> <ul id="toc-反向量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-零向量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#零向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>零向量</span> </div> </a> <ul id="toc-零向量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-等向量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#等向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>等向量</span> </div> </a> <ul id="toc-等向量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-方向向量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#方向向量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>方向向量</span> </div> </a> <ul id="toc-方向向量-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-向量的性质" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#向量的性质"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>向量的性质</span> </div> </a> <button aria-controls="toc-向量的性质-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关向量的性质子章节</span> </button> <ul id="toc-向量的性质-sublist" class="vector-toc-list"> <li id="toc-有向線段" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#有向線段"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>有向線段</span> </div> </a> <ul id="toc-有向線段-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-大小" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#大小"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>大小</span> </div> </a> <ul id="toc-大小-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-夹角" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#夹角"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>夹角</span> </div> </a> <ul id="toc-夹角-sublist" class="vector-toc-list"> </ul> </li> <li id="toc--{|zh-hant:線性相依性;zh-cn:线性相关性}-" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#-{|zh-hant:線性相依性;zh-cn:线性相关性}-"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>線性相依性</span> </div> </a> <ul id="toc--{|zh-hant:線性相依性;zh-cn:线性相关性}--sublist" class="vector-toc-list"> <li id="toc--{|zh-hant:線性相依;zh-cn:线性相关}-" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#-{|zh-hant:線性相依;zh-cn:线性相关}-"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>線性相依</span> </div> </a> <ul id="toc--{|zh-hant:線性相依;zh-cn:线性相关}--sublist" class="vector-toc-list"> </ul> </li> <li id="toc--{|zh-hant:線性獨立;zh-cn:线性无关}-" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#-{|zh-hant:線性獨立;zh-cn:线性无关}-"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.2</span> <span>線性獨立</span> </div> </a> <ul id="toc--{|zh-hant:線性獨立;zh-cn:线性无关}--sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-向量運算" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#向量運算"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>向量運算</span> </div> </a> <button aria-controls="toc-向量運算-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关向量運算子章节</span> </button> <ul id="toc-向量運算-sublist" class="vector-toc-list"> <li id="toc-加法与减法" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#加法与减法"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>加法与减法</span> </div> </a> <ul id="toc-加法与减法-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-向量与積" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#向量与積"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>向量与積</span> </div> </a> <ul id="toc-向量与積-sublist" class="vector-toc-list"> </ul> </li> <li id="toc--{|zh-hant:純量乘法;zh-cn:标量乘法}-" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#-{|zh-hant:純量乘法;zh-cn:标量乘法}-"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>純量乘法</span> </div> </a> <ul id="toc--{|zh-hant:純量乘法;zh-cn:标量乘法}--sublist" class="vector-toc-list"> </ul> </li> <li id="toc--{|zh-hant:內積;zh-cn:数量积}-" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#-{|zh-hant:內積;zh-cn:数量积}-"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>內積</span> </div> </a> <ul id="toc--{|zh-hant:內積;zh-cn:数量积}--sublist" class="vector-toc-list"> </ul> </li> <li id="toc-向量积" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#向量积"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.5</span> <span>向量积</span> </div> </a> <ul id="toc-向量积-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-混合积" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#混合积"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.6</span> <span>混合积</span> </div> </a> <ul id="toc-混合积-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-线性组合" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#线性组合"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.7</span> <span>线性组合</span> </div> </a> <ul id="toc-线性组合-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-关于向量运算的定理" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#关于向量运算的定理"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>关于向量运算的定理</span> </div> </a> <button aria-controls="toc-关于向量运算的定理-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关关于向量运算的定理子章节</span> </button> <ul id="toc-关于向量运算的定理-sublist" class="vector-toc-list"> <li id="toc-向量与定比分点、中点公式" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#向量与定比分点、中点公式"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>向量与定比分点、中点公式</span> </div> </a> <ul id="toc-向量与定比分点、中点公式-sublist" class="vector-toc-list"> <li id="toc-附:平面几何中定比分点定理的证明" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#附:平面几何中定比分点定理的证明"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>附:平面几何中定比分点定理的证明</span> </div> </a> <ul id="toc-附:平面几何中定比分点定理的证明-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-注释" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#注释"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>注释</span> </div> </a> <ul id="toc-注释-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参见" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#参见"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>参见</span> </div> </a> <ul id="toc-参见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参考文献" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#参考文献"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>参考文献</span> </div> </a> <ul id="toc-参考文献-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">向量</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。95种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-95" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">95种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Vektor_(Wiskunde)" title="Vektor (Wiskunde) – 南非荷兰语" lang="af" hreflang="af" data-title="Vektor (Wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="南非荷兰语" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Vektor" title="Vektor – 瑞士德语" lang="gsw" hreflang="gsw" data-title="Vektor" data-language-autonym="Alemannisch" data-language-local-name="瑞士德语" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8C%A8%E1%88%A8%E1%88%AD" title="ጨረር – 阿姆哈拉语" lang="am" hreflang="am" data-title="ጨረር" data-language-autonym="አማርኛ" data-language-local-name="阿姆哈拉语" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AA%D8%AC%D9%87" title="متجه – 阿拉伯语" lang="ar" hreflang="ar" data-title="متجه" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Vector" title="Vector – 阿斯图里亚斯语" lang="ast" hreflang="ast" data-title="Vector" data-language-autonym="Asturianu" data-language-local-name="阿斯图里亚斯语" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Vektor_(h%C9%99nd%C9%99s%C9%99)" title="Vektor (həndəsə) – 阿塞拜疆语" lang="az" hreflang="az" data-title="Vektor (həndəsə)" data-language-autonym="Azərbaycanca" data-language-local-name="阿塞拜疆语" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DB%8C%D8%A4%D9%86%D8%A6%DB%8C_(%D9%87%D9%86%D8%AF%D8%B3%D9%87)" title="یؤنئی (هندسه) – South Azerbaijani" lang="azb" hreflang="azb" data-title="یؤنئی (هندسه)" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – 巴什基尔语" lang="ba" hreflang="ba" data-title="Вектор (геометрия)" data-language-autonym="Башҡортса" data-language-local-name="巴什基尔语" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%B0%D1%80_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Вектар (матэматыка) – 白俄罗斯语" lang="be" hreflang="be" data-title="Вектар (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="白俄罗斯语" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D1%8D%D0%BA%D1%82%D0%B0%D1%80" title="Вэктар – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вэктар" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – 保加利亚语" lang="bg" hreflang="bg" data-title="Вектор" data-language-autonym="Български" data-language-local-name="保加利亚语" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%A6%E0%A6%BF%E0%A6%95_%E0%A6%B0%E0%A6%BE%E0%A6%B6%E0%A6%BF" title="সদিক রাশি – 孟加拉语" lang="bn" hreflang="bn" data-title="সদিক রাশি" data-language-autonym="বাংলা" data-language-local-name="孟加拉语" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Euklidski_vektor" title="Euklidski vektor – 波斯尼亚语" lang="bs" hreflang="bs" data-title="Euklidski vektor" data-language-autonym="Bosanski" data-language-local-name="波斯尼亚语" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Vector_(matem%C3%A0tiques)" title="Vector (matemàtiques) – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Vector (matemàtiques)" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/Hi%C3%B3ng-li%C3%B4ng" title="Hióng-liông – Mindong" lang="cdo" hreflang="cdo" data-title="Hióng-liông" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A6%D8%A7%DA%95%D8%A7%D8%B3%D8%AA%DB%95%D8%A8%DA%95%DB%8C_%D8%A6%DB%8C%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C" title="ئاڕاستەبڕی ئیقلیدسی – 中库尔德语" lang="ckb" hreflang="ckb" data-title="ئاڕاستەبڕی ئیقلیدسی" data-language-autonym="کوردی" data-language-local-name="中库尔德语" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vektor" title="Vektor – 捷克语" lang="cs" hreflang="cs" data-title="Vektor" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8)" title="Вектор (геометри) – 楚瓦什语" lang="cv" hreflang="cv" data-title="Вектор (геометри)" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什语" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Fector" title="Fector – 威尔士语" lang="cy" hreflang="cy" data-title="Fector" data-language-autonym="Cymraeg" data-language-local-name="威尔士语" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Vektor_(geometri)" title="Vektor (geometri) – 丹麦语" lang="da" hreflang="da" data-title="Vektor (geometri)" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Vektor" title="Vektor – 德语" lang="de" hreflang="de" data-title="Vektor" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B5%CE%B9%CE%BF_%CE%B4%CE%B9%CE%AC%CE%BD%CF%85%CF%83%CE%BC%CE%B1" title="Ευκλείδειο διάνυσμα – 希腊语" lang="el" hreflang="el" data-title="Ευκλείδειο διάνυσμα" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Euclidean_vector" title="Euclidean vector – 英语" lang="en" hreflang="en" data-title="Euclidean vector" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Vektoro" title="Vektoro – 世界语" lang="eo" hreflang="eo" data-title="Vektoro" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Vector" title="Vector – 西班牙语" lang="es" hreflang="es" data-title="Vector" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Vektor" title="Vektor – 爱沙尼亚语" lang="et" hreflang="et" data-title="Vektor" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bektore_(matematika)" title="Bektore (matematika) – 巴斯克语" lang="eu" hreflang="eu" data-title="Bektore (matematika)" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%D8%B1%D8%AF%D8%A7%D8%B1_%D8%A7%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C" title="بردار اقلیدسی – 波斯语" lang="fa" hreflang="fa" data-title="بردار اقلیدسی" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Vektori" title="Vektori – 芬兰语" lang="fi" hreflang="fi" data-title="Vektori" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Vecteur_euclidien" title="Vecteur euclidien – 法语" lang="fr" hreflang="fr" data-title="Vecteur euclidien" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Vektor" title="Vektor – 北弗里西亚语" lang="frr" hreflang="frr" data-title="Vektor" data-language-autonym="Nordfriisk" data-language-local-name="北弗里西亚语" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Veicteoir" title="Veicteoir – 爱尔兰语" lang="ga" hreflang="ga" data-title="Veicteoir" data-language-autonym="Gaeilge" data-language-local-name="爱尔兰语" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Bheactor" title="Bheactor – 苏格兰盖尔语" lang="gd" hreflang="gd" data-title="Bheactor" data-language-autonym="Gàidhlig" data-language-local-name="苏格兰盖尔语" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Vector" title="Vector – 加利西亚语" lang="gl" hreflang="gl" data-title="Vector" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%95%D7%A7%D7%98%D7%95%D7%A8_%D7%90%D7%95%D7%A7%D7%9C%D7%99%D7%93%D7%99" title="וקטור אוקלידי – 希伯来语" lang="he" hreflang="he" data-title="וקטור אוקלידי" data-language-autonym="עברית" data-language-local-name="希伯来语" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%A6%E0%A4%BF%E0%A4%B6_%E0%A4%B0%E0%A4%BE%E0%A4%B6%E0%A4%BF" title="सदिश राशि – 印地语" lang="hi" hreflang="hi" data-title="सदिश राशि" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Vektor" title="Vektor – 克罗地亚语" lang="hr" hreflang="hr" data-title="Vektor" data-language-autonym="Hrvatski" data-language-local-name="克罗地亚语" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Vekt%C3%A8" title="Vektè – 海地克里奥尔语" lang="ht" hreflang="ht" data-title="Vektè" data-language-autonym="Kreyòl ayisyen" data-language-local-name="海地克里奥尔语" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vektor" title="Vektor – 匈牙利语" lang="hu" hreflang="hu" data-title="Vektor" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Vektor_Euklides" title="Vektor Euklides – 印度尼西亚语" lang="id" hreflang="id" data-title="Vektor Euklides" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Vektoro" title="Vektoro – 伊多语" lang="io" hreflang="io" data-title="Vektoro" data-language-autonym="Ido" data-language-local-name="伊多语" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Vigur_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Vigur (stærðfræði) – 冰岛语" lang="is" hreflang="is" data-title="Vigur (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="冰岛语" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Vettore_(matematica)" title="Vettore (matematica) – 意大利语" lang="it" hreflang="it" data-title="Vettore (matematica)" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%A9%BA%E9%96%93%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB" title="空間ベクトル – 日语" lang="ja" hreflang="ja" data-title="空間ベクトル" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%95%E1%83%94%E1%83%A5%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%98" title="ვექტორი – 格鲁吉亚语" lang="ka" hreflang="ka" data-title="ვექტორი" data-language-autonym="ქართული" data-language-local-name="格鲁吉亚语" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – 哈萨克语" lang="kk" hreflang="kk" data-title="Вектор" data-language-autonym="Қазақша" data-language-local-name="哈萨克语" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EB%B2%A1%ED%84%B0" title="유클리드 벡터 – 韩语" lang="ko" hreflang="ko" data-title="유클리드 벡터" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Vector_(mathematica)" title="Vector (mathematica) – 拉丁语" lang="la" hreflang="la" data-title="Vector (mathematica)" data-language-autonym="Latina" data-language-local-name="拉丁语" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Vettor_(matematega)" title="Vettor (matematega) – 倫巴底文" lang="lmo" hreflang="lmo" data-title="Vettor (matematega)" data-language-autonym="Lombard" data-language-local-name="倫巴底文" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Vektorius" title="Vektorius – 立陶宛语" lang="lt" hreflang="lt" data-title="Vektorius" data-language-autonym="Lietuvių" data-language-local-name="立陶宛语" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Vektors" title="Vektors – 拉脱维亚语" lang="lv" hreflang="lv" data-title="Vektors" data-language-autonym="Latviešu" data-language-local-name="拉脱维亚语" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Вектор" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="典范条目"><a href="https://mk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – 马其顿语" lang="mk" hreflang="mk" data-title="Вектор" data-language-autonym="Македонски" data-language-local-name="马其顿语" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%A6%E0%B4%BF%E0%B4%B6%E0%B4%82_(%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%BE%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF)" title="സദിശം (ജ്യാമിതി) – 马拉雅拉姆语" lang="ml" hreflang="ml" data-title="സദിശം (ജ്യാമിതി)" data-language-autonym="മലയാളം" data-language-local-name="马拉雅拉姆语" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%B8%D0%B9%D0%BD_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Евклидийн вектор – 蒙古语" lang="mn" hreflang="mn" data-title="Евклидийн вектор" data-language-autonym="Монгол" data-language-local-name="蒙古语" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Vektor" title="Vektor – 马来语" lang="ms" hreflang="ms" data-title="Vektor" data-language-autonym="Bahasa Melayu" data-language-local-name="马来语" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Vettur_ewklidju" title="Vettur ewklidju – 马耳他语" lang="mt" hreflang="mt" data-title="Vettur ewklidju" data-language-autonym="Malti" data-language-local-name="马耳他语" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – 厄尔兹亚语" lang="myv" hreflang="myv" data-title="Вектор (геометрия)" data-language-autonym="Эрзянь" data-language-local-name="厄尔兹亚语" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Vekter" title="Vekter – 低地德语" lang="nds" hreflang="nds" data-title="Vekter" data-language-autonym="Plattdüütsch" data-language-local-name="低地德语" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vector_(wiskunde)" title="Vector (wiskunde) – 荷兰语" lang="nl" hreflang="nl" data-title="Vector (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Vektor" title="Vektor – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="Vektor" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Vektor_(matematikk)" title="Vektor (matematikk) – 书面挪威语" lang="nb" hreflang="nb" data-title="Vektor (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Kalqabee" title="Kalqabee – 奥罗莫语" lang="om" hreflang="om" data-title="Kalqabee" data-language-autonym="Oromoo" data-language-local-name="奥罗莫语" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wektor" title="Wektor – 波兰语" lang="pl" hreflang="pl" data-title="Wektor" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Vetor" title="Vetor – 皮埃蒙特文" lang="pms" hreflang="pms" data-title="Vetor" data-language-autonym="Piemontèis" data-language-local-name="皮埃蒙特文" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%AF_%D8%A7%D9%82%D9%84%D9%8A%D8%AF%D8%B3_%D9%84%D9%88%D8%B1%DB%8C" title="د اقليدس لوری – 普什图语" lang="ps" hreflang="ps" data-title="د اقليدس لوری" data-language-autonym="پښتو" data-language-local-name="普什图语" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Vetor_(matem%C3%A1tica)" title="Vetor (matemática) – 葡萄牙语" lang="pt" hreflang="pt" data-title="Vetor (matemática)" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Vector_euclidian" title="Vector euclidian – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Vector euclidian" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – 俄语" lang="ru" hreflang="ru" data-title="Вектор (геометрия)" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – 萨哈语" lang="sah" hreflang="sah" data-title="Вектор (геометрия)" data-language-autonym="Саха тыла" data-language-local-name="萨哈语" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Vettura_euclideu" title="Vettura euclideu – 西西里语" lang="scn" hreflang="scn" data-title="Vettura euclideu" data-language-autonym="Sicilianu" data-language-local-name="西西里语" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Vektor" title="Vektor – 塞尔维亚-克罗地亚语" lang="sh" hreflang="sh" data-title="Vektor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="塞尔维亚-克罗地亚语" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BA%E0%B7%94%E0%B6%9A%E0%B7%8A%E0%B6%BD%E0%B7%92%E0%B6%A9%E0%B7%92%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%94_%E0%B6%AF%E0%B7%9B%E0%B7%81%E0%B7%92%E0%B6%9A%E0%B6%BA" title="යුක්ලිඩියානු දෛශිකය – 僧伽罗语" lang="si" hreflang="si" data-title="යුක්ලිඩියානු දෛශිකය" data-language-autonym="සිංහල" data-language-local-name="僧伽罗语" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Vector" title="Vector – Simple English" lang="en-simple" hreflang="en-simple" data-title="Vector" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – 斯洛伐克语" lang="sk" hreflang="sk" data-title="Vektor (matematika)" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克语" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Vektor (matematika)" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Vektor" title="Vektor – 伊纳里萨米语" lang="smn" hreflang="smn" data-title="Vektor" data-language-autonym="Anarâškielâ" data-language-local-name="伊纳里萨米语" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Vektori" title="Vektori – 阿尔巴尼亚语" lang="sq" hreflang="sq" data-title="Vektori" data-language-autonym="Shqip" data-language-local-name="阿尔巴尼亚语" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Вектор" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/V%C3%A9ktor_(rohangan)" title="Véktor (rohangan) – 巽他语" lang="su" hreflang="su" data-title="Véktor (rohangan)" data-language-autonym="Sunda" data-language-local-name="巽他语" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Vektor" title="Vektor – 瑞典语" lang="sv" hreflang="sv" data-title="Vektor" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Wekt%C5%AFr" title="Wektůr – 西里西亚语" lang="szl" hreflang="szl" data-title="Wektůr" data-language-autonym="Ślůnski" data-language-local-name="西里西亚语" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%A9%E0%AF%8D" title="திசையன் – 泰米尔语" lang="ta" hreflang="ta" data-title="திசையன்" data-language-autonym="தமிழ்" data-language-local-name="泰米尔语" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A7%E0%B8%81%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="เวกเตอร์ – 泰语" lang="th" hreflang="th" data-title="เวกเตอร์" data-language-autonym="ไทย" data-language-local-name="泰语" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Wektor_ululyklar" title="Wektor ululyklar – 土库曼语" lang="tk" hreflang="tk" data-title="Wektor ululyklar" data-language-autonym="Türkmençe" data-language-local-name="土库曼语" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Euclidyanong_bektor" title="Euclidyanong bektor – 他加禄语" lang="tl" hreflang="tl" data-title="Euclidyanong bektor" data-language-autonym="Tagalog" data-language-local-name="他加禄语" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Vekt%C3%B6r" title="Vektör – 土耳其语" lang="tr" hreflang="tr" data-title="Vektör" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D1%96%D0%B4%D1%96%D0%B2_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Евклідів вектор – 乌克兰语" lang="uk" hreflang="uk" data-title="Евклідів вектор" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C_%D8%B3%D9%85%D8%AA%DB%8C%DB%81" title="اقلیدسی سمتیہ – 乌尔都语" lang="ur" hreflang="ur" data-title="اقلیدسی سمتیہ" data-language-autonym="اردو" data-language-local-name="乌尔都语" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – 乌兹别克语" lang="uz" hreflang="uz" data-title="Vektor (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="乌兹别克语" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Vect%C6%A1" title="Vectơ – 越南语" lang="vi" hreflang="vi" data-title="Vectơ" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%90%91%E9%87%8F" title="向量 – 吴语" lang="wuu" hreflang="wuu" data-title="向量" data-language-autonym="吴语" data-language-local-name="吴语" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%95%D7%95%D7%A2%D7%A7%D7%98%D7%90%D7%A8" title="וועקטאר – 意第绪语" lang="yi" hreflang="yi" data-title="וועקטאר" data-language-autonym="ייִדיש" data-language-local-name="意第绪语" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Hi%C3%B2ng-li%C5%8Dng" title="Hiòng-liōng – 闽南语" lang="nan" hreflang="nan" data-title="Hiòng-liōng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="闽南语" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%90%91%E9%87%8F" title="向量 – 粤语" lang="yue" hreflang="yue" data-title="向量" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44528#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%90%91%E9%87%8F" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E5%90%91%E9%87%8F" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E5%90%91%E9%87%8F" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E5%90%91%E9%87%8F" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E5%90%91%E9%87%8F" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E5%90%91%E9%87%8F" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E5%90%91%E9%87%8F" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E5%90%91%E9%87%8F" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E5%90%91%E9%87%8F" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E5%90%91%E9%87%8F" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E5%90%91%E9%87%8F" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%90%91%E9%87%8F"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E5%90%91%E9%87%8F"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E5%90%91%E9%87%8F" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E5%90%91%E9%87%8F" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;oldid=85045607" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E5%90%91%E9%87%8F&amp;id=85045607&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%2590%2591%25E9%2587%258F"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E5%2590%2591%25E9%2587%258F"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E5%90%91%E9%87%8F&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Vectors" hreflang="en"><span>维基共享资源</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://zh.wikibooks.org/wiki/%E9%AB%98%E4%B8%AD%E6%95%B0%E5%AD%A6/%E7%9B%AE%E5%BD%95/%E5%90%91%E9%87%8F%E4%B8%8E%E5%A4%8D%E6%95%B0" hreflang="zh"><span>维基教科书</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44528" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-32454816" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-32454816" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Physics"></div><div data-noteta-group-source="module" data-noteta-group="Math"></div></div></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_space_illust.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/220px-Vector_space_illust.svg.png" decoding="async" width="220" height="269" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/330px-Vector_space_illust.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c8/Vector_space_illust.svg/440px-Vector_space_illust.svg.png 2x" data-file-width="454" data-file-height="555" /></a><figcaption>许多的箭头代表了许多向量。</figcaption></figure> <table class="infobox noprint" style="width:210px; float: right; clear: right; text-align:center; margin-top:1em;"> <tbody><tr> <th style="font-size:90%; background:#DCF0FF"><a href="/wiki/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="线性代数">线性代数</a> </th></tr> <tr> <td><div style="padding-top: 7px; padding-bottom: 4px;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">A</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mn>3</mn> </mtd> <mtd> <mn>4</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a31efc33ac33577d719a3ccd162a9bf21e4847ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.972ex; height:6.176ex;" alt="{\displaystyle \mathbf {A} ={\begin{bmatrix}1&amp;2\\3&amp;4\end{bmatrix}}}"></span></div> </td></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a class="mw-selflink selflink">向量</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%9F%BA_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="基 (線性代數)">基底</a> <span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式">行列式</a> <span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a></span> </td></tr> <tr> <td> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">向量 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E6%A0%87%E9%87%8F_(%E6%95%B0%E5%AD%A6)" title="标量 (数学)">标量</a> ·</span> <span class="nowrap"><a class="mw-selflink selflink">向量</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">向量投影</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%A4%96%E7%A7%AF" class="mw-disambig" title="外积">外积</a>(<a href="/wiki/%E5%8F%89%E7%A7%AF" title="叉积">向量积</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%B8%83%E7%BB%B4%E5%8F%89%E7%A7%AF" title="七维叉积">七维向量积</a>) ·</span> <span class="nowrap"><a href="/wiki/%E5%86%85%E7%A7%AF%E7%A9%BA%E9%97%B4" title="内积空间">内积</a>(<a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">数量积</a>) ·</span> <span class="nowrap"><a href="/wiki/%E4%BA%8C%E9%87%8D%E5%90%91%E9%87%8F" title="二重向量">二重向量</a></span> </td></tr></tbody></table> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">矩阵与行列式 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式">行列式</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84" title="线性方程组">线性方程组</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%A7%A9_(%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0)" title="秩 (线性代数)">秩</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%9B%B6%E7%A9%BA%E9%97%B4" title="零空间">核</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%B7%A1" title="跡">跡</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%96%AE%E4%BD%8D%E7%9F%A9%E9%99%A3" title="單位矩陣">單位矩陣</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%88%9D%E7%AD%89%E7%9F%A9%E9%98%B5" title="初等矩阵">初等矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%96%B9%E5%9D%97%E7%9F%A9%E9%98%B5" title="方块矩阵">方块矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%88%86%E5%A1%8A%E7%9F%A9%E9%99%A3" title="分塊矩陣">分块矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%B8%89%E8%A7%92%E7%9F%A9%E9%98%B5" title="三角矩阵">三角矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%9D%9E%E5%A5%87%E5%BC%82%E6%96%B9%E9%98%B5" title="非奇异方阵">非奇异方阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%BD%AC%E7%BD%AE%E7%9F%A9%E9%98%B5" title="转置矩阵">转置矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%80%86%E7%9F%A9%E9%98%B5" title="逆矩阵">逆矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%B0%8D%E8%A7%92%E7%9F%A9%E9%99%A3" title="對角矩陣">对角矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%8F%AF%E5%AF%B9%E8%A7%92%E5%8C%96%E7%9F%A9%E9%98%B5" title="可对角化矩阵">可对角化矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="對稱矩陣">对称矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%8F%8D%E5%B0%8D%E7%A8%B1%E7%9F%A9%E9%99%A3" title="反對稱矩陣">反對稱矩陣</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E4%BA%A4%E7%9F%A9%E9%98%B5" title="正交矩阵">正交矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%85%89%E7%9F%A9%E9%98%B5" title="酉矩阵">幺正矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%9F%83%E5%B0%94%E7%B1%B3%E7%89%B9%E7%9F%A9%E9%98%B5" title="埃尔米特矩阵">埃尔米特矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%96%9C%E5%9F%83%E5%B0%94%E7%B1%B3%E7%89%B9%E7%9F%A9%E9%98%B5" title="斜埃尔米特矩阵">反埃尔米特矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E8%A7%84%E7%9F%A9%E9%98%B5" title="正规矩阵">正规矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E4%BC%B4%E9%9A%8F%E7%9F%A9%E9%98%B5" title="伴随矩阵">伴随矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E9%A4%98%E5%9B%A0%E5%AD%90%E7%9F%A9%E9%99%A3" title="餘因子矩陣">余因子矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%85%B1%E8%BD%AD%E8%BD%AC%E7%BD%AE" title="共轭转置">共轭转置</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5" title="正定矩阵">正定矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%B9%82%E9%9B%B6%E7%9F%A9%E9%98%B5" title="幂零矩阵">幂零矩阵</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%9F%A9%E9%98%B5%E5%88%86%E8%A7%A3" title="矩阵分解">矩阵分解</a> (<a href="/wiki/LU%E5%88%86%E8%A7%A3" title="LU分解">LU分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%A5%87%E5%BC%82%E5%80%BC%E5%88%86%E8%A7%A3" title="奇异值分解">奇异值分解</a> ·</span> <span class="nowrap"><a href="/wiki/QR%E5%88%86%E8%A7%A3" title="QR分解">QR分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%9E%81%E5%88%86%E8%A7%A3" title="极分解">极分解</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%89%B9%E5%BE%81%E5%88%86%E8%A7%A3" title="特征分解">特征分解</a>) ·</span> <span class="nowrap"><a href="/wiki/%E5%AD%90%E5%BC%8F%E5%92%8C%E4%BD%99%E5%AD%90%E5%BC%8F" title="子式和余子式">子式和余子式</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF%E5%B1%95%E5%BC%80" title="拉普拉斯展开">拉普拉斯展開</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%85%8B%E7%BD%97%E5%86%85%E5%85%8B%E7%A7%AF" title="克罗内克积">克罗内克积</a></span> </td></tr></tbody></table> <table class="collapsible collapsed" width="100%"> <tbody><tr> <th style="text-align: left; background: #DCF0FF; font-size: 90%;">线性空间与线性变换 </th></tr> <tr style="font-size: 90%; line-height: 150%;"> <td><span class="nowrap"><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">线性空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性变换</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E5%AD%90%E7%A9%BA%E9%97%B4" title="线性子空间">线性子空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%94%9F%E6%88%90%E7%A9%BA%E9%97%B4" title="线性生成空间">线性生成空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%9F%BA_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="基 (線性代數)">基</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性映射</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%8A%95%E5%BD%B1" class="mw-disambig" title="投影">线性投影</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%B7%9A%E6%80%A7%E7%84%A1%E9%97%9C" title="線性無關">線性無關</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%BB%84%E5%90%88" title="线性组合">线性组合</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%B3%9B%E5%87%BD" class="mw-redirect" title="线性泛函">线性泛函</a> ·</span> <span class="nowrap"><a href="/wiki/%E8%A1%8C%E7%A9%BA%E9%97%B4%E4%B8%8E%E5%88%97%E7%A9%BA%E9%97%B4" title="行空间与列空间">行空间与列空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E5%AF%B9%E5%81%B6%E7%A9%BA%E9%97%B4" title="对偶空间">对偶空间</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%AD%A3%E4%BA%A4" title="正交">正交</a> ·</span> <span class="nowrap"><a href="/wiki/%E7%89%B9%E5%BE%81%E5%80%BC%E5%92%8C%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F" title="特征值和特征向量">特征向量</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95" title="最小二乘法">最小二乘法</a> ·</span> <span class="nowrap"><a href="/wiki/%E6%A0%BC%E6%8B%89%E5%A7%86-%E6%96%BD%E5%AF%86%E7%89%B9%E6%AD%A3%E4%BA%A4%E5%8C%96" title="格拉姆-施密特正交化">格拉姆-施密特正交化</a></span> </td></tr></tbody></table> </td></tr> <tr style="text-align: center; font-size: 90%;"> <td><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="Template:线性代数"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="Template talk:线性代数(页面不存在)"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="Special:编辑页面/Template:线性代数"><abbr title="编辑该模板">编</abbr></a></li></ul></div> </td></tr></tbody></table> <p><b>向量</b>(<span lang="en">vector</span>,在中国大陆物理、工程领域通称<b>矢量</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><span id="noteTag-cite_ref-sup"><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>註 1<span class="cite-bracket">&#93;</span></a></sup></span>),<style data-mw-deduplicate="TemplateStyles:r83946278">.mw-parser-output .template-facttext{background-color:var(--background-color-neutral,#eaecf0);color:inherit;margin:-.3em 0;padding:.3em 0}</style><mark class="template-facttext" title="需要提供文献来源">又称<b>欧几里得向量</b>(<span lang="en">Euclidean vector</span>)</mark><sup class="noprint Template-Fact"><a href="/wiki/Wikipedia:%E5%88%97%E6%98%8E%E6%9D%A5%E6%BA%90" title="Wikipedia:列明来源"><span style="white-space: nowrap;" title="来源请求。">&#91;來源請求&#93;</span></a></sup>,是同时具有<a href="/wiki/%E6%95%B0%E5%80%BC" class="mw-redirect" title="数值">大小</a>和<a href="/wiki/%E6%96%B9%E5%90%91" class="mw-redirect" title="方向">方向</a>,且满足<a href="/wiki/%E6%B7%A8%E5%8A%9B" title="淨力">平行四边形法则</a>的<a href="/wiki/%E5%87%A0%E4%BD%95" class="mw-redirect" title="几何">几何</a>對象。向量是<a href="/wiki/%E6%95%B0%E5%AD%A6" title="数学">数学</a>、<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6" title="物理学">物理学</a>和<a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%A6" title="工程学">工程科学</a>等多个<a href="/wiki/%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%B8" class="mw-redirect" title="自然科學">自然科學</a>中的基本概念。 </p><p><a href="/wiki/%E7%90%86%E8%AE%BA%E6%95%B0%E5%AD%A6" class="mw-redirect" title="理论数学">理论数学</a>中向量的定义为任何在稱為<a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a>的代數結構中的元素。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量<span id="noteTag-cite_ref-sup"><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>註 2<span class="cite-bracket">&#93;</span></a></sup></span>。 </p><p>向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量、纯量、数量,即只有大小、绝大多数情况下没有方向(<a href="/wiki/%E7%94%B5%E6%B5%81" title="电流">电流</a>是特例)、不满足平行四边形法则的量。 </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="不同学科中的向量"><span id=".E4.B8.8D.E5.90.8C.E5.AD.A6.E7.A7.91.E4.B8.AD.E7.9A.84.E5.90.91.E9.87.8F"></span>不同学科中的向量</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=1" title="编辑章节:不同学科中的向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="数学"><span id=".E6.95.B0.E5.AD.A6"></span>数学</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=2" title="编辑章节:数学"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>在<a href="/wiki/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="线性代数">线性代数</a>中,向量常常采用更为抽象的<a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a>(也称为线性空间)来定义。向量是<a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a>中的基本构成元素。 </p><p>向量空间是基于<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6" title="物理学">物理学</a>或<a href="/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学">几何学</a>中的空间概念,抽象出其代數性質所形成的一个概念,是一個满足一系列法则的代數結構。向量空間相伴的純量未必是實數,可以是複數、有理數等<a href="/wiki/%E5%9F%9F_(%E6%95%B8%E5%AD%B8)" class="mw-redirect" title="域 (數學)">域</a>。<a href="/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%A9%BA%E9%97%B4" title="欧几里得空间">欧几里得空间</a>便是<a href="/wiki/%E7%BA%BF%E6%80%A7%E7%A9%BA%E9%97%B4" class="mw-redirect" title="线性空间">线性空间</a>的一种。向量空间中的元素就可以被称为向量,而<a href="/w/index.php?title=%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E5%90%91%E9%87%8F&amp;action=edit&amp;redlink=1" class="new" title="欧几里得向量(页面不存在)">欧几里得向量</a>则是特指欧几里得空间中的向量。更一般的向量空間,例如所有次數不大於3的複係數多項式的集合;所有6×6實對稱矩陣的集合;區間[0, 1]上的所有實值連續函數的集合;所有收斂於0的複數數列的集合等。 </p> <div class="mw-heading mw-heading3"><h3 id="物理学与工程学"><span id=".E7.89.A9.E7.90.86.E5.AD.A6.E4.B8.8E.E5.B7.A5.E7.A8.8B.E5.AD.A6"></span>物理学与工程学</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=3" title="编辑章节:物理学与工程学"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>矢量可以描述许多常见的物理量,如运动学中的<a href="/wiki/%E4%BD%8D%E7%A7%BB" title="位移">位移</a>、<a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a>、<a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a>,力学中的<a href="/wiki/%E5%8A%9B" title="力">力</a>、<a href="/wiki/%E5%8A%9B%E7%9F%A9" title="力矩">力矩</a>,电磁学中的<a href="/wiki/%E7%94%B5%E6%B5%81%E5%AF%86%E5%BA%A6" title="电流密度">电流密度</a>、<a href="/wiki/%E7%A3%81%E7%9F%A9" title="磁矩">磁矩</a>、<a href="/wiki/%E7%94%B5%E7%A3%81%E6%B3%A2" title="电磁波">电磁波</a>等等。 </p><p><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6" title="物理学">物理学</a>和一般的<a href="/wiki/%E5%87%A0%E4%BD%95%E5%AD%A6" title="几何学">几何学</a>中涉及的向量概念严格意义上应当被称为<b>欧几里得向量</b>或<b>几何向量</b>。定义具有物理意义上的大小和方向的向量概念则需要引进了定义了<a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a>和<a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">内积</a>的<a href="/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%A9%BA%E9%97%B4" title="欧几里得空间">欧几里得空间</a>。按照定义,欧几里得向量由大小和方向构成。 </p> <div class="mw-heading mw-heading4"><h4 id="固定向量"><span id=".E5.9B.BA.E5.AE.9A.E5.90.91.E9.87.8F"></span>固定向量</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=4" title="编辑章节:固定向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>在一些上下文中,尤其在物理学领域,有些向量会与起点有关(如一个力与其的作用点有关,<a href="/wiki/%E8%B4%A8%E7%82%B9" class="mw-redirect" title="质点">质点</a>运动速度与该质点的位置有关),因而假设向量有确定的起点和终点<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>,当起点和终点改变后,构成的向量就不再是原来的向量。这样的向量也被称为<b>固定向量</b>。例子之一是<a href="/wiki/%E8%BF%90%E5%8A%A8%E5%AD%A6" title="运动学">运动学</a>中常见的物理量<a href="/wiki/%E4%BD%8D%E7%BD%AE%E5%90%91%E9%87%8F" title="位置向量">位置矢量</a>。 </p> <div class="mw-heading mw-heading4"><h4 id="自由向量"><span id=".E8.87.AA.E7.94.B1.E5.90.91.E9.87.8F"></span>自由向量</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=5" title="编辑章节:自由向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector-line.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector-line.png/100px-Vector-line.png" decoding="async" width="100" height="100" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector-line.png/150px-Vector-line.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector-line.png/200px-Vector-line.png 2x" data-file-width="704" data-file-height="704" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77149adfb778a5de4e0f9e99243919227669a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:3.009ex;" alt="{\displaystyle {\overrightarrow {a}}}"></span>的位置可自由移動</figcaption></figure> <p>在另一些时候,由于向量的共性都具有大小和方向,会认为向量的起点和终点并不那么重要。两个起点不一样的向量,只要大小相等,方向相同,就可以称为是同一个向量。这样的向量被称为<b>自由向量</b>。在数学中,一般只研究自由向量,并且数学中所指的向量就是指自由向量。也就是只要大小以及方向一樣,即可視為同一向量,與向量的起始點並無關係。一些文献中会提到向量空间带有一个特定的<a href="/wiki/%E5%8E%9F%E9%BB%9E" title="原點">原点</a>,这时可能会默认向量的起点是原点。<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="表示方法"><span id=".E8.A1.A8.E7.A4.BA.E6.96.B9.E6.B3.95"></span>表示方法</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=6" title="编辑章节:表示方法"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="形式表示"><span id=".E5.BD.A2.E5.BC.8F.E8.A1.A8.E7.A4.BA"></span>形式表示</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=7" title="编辑章节:形式表示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>使用符号的形式实际上只是对向量规定的一个概念化代号。向量在包括数学和物理等诸多领域均被广泛采用,优点是简洁明了,缺点是高度形式和抽象,既缺少几何形象性又缺少定量精确性。 </p> <div class="mw-heading mw-heading4"><h4 id="带箭头字母"><span id=".E5.B8.A6.E7.AE.AD.E5.A4.B4.E5.AD.97.E6.AF.8D"></span>带箭头字母</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=8" title="编辑章节:带箭头字母"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_from_A_to_B.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/220px-Vector_from_A_to_B.svg.png" decoding="async" width="220" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/330px-Vector_from_A_to_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/440px-Vector_from_A_to_B.svg.png 2x" data-file-width="512" data-file-height="204" /></a><figcaption>一从<i>A</i>指向<i>B</i>的向量</figcaption></figure> <p>数学上的向量通常可用加向右箭头的小写字母表示,如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b94b3a2679fba049d7d9b7cce98ba07e7727f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {i}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span>。有时也有用加箭头的大写字母表示数学量,如<a href="/wiki/%E5%BE%AE%E7%A7%AF%E5%88%86" class="mw-redirect" title="微积分">微积分</a>中的面积元<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d{\vec {S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d{\vec {S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/792a6f7db115a1b44f4838b113e79bdeb4c9e960" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.754ex; height:3.009ex;" alt="{\displaystyle d{\vec {S}}}"></span>。给定两点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>时,也可确定一固定向量:如确定一个始于点从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>终于点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>的向量,符号表示为:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {AB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {AB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b245e60e48c3c8f577aaf9512a1bdf3049cc6207" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.372ex; width:3.637ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {AB}}}"></span> </p><p>本方法被广泛用于手写。 </p><p>在表示物理学上的矢量也可用加箭头的小写字母表示,如<a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span>,<a href="/wiki/%E6%91%A9%E6%93%A6%E5%8A%9B" title="摩擦力">摩擦力</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2c36da6dad4ad8949b0f84bbaf0b5cb6d811fe5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.665ex; height:3.343ex;" alt="{\displaystyle {\vec {f}}}"></span>,<a href="/wiki/%E5%8A%A8%E9%87%8F" title="动量">动量</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.415ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}}"></span>。 </p><p>物理学还有许多物理量用加箭头的大写字母表示,如<a href="/wiki/%E7%94%B5%E5%9C%BA%E5%BC%BA%E5%BA%A6" class="mw-redirect" title="电场强度">电场强度</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc18ae485a72f148e85ccbeff2b3dcdd4f5f3f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.843ex;" alt="{\displaystyle {\vec {E}}}"></span>,<a href="/wiki/%E7%A3%81%E5%A0%B4%E5%BC%B7%E5%BA%A6" class="mw-redirect" title="磁場強度">磁场强度</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17aa4b2a53bc35011373e1bfe86baf779b521329" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\vec {H}}}"></span>,<a href="/wiki/%E5%8A%9B" title="力">力</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef40edff397a115ecdce7d3518001dfcc7f37d9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.771ex; height:2.843ex;" alt="{\displaystyle {\vec {F}}}"></span>。 </p> <div class="mw-heading mw-heading4"><h4 id="粗体字母"><span id=".E7.B2.97.E4.BD.93.E5.AD.97.E6.AF.8D"></span>粗体字母</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=9" title="编辑章节:粗体字母"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>向量也可用粗体小写字母表示,如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span>,许多書本会采用此种记法,但缺点是區分粗體字有時不容易,例如 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \!\mathrm {D} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">D</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \!\mathrm {D} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2905d2f1b2a81ea6b8f034e940e8f00f066dfc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.387ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle \!\mathrm {D} }"></span>和 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \!\mathbf {D} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">D</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \!\mathbf {D} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32b3eb0eff703229f9418084fd3762c35d8702ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-left: -0.387ex; width:2.05ex; height:2.176ex;" alt="{\displaystyle \!\mathbf {D} }"></span>肉眼看易混淆。 </p> <div class="mw-heading mw-heading3"><h3 id="几何表示"><span id=".E5.87.A0.E4.BD.95.E8.A1.A8.E7.A4.BA"></span>几何表示</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=10" title="编辑章节:几何表示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>直观上,向量通常被标示为一个带箭头的有向线段。线段的<b>长度</b>表示向量的<b>大小</b>(或称<b>模长</b>),向量的<b>方向</b>即箭头所指的方向,可以記為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>。该种表示的优点是具有强烈的几何直观形象性,缺点是在纸面上作图繁琐,不便定量分析。 </p> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Notation_for_vectors_in_or_out_of_a_plane.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/150px-Notation_for_vectors_in_or_out_of_a_plane.svg.png" decoding="async" width="150" height="57" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/225px-Notation_for_vectors_in_or_out_of_a_plane.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/300px-Notation_for_vectors_in_or_out_of_a_plane.svg.png 2x" data-file-width="512" data-file-height="195" /></a><figcaption>垂直于纸面的向量的表示方式</figcaption></figure> <p>而遇到某些特殊情况(如表示<a href="/wiki/%E7%A3%81%E5%9C%BA" class="mw-redirect" title="磁场">磁场</a>的<a href="/wiki/%E7%A3%81%E6%84%9F%E5%BA%94%E5%BC%BA%E5%BA%A6" title="磁感应强度">磁感应强度</a>)需要表示与记载纸面垂直的向量,则会使用圆圈中打叉或打点的方式来表示(如右图)。圆圈中带点的记号(⊙)表示由纸下方指向纸上方的向量,而圆圈中带叉的记号(⊗)则表示由纸的上方指向纸下方的向量。由于这种记号不表示向量的大小,所以必须时需要在旁边或其它地方另外注明。 </p> <div class="mw-heading mw-heading3"><h3 id="代数表示"><span id=".E4.BB.A3.E6.95.B0.E8.A1.A8.E7.A4.BA"></span>代数表示</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=11" title="编辑章节:代数表示"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:3D_Vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/240px-3D_Vector.svg.png" decoding="async" width="240" height="227" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/360px-3D_Vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/480px-3D_Vector.svg.png 2x" data-file-width="555" data-file-height="525" /></a><figcaption>在三维<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%B0%94%E5%9D%90%E6%A0%87%E7%B3%BB" title="笛卡尔坐标系">笛卡尔坐标系</a>中体现出的向量</figcaption></figure> <p>代数表示指在指定了一个坐标系之后,用一个向量在该坐标系下的坐标来表示该向量,兼具了符号的抽象性和几何形象性,因而具有最高的实用性,被广泛采用于需要定量分析的情形。 对于自由向量,将向量的起点平移到坐标原点后,向量就可以用一个<a href="/wiki/%E5%9D%90%E6%A0%87%E7%B3%BB" class="mw-redirect" title="坐标系">坐标系</a>下的一个点来表示,该点的<a href="/wiki/%E5%9D%90%E6%A0%87" class="mw-redirect" title="坐标">坐标值</a>即向量的终点坐标。 </p><p>设有一向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,有坐标系<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>。在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>中定义好若干个特殊的基本向量(称为<b><a href="/wiki/%E5%9F%BA%E5%90%91%E9%87%8F" class="mw-redirect" title="基向量">基向量</a></b>,各个基向量共同组成该坐标系下的<b><a href="/wiki/%E5%9F%BA%E5%BA%95" class="mw-redirect" title="基底">基底</a></b>)<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18376459a8f1c0021eb6422ca78505db2eb8bcfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.324ex; height:3.343ex;" alt="{\displaystyle {\vec {e_{1}}}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e_{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e_{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08b24ecf4aa4406d5d0259079bdd62428ad12096" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.324ex; height:3.343ex;" alt="{\displaystyle {\vec {e_{2}}}}"></span>,...,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a13692c4d970ac02713f9ce0bd3f311a6e73e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.324ex; height:3.343ex;" alt="{\displaystyle {\vec {e_{n}}}}"></span>之后,则向量在各个<a href="/wiki/%E5%9F%BA%E5%90%91%E9%87%8F" class="mw-redirect" title="基向量">基方向</a>的投影值即为对应的坐标值,各个投影值组成的<b>有序<a href="/wiki/%E6%95%B0%E7%BB%84" title="数组">数组</a></b>,稱為该向量在坐标系<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"></span>的<b><a href="/wiki/%E5%9D%90%E6%A0%87" class="mw-redirect" title="坐标">坐标</a></b>,是向量的唯一表示,即与向量的终点一一对应。换言之,其它的向量只需通过将这些基本向量拉伸后再按照平行四边形法则进行向量加法即可表示(通常被称为“用基底<a href="/wiki/%E7%BA%BF%E6%80%A7%E7%BB%84%E5%90%88" title="线性组合">线性表出</a>一个向量”,即该向量是基向量的某种<a href="/wiki/%E7%BA%BF%E6%80%A7%E7%BB%84%E5%90%88" title="线性组合">线性组合</a>),即: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=a_{1}{\vec {e_{1}}}+...+a_{n}{\vec {e_{n}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=a_{1}{\vec {e_{1}}}+...+a_{n}{\vec {e_{n}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca18b7ac13ab344d663e98d91fe27fa4ea2be22a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.073ex; height:3.343ex;" alt="{\displaystyle {\vec {a}}=a_{1}{\vec {e_{1}}}+...+a_{n}{\vec {e_{n}}},}"></span></dd></dl> <p>其中<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf42ecda092975c9c69dae84e16182ba5fe2e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{1}}"></span>, ..., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790f9209748c2dca7ed7b81932c37c02af1dbc31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.448ex; height:2.009ex;" alt="{\displaystyle a_{n}}"></span>分别为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>在<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e_{1}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e_{1}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18376459a8f1c0021eb6422ca78505db2eb8bcfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.324ex; height:3.343ex;" alt="{\displaystyle {\vec {e_{1}}}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e_{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e_{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a13692c4d970ac02713f9ce0bd3f311a6e73e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.324ex; height:3.343ex;" alt="{\displaystyle {\vec {e_{n}}}}"></span>方向的投影。当基底已知,可直接省略各基向量的符号,类似于坐标系上的点,直接用<b>坐标</b>表示为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=(a_{1},a_{2},...,a_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=(a_{1},a_{2},...,a_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2a6a3bd062c5a4c63435ea8bd94c556b7eecc18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.358ex; height:2.843ex;" alt="{\displaystyle {\vec {a}}=(a_{1},a_{2},...,a_{n})}"></span></dd></dl> <p>在<a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a>运算中,更常將向量写成类似于<a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a>的<a href="/wiki/%E5%88%97%E5%90%91%E9%87%8F" class="mw-redirect" title="列向量">列向量</a>或<a href="/wiki/%E8%A1%8C%E5%90%91%E9%87%8F" class="mw-redirect" title="行向量">行向量</a>。在<a href="/wiki/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="线性代数">线性代数</a>中所指的向量,通常默认为<b>列向量</b>。如一个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=(a,b,c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=(a,b,c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34eac9865d654772c257770d0a6532d0018a3a5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.44ex; height:2.843ex;" alt="{\displaystyle {\vec {a}}=(a,b,c)}"></span>,可写成: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lcl}{\vec {a}}&amp;=&amp;{\begin{bmatrix}a\\b\\c\\\end{bmatrix}},\\{\vec {a}}&amp;=&amp;[a\ b\ c].\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <mo stretchy="false">[</mo> <mi>a</mi> <mtext>&#xA0;</mtext> <mi>b</mi> <mtext>&#xA0;</mtext> <mi>c</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lcl}{\vec {a}}&amp;=&amp;{\begin{bmatrix}a\\b\\c\\\end{bmatrix}},\\{\vec {a}}&amp;=&amp;[a\ b\ c].\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/073e25ce00fc24273745903dd327d051905cb7c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:14.771ex; height:12.843ex;" alt="{\displaystyle {\begin{array}{lcl}{\vec {a}}&amp;=&amp;{\begin{bmatrix}a\\b\\c\\\end{bmatrix}},\\{\vec {a}}&amp;=&amp;[a\ b\ c].\end{array}}}"></span></dd></dl> <p>其中,上者为列向量写法,下者为行向量写法;此处採<a href="/wiki/%E4%B8%AD%E5%9B%BD%E5%A4%A7%E9%99%86" title="中国大陆">中国大陆</a>定义。 </p><p>值得注意的是: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>维列向量可视作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {n} \times 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {n} \times 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d71a62b77c28cb72f3ac7600ef841a92d1b7f905" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.488ex; height:2.176ex;" alt="{\displaystyle \mathbf {n} \times 1}"></span>矩阵,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>维行向量可视作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\times \mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\times \mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79abd7a1ecdab9f00cbc35ca50c424307a9e5d5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.488ex; height:2.176ex;" alt="{\displaystyle 1\times \mathbf {n} }"></span>矩阵。</li> <li>在<a href="/wiki/%E4%B8%AD%E5%9B%BD%E5%A4%A7%E9%99%86" title="中国大陆">中国大陆</a>,横向的元素组称為「行」,纵向的称為「列」,而在<a href="/wiki/%E8%87%BA%E7%81%A3" title="臺灣">臺灣</a>則相反,横向称為「列」,纵向称為「行」<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>。详见<a href="/wiki/%E7%9F%A9%E9%98%B5#正式定义" title="矩阵">矩阵</a>。</li></ul> <p>对于由两个点确定的向量,同样可以用坐标进行表示,详见<a href="#向量運算">向量運算</a>。 </p><p>在常见的三维空间直角坐标系Oxyz里,基本向量就是以横轴(Ox)、竖轴(Oy)以及纵轴(Oz)为方向的三个长度为1的<a href="/wiki/%E5%8D%95%E4%BD%8D%E5%90%91%E9%87%8F" title="单位向量">单位向量</a><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b94b3a2679fba049d7d9b7cce98ba07e7727f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {i}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {j}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ce1ed1de8493f7cc7d856ca5427cf311b1597f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:1.094ex; height:3.176ex;" aria-hidden="true" alt="{\displaystyle {\vec {j}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ccd4b98d198d6538010ae815ee1199baabd3493" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.211ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {k}}}"></span>。这三个向量取好以后,其它的向量就可以透過三元<a href="/wiki/%E6%95%B0%E7%BB%84" title="数组">数组</a>来表示,因為他們可以表示成一定倍数的三個基本向量的總和。比如说一个标示为(<i>2</i>,<i>1</i>,<i>3</i>)的向量就是2个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {i}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {i}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b94b3a2679fba049d7d9b7cce98ba07e7727f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {i}}}"></span>加上1个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {j}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {j}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ce1ed1de8493f7cc7d856ca5427cf311b1597f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:1.094ex; height:3.176ex;" aria-hidden="true" alt="{\displaystyle {\vec {j}}}"></span>加上3个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ccd4b98d198d6538010ae815ee1199baabd3493" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.211ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {k}}}"></span>得到的向量,即: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,c)=a{\vec {i}}+b{\vec {j}}+c{\vec {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,c)=a{\vec {i}}+b{\vec {j}}+c{\vec {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ecdf239db4f09f6e50a383f15eed513038a717" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.524ex; height:3.343ex;" alt="{\displaystyle (a,b,c)=a{\vec {i}}+b{\vec {j}}+c{\vec {k}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="特殊向量"><span id=".E7.89.B9.E6.AE.8A.E5.90.91.E9.87.8F"></span>特殊向量</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=12" title="编辑章节:特殊向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>类似于<a href="/wiki/%E6%95%B8%E5%AD%97" title="數字">數字</a>中的1(<a href="/wiki/%E5%8D%95%E4%BD%8D%E5%85%83" class="mw-redirect" title="单位元">单位元</a>)、相反数(加法逆元)、0(加法单位元),向量中有单位向量(单位元)、反向量(加法逆元)、零向量(加法单位元)、等概念量。此外,还有方向向量、相等向量等概念。 </p> <div class="mw-heading mw-heading3"><h3 id="单位向量"><span id=".E5.8D.95.E4.BD.8D.E5.90.91.E9.87.8F"></span>单位向量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=13" title="编辑章节:单位向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对于任意向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,不论方向如何,若其<a href="#向量的大小">大小</a>为单位长度,则称其为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>方向上的<b>单位向量</b>(<span lang="en">Unit vector</span>)。单位向量通常被记为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>u</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c41e9cf70c5e5b56e2128a136985a75f90ba43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {u}}}"></span>。 </p><p>特殊地,三维笛卡尔坐标系上的三个基向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {i}}=(1,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {i}}=(1,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9b716160f401a3470aa6e32c09707b1a2d68228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.557ex; height:3.343ex;" alt="{\displaystyle {\vec {i}}=(1,0,0)}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {j}}=(0,1,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {j}}=(0,1,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/832a346b5c9f4824a702bd9a679748237081fad3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.557ex; height:3.343ex;" alt="{\displaystyle {\vec {j}}=(0,1,0)}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {k}}=(0,0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {k}}=(0,0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea58fb2bbd729333a4d4750df949519acb57cd35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.674ex; height:3.343ex;" alt="{\displaystyle {\vec {k}}=(0,0,1)}"></span>都是单位向量。 </p> <div class="mw-heading mw-heading3"><h3 id="反向量"><span id=".E5.8F.8D.E5.90.91.E9.87.8F"></span>反向量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=14" title="编辑章节:反向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>一個向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>的<b>反向量</b>(<span lang="en">Opposite vector</span>)與它大小相等,但方向相反,一般記作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc9e593a2c80af76279e61b2ec51f1247569b91" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.505ex; width:2.983ex; height:2.509ex;" aria-hidden="true" alt="{\displaystyle -{\vec {v}}}"></span>。如果向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>是向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的反向量,那麼<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>也是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>的反向量<sup id="cite_ref-yzg_8-0" class="reference"><a href="#cite_note-yzg-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>另外,向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>的反向量也可按如下定义: </p> <table class="cquote pullquote" role="presentation" style="margin:auto; display:table; border-collapse: collapse; border: none; background-color: transparent; color: inherit;width: auto;"> <tbody><tr> <td class="skin-invert" style="width: 20px; vertical-align: top; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: left; padding: 10px; text-orientation: upright">“ </td> <td style="vertical-align: top; border: none; padding: 4px 10px;">对于给定向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,若∃向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>,使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}+{\vec {b}}={\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}+{\vec {b}}={\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3039cc3b0ef18c2bc1c47dddbba57e4ae6c05d6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.425ex; height:3.009ex;" alt="{\displaystyle {\vec {a}}+{\vec {b}}={\vec {0}}}"></span>成立,则向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>称为向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>的<b>反向量</b>。 </td> <td class="skin-invert" style="width: 20px; vertical-align: bottom; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: right; padding: 10px; text-orientation: upright">” </td></tr> </tbody></table> <div class="mw-heading mw-heading3"><h3 id="零向量"><span id=".E9.9B.B6.E5.90.91.E9.87.8F"></span>零向量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=15" title="编辑章节:零向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>始點與終點重合,即大小为0的向量,被称为<b>零向量</b>(<span lang="en">Zero vector</span>),记以数字0上加箭头,即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76498919cf387316fc79d04120c59a8d430ef36" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.162ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {0}}}"></span>。有时亦可以用粗体的0表示,如<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e8c650763635a93ddc69768c3c0c100afe985d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.176ex;" alt="{\displaystyle \mathbf {0} }"></span>。在坐标表示下,不论含有多少分量,不论指向任何方向,若所有的分量均为0的向量即为零向量。关于零向量有两点值得一提: </p> <ol><li>零向量依旧具有<b>方向性</b>,但方向不定。<sup id="cite_ref-yzg_8-1" class="reference"><a href="#cite_note-yzg-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>。因此,零向量與任一向量平行。<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li>零向量不等于数量0,它们是两种性质完全不同的对象,即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {0}}\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c26f84f1971170c76e00fb8cff218e13686275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.423ex; height:3.343ex;" alt="{\displaystyle {\vec {0}}\neq 0}"></span>。</li></ol> <p>零向量可以如下进行形式化定义: </p> <table class="cquote pullquote" role="presentation" style="margin:auto; display:table; border-collapse: collapse; border: none; background-color: transparent; color: inherit;width: auto;"> <tbody><tr> <td class="skin-invert" style="width: 20px; vertical-align: top; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: left; padding: 10px; text-orientation: upright">“ </td> <td style="vertical-align: top; border: none; padding: 4px 10px;">给定一<i>n</i> 维向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790d3f4970e0b9cdd15408437b2f6df1b498c9c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.228ex; height:2.343ex;" alt="{\displaystyle {\vec {z}}}"></span>,若对于任意的同维向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,总有<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}+{\vec {z}}={\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}+{\vec {z}}={\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5a3553db2f2181b364660260c875ad4d149775" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.626ex; height:2.509ex;" alt="{\displaystyle {\vec {a}}+{\vec {z}}={\vec {a}}}"></span>成立,则向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/790d3f4970e0b9cdd15408437b2f6df1b498c9c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.228ex; height:2.343ex;" alt="{\displaystyle {\vec {z}}}"></span>称为<i>n</i> 维<b>零向量</b>,通常被记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76498919cf387316fc79d04120c59a8d430ef36" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.162ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {0}}}"></span>或<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {0} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">0</mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {0} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62e8c650763635a93ddc69768c3c0c100afe985d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.337ex; height:2.176ex;" alt="{\displaystyle \mathbf {0} }"></span>。 </td> <td class="skin-invert" style="width: 20px; vertical-align: bottom; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: right; padding: 10px; text-orientation: upright">” </td></tr> </tbody></table> <div class="mw-heading mw-heading3"><h3 id="等向量"><span id=".E7.AD.89.E5.90.91.E9.87.8F"></span>等向量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=16" title="编辑章节:等向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>不论起点终点,兩向量長度、方向相等,即為<b>等向量</b>或<b>相等向量</b>(<span lang="en">Identical vector</span>)。 </p><p>对于任意向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,若其一个相等向量为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>,则对<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>和数字-1进行<a href="/wiki/%E6%A0%87%E9%87%8F%E4%B9%98%E6%B3%95" title="标量乘法">数乘</a>运算后得到的向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cd2f8046171316a2108b92251cf4639ee195daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.902ex; height:3.009ex;" alt="{\displaystyle -{\vec {b}}}"></span>即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>的反向量。 </p><p>另外,类似于反向量的定义,向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>等向量也可按如下定义: </p> <table class="cquote pullquote" role="presentation" style="margin:auto; display:table; border-collapse: collapse; border: none; background-color: transparent; color: inherit;width: auto;"> <tbody><tr> <td class="skin-invert" style="width: 20px; vertical-align: top; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: left; padding: 10px; text-orientation: upright">“ </td> <td style="vertical-align: top; border: none; padding: 4px 10px;">对于给定向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,若存在向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>,使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}-{\vec {b}}={\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}-{\vec {b}}={\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19e4f3ff99f5e9b953821868563c5afb93c646f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.425ex; height:3.009ex;" alt="{\displaystyle {\vec {a}}-{\vec {b}}={\vec {0}}}"></span>成立,则向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>称为向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>的<b>相等向量</b>。 </td> <td class="skin-invert" style="width: 20px; vertical-align: bottom; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: right; padding: 10px; text-orientation: upright">” </td></tr> </tbody></table> <div class="mw-heading mw-heading3"><h3 id="方向向量"><span id=".E6.96.B9.E5.90.91.E5.90.91.E9.87.8F"></span>方向向量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=17" title="编辑章节:方向向量"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>方向向量</b>(<span lang="en">Directional vector</span>)的形式化定义如下: </p> <table class="cquote pullquote" role="presentation" style="margin:auto; display:table; border-collapse: collapse; border: none; background-color: transparent; color: inherit;width: auto;"> <tbody><tr> <td class="skin-invert" style="width: 20px; vertical-align: top; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: left; padding: 10px; text-orientation: upright">“ </td> <td style="vertical-align: top; border: none; padding: 4px 10px;">对于任意向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>,若存在一个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>,两者的方向相同(大小可以不同),则<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>是<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>的一个<b>方向向量</b>。 </td> <td class="skin-invert" style="width: 20px; vertical-align: bottom; border: none; color: #B2B7F2; font-size: 40px; font-family: &#39;Times New Roman&#39;, Times, serif; font-weight: bold; line-height: .6em; text-align: right; padding: 10px; text-orientation: upright">” </td></tr> </tbody></table> <p>一般地,所有方向相同的向量之间互为方向向量。 </p> <div class="mw-heading mw-heading2"><h2 id="向量的性质"><span id=".E5.90.91.E9.87.8F.E7.9A.84.E6.80.A7.E8.B4.A8"></span>向量的性质</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=18" title="编辑章节:向量的性质"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="有向線段"><span id=".E6.9C.89.E5.90.91.E7.B7.9A.E6.AE.B5"></span>有向線段</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=19" title="编辑章节:有向線段"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_AB_from_A_to_B.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Vector_AB_from_A_to_B.svg/250px-Vector_AB_from_A_to_B.svg.png" decoding="async" width="250" height="98" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Vector_AB_from_A_to_B.svg/375px-Vector_AB_from_A_to_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d1/Vector_AB_from_A_to_B.svg/500px-Vector_AB_from_A_to_B.svg.png 2x" data-file-width="342" data-file-height="134" /></a><figcaption>一个以点A為起點,B為終點的有向線段。</figcaption></figure> <p>有向線段的概念建構於向量的方向與長度,差別在於多定義了<b>始點</b>與<b>終點</b>。在文字描述時,如果已知某<b>有向線段</b>的<b>起點</b>和<b>終點</b>分别是<b>A</b>和<b>B</b>,此線段的長度可以記為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\overrightarrow {AB}}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\overrightarrow {AB}}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae76b8d3f53e7420f23d0ac456c54ae4bf9c2cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.838ex; margin-top: -0.372ex; width:4.931ex; height:4.343ex;" aria-hidden="true" alt="{\displaystyle |{\overrightarrow {AB}}|}"></span>,即<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |{\overrightarrow {AB}}|={\overline {AB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |{\overrightarrow {AB}}|={\overline {AB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/874d9c6ed09e17f83cf65d236edad5ad0ab5273a" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.838ex; margin-top: -0.372ex; width:11.651ex; height:4.343ex;" aria-hidden="true" alt="{\displaystyle |{\overrightarrow {AB}}|={\overline {AB}}}"></span>。 </p> <div class="mw-heading mw-heading3"><h3 id="大小"><span id=".E5.A4.A7.E5.B0.8F"></span>大小</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=20" title="编辑章节:大小"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r84833064">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a></div> <p>向量的<b>大小</b>(<span lang="en">Magnitude</span>)也称<b>模长</b>、<b>长度</b>。几何上,当确定了单位长度后作图所得的向量的长度,即为向量的大小,记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\vec {v}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\vec {v}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e28dd3f7749b52b4f61beb83bf0e05b3dfce4caa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.469ex; height:2.843ex;" alt="{\displaystyle \left|{\vec {v}}\right|}"></span>。在有限维<a href="/wiki/%E8%B5%8B%E8%8C%83%E7%BA%BF%E6%80%A7%E7%A9%BA%E9%97%B4" class="mw-redirect" title="赋范线性空间">赋范线性空间</a>中,向量的模长也称为<a href="/wiki/%E8%8C%83%E6%95%B0" title="范数">范数</a>(<span lang="en">Norm</span>),记作<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|{\vec {v}}\right\|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|{\vec {v}}\right\|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd48181a393325486a0c8a19f76cd0f8b904ce9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.5ex; height:2.843ex;" alt="{\displaystyle \left\|{\vec {v}}\right\|}"></span>。已知向量的坐标,就可以知道它的模长。 </p><p>设向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8307fe480ca06a2ed26f64071dc297b6c3b181a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.005ex; height:2.843ex;" alt="{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}"></span>,其范数的计算表达式由<a href="/wiki/%E5%BC%97%E7%BE%85%E8%B2%9D%E5%B0%BC%E7%83%8F%E6%96%AF%E7%AF%84%E6%95%B8" class="mw-redirect" title="弗羅貝尼烏斯範數">弗罗贝尼乌斯范数</a>(一种同时适用于向量和矩阵的范数计算方法)给出: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/271d27478f4f28aee04d698f1fa8f71aabd473b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:26.877ex; height:4.843ex;" alt="{\displaystyle \left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}"></span><sup id="cite_ref-tongji_10-0" class="reference"><a href="#cite_note-tongji-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>特殊地,对于<i>n</i> 维<a href="/wiki/%E6%AC%A7%E5%87%A0%E9%87%8C%E5%BE%97%E7%A9%BA%E9%97%B4" title="欧几里得空间">欧几里得空间</a> <b>R</b><sup>n</sup>上的向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8307fe480ca06a2ed26f64071dc297b6c3b181a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.005ex; height:2.843ex;" alt="{\displaystyle {\vec {v}}=(v_{1},v_{2},\cdots ,v_{n})}"></span>,其模长或范数为: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\vec {v}}\right|=\left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\vec {v}}\right|=\left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/343acb948ecd1d61c87b7a718eab2166d89d35f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.444ex; height:4.843ex;" alt="{\displaystyle \left|{\vec {v}}\right|=\left\|{\vec {v}}\right\|={\sqrt {v_{1}^{2}+v_{2}^{2}+\cdots +v_{n}^{2}}}}"></span>。 </p><p>更特殊地,对于三维<a href="/wiki/%E7%AC%9B%E5%8D%A1%E5%B0%94%E5%9D%90%E6%A0%87%E7%B3%BB" title="笛卡尔坐标系">笛卡尔坐标系</a>下的向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=(x,y,z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=(x,y,z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0b9d13b1ea90dd14814bf66cd431ce5a5b4a85e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.779ex; height:2.843ex;" alt="{\displaystyle {\vec {a}}=(x,y,z)}"></span>,其模长为: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|{\vec {a}}\right\|={\sqrt {x^{2}+y^{2}+z^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|{\vec {a}}\right\|={\sqrt {x^{2}+y^{2}+z^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/803ac26c2816f13945590f360890ad91103ded5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:21.401ex; height:4.843ex;" alt="{\displaystyle \left\|{\vec {a}}\right\|={\sqrt {x^{2}+y^{2}+z^{2}}}}"></span>。 </p> <div class="mw-heading mw-heading3"><h3 id="夹角"><span id=".E5.A4.B9.E8.A7.92"></span>夹角</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=21" title="编辑章节:夹角"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_included_angle._png.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Vector_included_angle._png.png/220px-Vector_included_angle._png.png" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Vector_included_angle._png.png/330px-Vector_included_angle._png.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Vector_included_angle._png.png/440px-Vector_included_angle._png.png 2x" data-file-width="960" data-file-height="720" /></a><figcaption><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77149adfb778a5de4e0f9e99243919227669a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:3.009ex;" alt="{\displaystyle {\overrightarrow {a}}}"></span>与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7179be074124c55d18241e138345680381bd0fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {b}}}"></span>具有夹角<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span></figcaption></figure> <p><b>向量的夹角</b>(<span lang="en">Included angle</span>)是对于两个向量而言的概念。对于任意两个给定的向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {b}}}"></span>,二者的夹角即将二者图示化后两箭头所夹之角<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span>。由于夹角具有互补性,因此在不同的出发规定、不同的旋转方向下,所得夹角亦不同。 </p><p>向量的夹角可由<a href="/wiki/%E6%95%B0%E9%87%8F%E7%A7%AF" class="mw-redirect" title="数量积">数量积</a>的定义导出计算公式,即: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \theta ={\frac {{\vec {a}}\cdot {\vec {b}}}{\left\|{\vec {a}}\right\|\left\|{\vec {b}}\right\|}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> <mrow> <mo symmetric="true">&#x2016;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo symmetric="true">&#x2016;</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \theta ={\frac {{\vec {a}}\cdot {\vec {b}}}{\left\|{\vec {a}}\right\|\left\|{\vec {b}}\right\|}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b111229942dbcdd65177eeb619eaa1ba2691fde7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:15.884ex; height:8.009ex;" alt="{\displaystyle \cos \theta ={\frac {{\vec {a}}\cdot {\vec {b}}}{\left\|{\vec {a}}\right\|\left\|{\vec {b}}\right\|}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="-{|zh-hant:線性相依性;zh-cn:线性相关性}-"><span id="-.7B.7Czh-hant:.E7.B7.9A.E6.80.A7.E7.9B.B8.E4.BE.9D.E6.80.A7.3Bzh-cn:.E7.BA.BF.E6.80.A7.E7.9B.B8.E5.85.B3.E6.80.A7.7D-"></span>線性相依性</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=22" title="编辑章节:線性相依性"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="-{|zh-hant:線性相依;zh-cn:线性相关}-"><span id="-.7B.7Czh-hant:.E7.B7.9A.E6.80.A7.E7.9B.B8.E4.BE.9D.3Bzh-cn:.E7.BA.BF.E6.80.A7.E7.9B.B8.E5.85.B3.7D-"></span>線性相依</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=23" title="编辑章节:線性相依"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>对于<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a584cd94de01288b5a761554fcaf6e65915ab6a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}_{1}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ee61e3e94fd30f0635e99a3484d3d19a7c4ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}_{2}}"></span>,…,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f88b42676af3bb4b996843676a23ce4ae0cfa14d" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:2.85ex; height:2.676ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}_{m}}"></span>,如果存在一组不全為零的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>个数<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf42ecda092975c9c69dae84e16182ba5fe2e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{1}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/270580da7333505d9b73697417d0543c43c98b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{2}}"></span>、…、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e579a0eee7d28a69a7e8b666784aeed3baa8d617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.905ex; height:2.009ex;" alt="{\displaystyle a_{m}}"></span>,使得<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{m}{a_{i}{\vec {v}}_{i}}={\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{m}{a_{i}{\vec {v}}_{i}}={\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/111971f220fca3c4149ae5a2edfb6d39d252bd35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.008ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{m}{a_{i}{\vec {v}}_{i}}={\vec {0}}}"></span>,那么,称<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a584cd94de01288b5a761554fcaf6e65915ab6a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{1}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ee61e3e94fd30f0635e99a3484d3d19a7c4ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{2}}"></span>,…,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f88b42676af3bb4b996843676a23ce4ae0cfa14d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.85ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{m}}"></span> <b><a href="/w/index.php?title=%E7%B7%9A%E6%80%A7%E7%9B%B8%E4%BE%9D&amp;action=edit&amp;redlink=1" class="new" title="線性相依(页面不存在)">線性相依</a></b>或<b><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%9B%B8%E5%85%B3" class="mw-redirect" title="线性相关">線性相關</a></b>(<span lang="en">Linearly dependent</span>)。 </p> <div class="mw-heading mw-heading4"><h4 id="-{|zh-hant:線性獨立;zh-cn:线性无关}-"><span id="-.7B.7Czh-hant:.E7.B7.9A.E6.80.A7.E7.8D.A8.E7.AB.8B.3Bzh-cn:.E7.BA.BF.E6.80.A7.E6.97.A0.E5.85.B3.7D-"></span>線性獨立</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=24" title="编辑章节:線性獨立"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>如果这样不全為零的<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span>个数不存在,即上述向量等式仅当<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bbf42ecda092975c9c69dae84e16182ba5fe2e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{1}}"></span> =<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/270580da7333505d9b73697417d0543c43c98b9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{2}}"></span> = … = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e579a0eee7d28a69a7e8b666784aeed3baa8d617" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.905ex; height:2.009ex;" alt="{\displaystyle a_{m}}"></span> = 0时才能成立,就称向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a584cd94de01288b5a761554fcaf6e65915ab6a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{1}}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2ee61e3e94fd30f0635e99a3484d3d19a7c4ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.23ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{2}}"></span>,…,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f88b42676af3bb4b996843676a23ce4ae0cfa14d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.85ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{m}}"></span> <b><a href="/wiki/%E7%B7%9A%E6%80%A7%E7%8D%A8%E7%AB%8B" class="mw-redirect" title="線性獨立">線性獨立</a></b>或<b><a href="/wiki/%E7%B7%9A%E6%80%A7%E7%84%A1%E9%97%9C" title="線性無關">線性無關</a></b>(<span lang="en">Linearly independent</span>)。<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="向量運算"><span id=".E5.90.91.E9.87.8F.E9.81.8B.E7.AE.97"></span>向量運算</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=25" title="编辑章节:向量運算"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>向量的大小是相对的,在有需要时,会规定单位向量,以其长度作为1。每个方向上都有一个单位向量<sup id="cite_ref-yzg_8-2" class="reference"><a href="#cite_note-yzg-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>向量之间可以如数字一样进行运算。常见的向量运算有:<a href="/wiki/%E5%8A%A0%E6%B3%95" title="加法">加法</a>、<a href="/wiki/%E5%87%8F%E6%B3%95" class="mw-redirect" title="减法">减法</a>、数与向量之间的<a href="/wiki/%E4%B9%98%E6%B3%95" title="乘法">乘法</a>(<a href="/wiki/%E6%95%B0%E9%87%8F%E7%A7%AF" class="mw-redirect" title="数量积">数量积</a>)以及向量与向量之间的乘法(<a href="/wiki/%E5%90%91%E9%87%8F%E7%A7%AF" class="mw-redirect" title="向量积">向量积</a>),但向量的<a href="/wiki/%E9%99%A4%E6%B3%95" title="除法">除法</a>沒有定義<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="加法与减法"><span id=".E5.8A.A0.E6.B3.95.E4.B8.8E.E5.87.8F.E6.B3.95"></span>加法与减法</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=26" title="编辑章节:加法与减法"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>向量的加法满足<a href="/wiki/%E5%B9%B3%E8%A1%8C%E5%9B%9B%E9%82%8A%E5%BD%A2%E6%81%86%E7%AD%89%E5%BC%8F" title="平行四邊形恆等式">平行四边形法则</a>和<a href="/wiki/%E4%B8%89%E8%A7%92%E4%B8%8D%E7%AD%89%E5%BC%8F#向量" title="三角不等式">三角形法则</a>。具体地,两个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>相加,得到的是另一个向量。这个向量可以表示为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的起点重合后,以它们为邻边构成的平行四边形的一条对角线(以共同的起点为起点的那一条,见下图左),或者表示为将<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>的终点和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的起点重合后,从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>的起点指向<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的终点的向量: </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Vector_addition.svg" class="mw-file-description" title="向量 a 加向量 b"><img alt="向量 a 加向量 b" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/250px-Vector_addition.svg.png" decoding="async" width="250" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/375px-Vector_addition.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/500px-Vector_addition.svg.png 2x" data-file-width="445" data-file-height="235" /></a><figcaption>向量 <b>a</b> 加向量 <b>b</b></figcaption></figure> <p>两个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的相减,则可以看成是向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>加上一个与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>大小相等,方向相反的向量。又或者,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的相减得到的向量可以表示为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的起点重合后,从<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>的终点指向<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>的终点的向量: </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Vector_subtraction.svg" class="mw-file-description" title="向量 a 減向量 b"><img alt="向量 a 減向量 b" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/125px-Vector_subtraction.svg.png" decoding="async" width="125" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/188px-Vector_subtraction.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/250px-Vector_subtraction.svg.png 2x" data-file-width="206" data-file-height="149" /></a><figcaption>向量 <b>a</b> 減向量 <b>b</b></figcaption></figure> <p>当这两个向量数值、方向都不同,基本向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1}=(1,0,0),{\vec {e}}_{2}=(0,1,0),{\vec {e}}_{3}=(0,0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1}=(1,0,0),{\vec {e}}_{2}=(0,1,0),{\vec {e}}_{3}=(0,0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8eb5357d842f15dbc1f46f042c7d2e475a904d76" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.838ex; width:40.289ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {e}}_{1}=(1,0,0),{\vec {e}}_{2}=(0,1,0),{\vec {e}}_{3}=(0,0,1)}"></span>时,向量和计算为 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}+{\vec {b}}=(a_{1}+b_{1}){\vec {e}}_{1}+(a_{2}+b_{2}){\vec {e}}_{2}+(a_{3}+b_{3}){\vec {e}}_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}+{\vec {b}}=(a_{1}+b_{1}){\vec {e}}_{1}+(a_{2}+b_{2}){\vec {e}}_{2}+(a_{3}+b_{3}){\vec {e}}_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f74a2cebd68fb36f5d14f652439b6469b868889d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.732ex; height:3.343ex;" alt="{\displaystyle {\vec {a}}+{\vec {b}}=(a_{1}+b_{1}){\vec {e}}_{1}+(a_{2}+b_{2}){\vec {e}}_{2}+(a_{3}+b_{3}){\vec {e}}_{3}}"></span></dd></dl> <p>并且有如下的<a href="/wiki/%E4%B8%8D%E7%AD%89" title="不等">不等</a>关系: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\vec {a}}\right|+\left|{\vec {b}}\right|\geq \left|{\vec {a}}+{\vec {b}}\right|\geq \left|{\vec {a}}\right|-\left|{\vec {b}}\right|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mo>+</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mrow> <mo>|</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mrow> <mo>|</mo> </mrow> <mo>&#x2265;<!-- ≥ --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\vec {a}}\right|+\left|{\vec {b}}\right|\geq \left|{\vec {a}}+{\vec {b}}\right|\geq \left|{\vec {a}}\right|-\left|{\vec {b}}\right|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98193896bb70cfca7d74337a04bce87dce2d3b95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:28.158ex; height:4.009ex;" alt="{\displaystyle \left|{\vec {a}}\right|+\left|{\vec {b}}\right|\geq \left|{\vec {a}}+{\vec {b}}\right|\geq \left|{\vec {a}}\right|-\left|{\vec {b}}\right|}"></span></dd></dl> <p>此外,向量的加法也满足<a href="/wiki/%E4%BA%A4%E6%8D%A2%E5%BE%8B" class="mw-redirect" title="交换律">交换律</a>和<a href="/wiki/%E7%BB%93%E5%90%88%E5%BE%8B" title="结合律">结合律</a>。<sup id="cite_ref-yzg_8-3" class="reference"><a href="#cite_note-yzg-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="向量与積"><span id=".E5.90.91.E9.87.8F.E4.B8.8E.E7.A9.8D"></span>向量与積</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=27" title="编辑章节:向量与積"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>向量空间分为有限<a href="/wiki/%E7%BB%B4%E5%BA%A6" class="mw-redirect" title="维度">维</a>向量空间与无限维向量空间。在有限维向量空间中,可以找到一组(有限个)向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2},\cdots ,{\vec {e}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2},\cdots ,{\vec {e}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d00f99ff7a1844b1c78cc24108718610817466d" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.671ex; width:13.208ex; height:2.676ex;" aria-hidden="true" alt="{\displaystyle {\vec {e}}_{1},{\vec {e}}_{2},\cdots ,{\vec {e}}_{n}}"></span>,使得任意一个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>都可以唯一地表示成这组向量的线性组合: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}=v_{1}{\vec {e}}_{1}+v_{2}{\vec {e}}_{2}+\cdots +v_{n}{\vec {e}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}=v_{1}{\vec {e}}_{1}+v_{2}{\vec {e}}_{2}+\cdots +v_{n}{\vec {e}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60658399528c8081bb6c108e37ca9eed262fa705" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.224ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}=v_{1}{\vec {e}}_{1}+v_{2}{\vec {e}}_{2}+\cdots +v_{n}{\vec {e}}_{n}}"></span></dd></dl> <p>其中的标量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1},v_{2},\cdots ,v_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1},v_{2},\cdots ,v_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea1861464c76d47ed8fdd3698eb6ca5476550065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.922ex; height:2.009ex;" alt="{\displaystyle v_{1},v_{2},\cdots ,v_{n}}"></span>是随着向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>而确定的。这样的一组向量称为向量空间的基。给定了向量空间以及一组基后,每个向量就可以用一个数组来表示了<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup>。两个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6c48cdaecf8d81481ea21b1d0c046bf34b68ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.664ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {w}}}"></span>相同,当且仅当表示它们的数组一样。 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{lcl}v_{1}&amp;=&amp;w_{1}\\v_{2}&amp;=&amp;w_{2}\\\vdots \ &amp;&amp;\vdots \\v_{n}&amp;=&amp;w_{n}\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> <mtext>&#xA0;</mtext> </mtd> <mtd /> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mo>=</mo> </mtd> <mtd> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{lcl}v_{1}&amp;=&amp;w_{1}\\v_{2}&amp;=&amp;w_{2}\\\vdots \ &amp;&amp;\vdots \\v_{n}&amp;=&amp;w_{n}\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b82429b5e28cfc41c86c38b44ab71b38180ad4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:12.433ex; height:13.843ex;" alt="{\displaystyle {\begin{array}{lcl}v_{1}&amp;=&amp;w_{1}\\v_{2}&amp;=&amp;w_{2}\\\vdots \ &amp;&amp;\vdots \\v_{n}&amp;=&amp;w_{n}\end{array}}}"></span></dd></dl> <p>两个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" alt="{\displaystyle {\vec {v}}}"></span>和 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b6c48cdaecf8d81481ea21b1d0c046bf34b68ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:2.343ex;" alt="{\displaystyle {\vec {w}}}"></span>的和: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}+{\vec {w}}=(v_{1}+w_{1}){\vec {e}}_{1}+(v_{2}+w_{2}){\vec {e}}_{2}+\cdots +(v_{n}+w_{n}){\vec {e}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}+{\vec {w}}=(v_{1}+w_{1}){\vec {e}}_{1}+(v_{2}+w_{2}){\vec {e}}_{2}+\cdots +(v_{n}+w_{n}){\vec {e}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5d4d6fb39461fe95091ee44d55b12ab653fd54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.997ex; height:2.843ex;" alt="{\displaystyle {\vec {v}}+{\vec {w}}=(v_{1}+w_{1}){\vec {e}}_{1}+(v_{2}+w_{2}){\vec {e}}_{2}+\cdots +(v_{n}+w_{n}){\vec {e}}_{n}}"></span></dd></dl> <p>它们的数量积为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}\cdot {\vec {w}}=v_{1}\cdot w_{1}+v_{2}\cdot w_{2}+\cdots +v_{n}\cdot w_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>w</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}\cdot {\vec {w}}=v_{1}\cdot w_{1}+v_{2}\cdot w_{2}+\cdots +v_{n}\cdot w_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8915abf41da39eb25d1ecf8ed852902f698a7b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:38.928ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}\cdot {\vec {w}}=v_{1}\cdot w_{1}+v_{2}\cdot w_{2}+\cdots +v_{n}\cdot w_{n}}"></span><sup id="cite_ref-tongji_10-1" class="reference"><a href="#cite_note-tongji-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>而标量<i>k</i>与向量<b>v</b>的乘积则为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k\cdot {\vec {v}}=(k\cdot v_{1}){\vec {e}}_{1}+(k\cdot v_{2}){\vec {e}}_{2}+\cdots +(k\cdot v_{n}){\vec {e}}_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>e</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k\cdot {\vec {v}}=(k\cdot v_{1}){\vec {e}}_{1}+(k\cdot v_{2}){\vec {e}}_{2}+\cdots +(k\cdot v_{n}){\vec {e}}_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f8ecf313f9e8dac536a737f33411095e41ceb3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:46.213ex; height:2.843ex;" alt="{\displaystyle k\cdot {\vec {v}}=(k\cdot v_{1}){\vec {e}}_{1}+(k\cdot v_{2}){\vec {e}}_{2}+\cdots +(k\cdot v_{n}){\vec {e}}_{n}}"></span><sup id="cite_ref-tongji_10-2" class="reference"><a href="#cite_note-tongji-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <div class="mw-heading mw-heading3"><h3 id="-{|zh-hant:純量乘法;zh-cn:标量乘法}-"><span id="-.7B.7Czh-hant:.E7.B4.94.E9.87.8F.E4.B9.98.E6.B3.95.3Bzh-cn:.E6.A0.87.E9.87.8F.E4.B9.98.E6.B3.95.7D-"></span>純量乘法</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=28" title="编辑章节:純量乘法"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E6%A0%87%E9%87%8F%E4%B9%98%E6%B3%95" title="标量乘法">純量乘法</a></div> <p>一个标量<i>k</i>和一个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>之间可以做乘法,得出的结果是另一个与<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>方向相同或相反,大小为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85820588abd7333ef4d0c56539cb31c20e730753" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.175ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {v}}}"></span>的大小之|<i>k</i>|倍的向量,可以记成<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k{\vec {v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k{\vec {v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee4049f9a29731882654921024a306e8a38b3227" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:2.387ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle k{\vec {v}}}"></span> <sup id="cite_ref-yzg_8-4" class="reference"><a href="#cite_note-yzg-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>。该种运算被称为<b>純量乘法</b>或<b>数乘</b>。-1乘以任意向量会得到它的反向量,0乘以任何向量都会得到零向量 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76498919cf387316fc79d04120c59a8d430ef36" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.162ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {0}}}"></span>。 </p> <div class="mw-heading mw-heading3"><h3 id="-{|zh-hant:內積;zh-cn:数量积}-"><span id="-.7B.7Czh-hant:.E5.85.A7.E7.A9.8D.3Bzh-cn:.E6.95.B0.E9.87.8F.E7.A7.AF.7D-"></span>內積</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=29" title="编辑章节:內積"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">点积</a>和<a href="/wiki/%E5%86%85%E7%A7%AF%E7%A9%BA%E9%97%B4" title="内积空间">内积空间</a></div> <p><a href="/wiki/%E6%95%B0%E9%87%8F%E7%A7%AF" class="mw-redirect" title="数量积">数量积</a>也叫点积,它是向量与向量的乘积,其结果為一個純量(非向量)。几何上,內積可以定义如下: </p><p>设 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span> 为两个任意向量,它们的夹角为 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" aria-hidden="true" alt="{\displaystyle \theta }"></span>,则他们的內積为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}\cdot {\vec {b}}=\left|{\vec {a}}\right|\left|{\vec {b}}\right|\cos {\theta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>|</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B8;<!-- θ --></mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}\cdot {\vec {b}}=\left|{\vec {a}}\right|\left|{\vec {b}}\right|\cos {\theta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b89965e9510b65e2b0b2ddc92acc62951a0328fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:17.375ex; height:4.009ex;" alt="{\displaystyle {\vec {a}}\cdot {\vec {b}}=\left|{\vec {a}}\right|\left|{\vec {b}}\right|\cos {\theta }}"></span><sup id="cite_ref-tongji_10-3" class="reference"><a href="#cite_note-tongji-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>即 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span> 向量在 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span> 向量方向上的投影長度(同方向為正反方向為負號),與 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span> 向量長度的乘積。 內積被广泛应用于物理中,如做功就是用力的向量乘位移的向量,即 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W={\vec {F}}\cdot {\vec {s}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>F</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>s</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W={\vec {F}}\cdot {\vec {s}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54c85b27e7a84e7989196c693d9e29d16f8b201f" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:10.207ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle W={\vec {F}}\cdot {\vec {s}}}"></span>。 </p> <div class="mw-heading mw-heading3"><h3 id="向量积"><span id=".E5.90.91.E9.87.8F.E7.A7.AF"></span>向量积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=30" title="编辑章节:向量积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E5%90%91%E9%87%8F%E7%A7%AF" class="mw-redirect" title="向量积">向量积</a></div> <p><a href="/wiki/%E5%90%91%E9%87%8F%E7%A7%AF" class="mw-redirect" title="向量积">向量积</a>也叫<a href="/wiki/%E5%8F%89%E7%A7%AF" title="叉积">叉积</a>,<a href="/wiki/%E5%8F%89%E7%A7%AF" title="叉积">外积</a>,它也是向量与向量的乘积,不过需要注意的是,它的结果是个向量。它的几何意义是所得的向量与被乘向量所在平面垂直,方向由右手定则规定,大小是两个被乘向量張成的平行四边形的面积。所以向量积不满足交换律。舉例來說 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,0,0)\times (0,1,0)=(0,0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,0,0)\times (0,1,0)=(0,0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d17a3730b4a5ccdf967711da755ef8f53bd37e89" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.838ex; width:28.032ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle (1,0,0)\times (0,1,0)=(0,0,1)}"></span> 但是 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (0,1,0)\times (1,0,0)=(0,0,-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (0,1,0)\times (1,0,0)=(0,0,-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a9207e45c803bc10eb9840fc446000c2877936e" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.838ex; width:29.841ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle (0,1,0)\times (1,0,0)=(0,0,-1)}"></span>。 </p><p>设有向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}=a_{x}{\vec {i}}+a_{y}{\vec {j}}+a_{z}{\vec {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}=a_{x}{\vec {i}}+a_{y}{\vec {j}}+a_{z}{\vec {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/372fad48a1d5d587cb575b72e27bcbe9c1e93e86" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -1.005ex; width:20.321ex; height:3.509ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}=a_{x}{\vec {i}}+a_{y}{\vec {j}}+a_{z}{\vec {k}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}=b_{x}{\vec {i}}+b_{y}{\vec {j}}+b_{z}{\vec {k}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}=b_{x}{\vec {i}}+b_{y}{\vec {j}}+b_{z}{\vec {k}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0704e63585f9fc4e07222a45b3d8207228cc7709" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -1.005ex; width:19.488ex; height:3.509ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}=b_{x}{\vec {i}}+b_{y}{\vec {j}}+b_{z}{\vec {k}}}"></span>, </p><p>则其向量积的矩阵表达式可用下列符號表示: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}\times {\vec {b}}={\begin{vmatrix}{\vec {i}}&amp;{\vec {j}}&amp;{\vec {k}}\\a_{x}&amp;a_{y}&amp;a_{z}\\b_{x}&amp;b_{y}&amp;b_{z}\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>i</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>j</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}\times {\vec {b}}={\begin{vmatrix}{\vec {i}}&amp;{\vec {j}}&amp;{\vec {k}}\\a_{x}&amp;a_{y}&amp;a_{z}\\b_{x}&amp;b_{y}&amp;b_{z}\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2ece63822d3d5d51b30728ea5b491ba05e43705" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:21.866ex; height:10.176ex;" alt="{\displaystyle {\vec {a}}\times {\vec {b}}={\begin{vmatrix}{\vec {i}}&amp;{\vec {j}}&amp;{\vec {k}}\\a_{x}&amp;a_{y}&amp;a_{z}\\b_{x}&amp;b_{y}&amp;b_{z}\end{vmatrix}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="混合积"><span id=".E6.B7.B7.E5.90.88.E7.A7.AF"></span>混合积</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=31" title="编辑章节:混合积"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84833064"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E6%B7%B7%E5%90%88%E7%A7%AF" class="mw-redirect" title="混合积">混合积</a></div> <p>三个向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {a}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {b}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {b}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9ef58be7103eb0b2bfcb460df23430f6a36216" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" aria-hidden="true" alt="{\displaystyle {\vec {b}}}"></span>和<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {c}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {c}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965bd8710781b710cbfdb79da0b4e3b097bef506" class="mwe-math-fallback-image-inline mw-invert skin-invert" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" aria-hidden="true" alt="{\displaystyle {\vec {c}}}"></span>的混合积定义为,物理意義為三向量始於同點時所構成的體積: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})={\vec {b}}\cdot ({\vec {c}}\times {\vec {a}})={\vec {c}}\cdot ({\vec {a}}\times {\vec {b}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>c</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>b</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})={\vec {b}}\cdot ({\vec {c}}\times {\vec {a}})={\vec {c}}\cdot ({\vec {a}}\times {\vec {b}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cadaad57ed9e938436210c2a0b768593255b88f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.824ex; height:3.343ex;" alt="{\displaystyle {\vec {a}}\cdot ({\vec {b}}\times {\vec {c}})={\vec {b}}\cdot ({\vec {c}}\times {\vec {a}})={\vec {c}}\cdot ({\vec {a}}\times {\vec {b}})}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="线性组合"><span id=".E7.BA.BF.E6.80.A7.E7.BB.84.E5.90.88"></span>线性组合</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=32" title="编辑章节:线性组合"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>若<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {OA}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>A</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {OA}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed8f56dec8d7ea2a7c57e9ff32dae814da42670f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.516ex; height:3.676ex;" alt="{\displaystyle {\vec {OA}}}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {OB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>B</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {OB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c17ebf9f2ea32fac3c1832a9e781cff4334ecab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.537ex; height:3.676ex;" alt="{\displaystyle {\vec {OB}}}"></span>為平面上兩個不平行的非零向量,則平面上的每一個向量<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {OP}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {OP}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/692d574ea33795e197bb1922f24273d253c7f9d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.519ex; height:3.676ex;" alt="{\displaystyle {\vec {OP}}}"></span>都可以<b>唯一表示</b>為<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {OP}}=x{\vec {OA}}+y{\vec {OB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>A</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>B</mi> </mrow> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {OP}}=x{\vec {OA}}+y{\vec {OB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f87c0667c79e0240a71cbedbc41406cafb99fcf3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.996ex; height:4.009ex;" alt="{\displaystyle {\vec {OP}}=x{\vec {OA}}+y{\vec {OB}}}"></span>的形式。這種表示方式,稱為向量的<b>線性組合</b>。<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="关于向量运算的定理"><span id=".E5.85.B3.E4.BA.8E.E5.90.91.E9.87.8F.E8.BF.90.E7.AE.97.E7.9A.84.E5.AE.9A.E7.90.86"></span>关于向量运算的定理</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=33" title="编辑章节:关于向量运算的定理"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="向量与定比分点、中点公式"><span id=".E5.90.91.E9.87.8F.E4.B8.8E.E5.AE.9A.E6.AF.94.E5.88.86.E7.82.B9.E3.80.81.E4.B8.AD.E7.82.B9.E5.85.AC.E5.BC.8F"></span>向量与定比分点、中点公式</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=34" title="编辑章节:向量与定比分点、中点公式"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>在实际应用中,向量运算时常会运用到定比分点定理。 </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_-_The_coordinate_of_midpoint.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Vector_-_The_coordinate_of_midpoint.png/220px-Vector_-_The_coordinate_of_midpoint.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Vector_-_The_coordinate_of_midpoint.png/330px-Vector_-_The_coordinate_of_midpoint.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Vector_-_The_coordinate_of_midpoint.png/440px-Vector_-_The_coordinate_of_midpoint.png 2x" data-file-width="500" data-file-height="500" /></a><figcaption>平面直角坐标系Oxy</figcaption></figure> <p>设平面直角坐标系<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Oxy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Oxy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beb767e241f4141a4a4b39e0c81fc02f06537329" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.258ex; height:2.509ex;" alt="{\displaystyle Oxy}"></span>原点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f898c03aeda8d81f89c5625ab70e139ad5c77559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.941ex; height:2.843ex;" alt="{\displaystyle O(0,0)}"></span>,内有点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4ec0cba4557a50b1208e771ec0d252317b5415b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.164ex; height:2.843ex;" alt="{\displaystyle A(x_{1},y_{1})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62140f513f66de4fdc5500dbeab1ecb68ec7bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.185ex; height:2.843ex;" alt="{\displaystyle B(x_{2},y_{2})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c7b4383bfe8c664f9feae5c2c132db4bafce3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.166ex; height:2.843ex;" alt="{\displaystyle P(x_{0},y_{0})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>在点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>之间,且 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>P</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>P</mi> <mi>B</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/666e16c9eaa8032301f119a47d3f8bd5c4e492b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-top: -0.372ex; width:16.44ex; height:5.676ex;" alt="{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}"></span>,则:<br /> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OP}}\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OP}}\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1edd0e4820300012811166b8a65703420ab32f39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.953ex; height:6.176ex;" alt="{\displaystyle {\overrightarrow {OP}}\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}}\right)}"></span> </p><p>特殊地,当<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9ec7e1edc2e6d98f5aec2a39ae5f1c99d1e1425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\displaystyle n=1}"></span>,<br /> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d321bae145ee0b70311e9a6ca1517e3ef8b65f64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.875ex; height:6.176ex;" alt="{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}"></span><br /> </p><p>相应的有中点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>坐标: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bf139b334a73971d2b16df085c1a5095f815a45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.963ex; height:6.176ex;" alt="{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}}\right)}"></span><br /> </p><p>实际上,上述结论可以推广到空间向量中。<br /> 设空间直角坐标系<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Oxyz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mi>x</mi> <mi>y</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Oxyz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be27c2ad2be5d640cfc2a530df87d9b7b4ebf615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.347ex; height:2.509ex;" alt="{\displaystyle Oxyz}"></span>内原点为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(0,0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(0,0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07c0a5cba5b86d77b215ff1e4162660220cb0318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.138ex; height:2.843ex;" alt="{\displaystyle O(0,0,0)}"></span>,有点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(x_{1},y_{1},z_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(x_{1},y_{1},z_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cc5a2f01baed182bef8abc16df3184b1631bc51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.333ex; height:2.843ex;" alt="{\displaystyle A(x_{1},y_{1},z_{1})}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(x_{2},y_{2},z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(x_{2},y_{2},z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a93641d39a31dc1114bb92f6df806805691bc209" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.354ex; height:2.843ex;" alt="{\displaystyle B(x_{2},y_{2},z_{2})}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>点间有一点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>,且 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>P</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>P</mi> <mi>B</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/666e16c9eaa8032301f119a47d3f8bd5c4e492b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; margin-top: -0.372ex; width:16.44ex; height:5.676ex;" alt="{\displaystyle \left|{\overrightarrow {AP}}\right|:\left|{\overrightarrow {PB}}\right|=n}"></span>,<br /> </p><p>则:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}},{\frac {z_{1}+nz_{2}}{1+n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo>&#x2192;<!-- → --></mo> </mover> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}},{\frac {z_{1}+nz_{2}}{1+n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/772cc2d4245da03894bf61e56e91ee969584226e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:41.04ex; height:6.176ex;" alt="{\displaystyle {\overrightarrow {OP}}=\left({\frac {x_{1}+nx_{2}}{1+n}},{\frac {y_{1}+ny_{2}}{1+n}},{\frac {z_{1}+nz_{2}}{1+n}}\right)}"></span><br /> </p><p>中点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>坐标:<br /> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}},{\frac {z_{1}+z_{2}}{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}},{\frac {z_{1}+z_{2}}{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e99e73d06b329d82fd406d8f001a2a7fdfd002b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.944ex; height:6.176ex;" alt="{\displaystyle \left({\frac {x_{1}+x_{2}}{2}},{\frac {y_{1}+y_{2}}{2}},{\frac {z_{1}+z_{2}}{2}}\right)}"></span><br /><br /> </p> <div class="mw-heading mw-heading4"><h4 id="附:平面几何中定比分点定理的证明"><span id=".E9.99.84.EF.BC.9A.E5.B9.B3.E9.9D.A2.E5.87.A0.E4.BD.95.E4.B8.AD.E5.AE.9A.E6.AF.94.E5.88.86.E7.82.B9.E5.AE.9A.E7.90.86.E7.9A.84.E8.AF.81.E6.98.8E"></span>附:平面几何中定比分点定理的证明</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=35" title="编辑章节:附:平面几何中定比分点定理的证明"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>设平面直角坐标系<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Oxy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Oxy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beb767e241f4141a4a4b39e0c81fc02f06537329" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.258ex; height:2.509ex;" alt="{\displaystyle Oxy}"></span>内原点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O(0,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O(0,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f898c03aeda8d81f89c5625ab70e139ad5c77559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.941ex; height:2.843ex;" alt="{\displaystyle O(0,0)}"></span>,有点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A(x_{1},y_{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A(x_{1},y_{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4ec0cba4557a50b1208e771ec0d252317b5415b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.164ex; height:2.843ex;" alt="{\displaystyle A(x_{1},y_{1})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B(x_{2},y_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B(x_{2},y_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d62140f513f66de4fdc5500dbeab1ecb68ec7bc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.185ex; height:2.843ex;" alt="{\displaystyle B(x_{2},y_{2})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x_{0},y_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x_{0},y_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4c7b4383bfe8c664f9feae5c2c132db4bafce3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.166ex; height:2.843ex;" alt="{\displaystyle P(x_{0},y_{0})}"></span>,点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>在点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>之间,且<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left|AP\right|:\left|PB\right|=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>|</mo> <mrow> <mi>A</mi> <mi>P</mi> </mrow> <mo>|</mo> </mrow> <mo>:</mo> <mrow> <mo>|</mo> <mrow> <mi>P</mi> <mi>B</mi> </mrow> <mo>|</mo> </mrow> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left|AP\right|:\left|PB\right|=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4abde7a653d98c9169d2e741a9197259469fd206" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.016ex; height:2.843ex;" alt="{\displaystyle \left|AP\right|:\left|PB\right|=n}"></span>,则:<br /> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x_{0}-x_{1}}{x_{2}-x_{0}}}=n\Rightarrow x_{0}={\frac {x_{1}+nx_{2}}{1+n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>n</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x_{0}-x_{1}}{x_{2}-x_{0}}}=n\Rightarrow x_{0}={\frac {x_{1}+nx_{2}}{1+n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cbe662191f4ef93159005ea31243bb85ab0f81e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:31.873ex; height:5.343ex;" alt="{\displaystyle {\frac {x_{0}-x_{1}}{x_{2}-x_{0}}}=n\Rightarrow x_{0}={\frac {x_{1}+nx_{2}}{1+n}}}"></span>,<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {y_{0}-y_{1}}{y_{2}-y_{0}}}=n\Rightarrow y_{0}={\frac {y_{1}+ny_{2}}{1+n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>n</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>n</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>n</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {y_{0}-y_{1}}{y_{2}-y_{0}}}=n\Rightarrow y_{0}={\frac {y_{1}+ny_{2}}{1+n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4a7182978d48378962590f7694e80d5405e5e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.921ex; height:5.676ex;" alt="{\displaystyle {\frac {y_{0}-y_{1}}{y_{2}-y_{0}}}=n\Rightarrow y_{0}={\frac {y_{1}+ny_{2}}{1+n}}}"></span><br /> </p> <div class="mw-heading mw-heading2"><h2 id="注释"><span id=".E6.B3.A8.E9.87.8A"></span>注释</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=36" title="编辑章节:注释"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div id="references-NoteFoot"><ol class="references"> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">矢量及标量的英语皆由<a href="/wiki/%E5%A8%81%E5%BB%89%C2%B7%E5%93%88%E5%AF%86%E9%A0%93" title="威廉·哈密頓">威廉·哈密頓</a>创造。矢量源于拉丁语 <i>vector</i>(搬运人),汉语概念可想作是<a href="/wiki/%E7%AE%AD%E7%9F%A2" class="mw-redirect" title="箭矢">箭矢</a>——箭头箭尾不同,两侧不一致,有特定指向。矢量的对应概念<a href="/wiki/%E6%A0%87%E9%87%8F_(%E7%89%A9%E7%90%86%E5%AD%A6)" title="标量 (物理学)">标量</a>源于英语 scale(标度),拉丁语 <i>scāla</i>(梯子),相对于箭矢,汉语可想作是<a href="/wiki/%E6%A0%87%E6%9E%AA" title="标枪">标枪</a>——中间粗两端细,两侧一致,没有特定的指向。</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">特别地,<a href="/wiki/%E7%94%B5%E6%B5%81" title="电流">电流</a>属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量。</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="参见"><span id=".E5.8F.82.E8.A7.81"></span>参见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=37" title="编辑章节:参见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a></li> <li><a href="/wiki/%E5%90%91%E9%87%8F%E5%88%86%E6%9E%90" title="向量分析">向量分析</a></li> <li><a href="/wiki/%E5%90%91%E9%87%8F%E5%A0%B4" title="向量場">向量场</a></li> <li><a href="/wiki/%E6%A0%87%E9%87%8F" class="mw-disambig" title="标量">標量</a></li> <li><a href="/wiki/%E5%BC%B5%E9%87%8F" title="張量">張量</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="参考文献"><span id=".E5.8F.82.E8.80.83.E6.96.87.E7.8C.AE"></span>参考文献</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%90%91%E9%87%8F&amp;action=edit&amp;section=38" title="编辑章节:参考文献"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="list-style-type: decimal;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">物理学名词审定委员会.物理学名词 [S/OL].全国科学技术名词审定委员会, 公布. 3版.北京:科学出版社, 2019: 2. <a rel="nofollow" class="external text" href="https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B8305590F44964E92E053020B0A0A4FA7000">科学文库</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20240502182204/https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B8305590F44964E92E053020B0A0A4FA7000">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>).</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://www.termonline.cn/search?searchText=矢量">矢量</a>. <a href="/wiki/%E6%9C%AF%E8%AF%AD%E5%9C%A8%E7%BA%BF" title="术语在线">术语在线</a>. <a href="/wiki/%E5%85%A8%E5%9B%BD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%90%8D%E8%AF%8D%E5%AE%A1%E5%AE%9A%E5%A7%94%E5%91%98%E4%BC%9A" title="全国科学技术名词审定委员会">全国科学技术名词审定委员会</a>. <span class="reference-accessdate"> &#91;<span class="nowrap">2024-03-11</span>&#93;</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.atitle=%E7%9F%A2%E9%87%8F&amp;rft.genre=unknown&amp;rft.jtitle=%E6%9C%AF%E8%AF%AD%E5%9C%A8-%7B%7D-%E7%BA%BF&amp;rft_id=https%3A%2F%2Fwww.termonline.cn%2Fsearch%3FsearchText%3D%E7%9F%A2%E9%87%8F&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="中文">(简体中文)</span> </span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><cite class="citation book">同济大学数学系. <a rel="nofollow" class="external text" href="https://archive.org/details/gaodengshuxuexia0002unse">《高等数学 第六版 下册》</a>. 高等教育出版社. 2014. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-04-039662-1" title="Special:网络书源/978-7-04-039662-1"><span title="国际标准书号">ISBN</span>&#160;978-7-04-039662-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E5%90%8C%E6%B5%8E%E5%A4%A7%E5%AD%A6%E6%95%B0%E5%AD%A6%E7%B3%BB&amp;rft.btitle=%E3%80%8A%E9%AB%98%E7%AD%89%E6%95%B0%E5%AD%A6+%E7%AC%AC%E5%85%AD%E7%89%88+%E4%B8%8B%E5%86%8C%E3%80%8B&amp;rft.date=2014&amp;rft.genre=book&amp;rft.isbn=978-7-04-039662-1&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgaodengshuxuexia0002unse&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第1页</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><cite class="citation book">许以超. 《代数学引论》. 上海科学技术出版社. 1966.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E8%AE%B8%E4%BB%A5%E8%B6%85&amp;rft.btitle=%E3%80%8A%E4%BB%A3%E6%95%B0%E5%AD%A6%E5%BC%95%E8%AE%BA%E3%80%8B&amp;rft.date=1966&amp;rft.genre=book&amp;rft.pub=%E4%B8%8A%E6%B5%B7%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第29至30页</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><cite class="citation book">周建華. 《矩陣》. 台湾: 中央圖書出版社. 2002. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9789576374913" title="Special:网络书源/9789576374913"><span title="国际标准书号">ISBN</span>&#160;9789576374913</a> <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到中文网页">(中文)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E5%91%A8%E5%BB%BA%E8%8F%AF&amp;rft.btitle=%E3%80%8A%E7%9F%A9%E9%99%A3%E3%80%8B&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=9789576374913&amp;rft.place=%E5%8F%B0%E6%B9%BE&amp;rft.pub=%E4%B8%AD%E5%A4%AE%E5%9C%96%E6%9B%B8%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-yzg-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-yzg_8-0"><sup><b>6.0</b></sup></a> <a href="#cite_ref-yzg_8-1"><sup><b>6.1</b></sup></a> <a href="#cite_ref-yzg_8-2"><sup><b>6.2</b></sup></a> <a href="#cite_ref-yzg_8-3"><sup><b>6.3</b></sup></a> <a href="#cite_ref-yzg_8-4"><sup><b>6.4</b></sup></a></span> <span class="reference-text"><cite class="citation book">俞正光,李永乐. 《线性代数与解析几何》. 清华大学出版社. 1998. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-302-02854-3" title="Special:网络书源/978-7-302-02854-3"><span title="国际标准书号">ISBN</span>&#160;978-7-302-02854-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E4%BF%9E%E6%AD%A3%E5%85%89%EF%BC%8C%E6%9D%8E%E6%B0%B8%E4%B9%90&amp;rft.btitle=%E3%80%8A%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%E4%B8%8E%E8%A7%A3%E6%9E%90%E5%87%A0%E4%BD%95%E3%80%8B&amp;rft.date=1998&amp;rft.genre=book&amp;rft.isbn=978-7-302-02854-3&amp;rft.pub=%E6%B8%85%E5%8D%8E%E5%A4%A7%E5%AD%A6%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第112至116页</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><cite class="citation book">人民教育出版社课程教材研究所中学数学课程教材研究开发中心编. 《数学必修4 A版》. 人民教育出版社. 2007. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-107-20334-3" title="Special:网络书源/978-7-107-20334-3"><span title="国际标准书号">ISBN</span>&#160;978-7-107-20334-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E4%BA%BA%E6%B0%91%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE%E8%AF%BE%E7%A8%8B%E6%95%99%E6%9D%90%E7%A0%94%E7%A9%B6%E6%89%80%E4%B8%AD%E5%AD%A6%E6%95%B0%E5%AD%A6%E8%AF%BE%E7%A8%8B%E6%95%99%E6%9D%90%E7%A0%94%E7%A9%B6%E5%BC%80%E5%8F%91%E4%B8%AD%E5%BF%83%E7%BC%96&amp;rft.btitle=%E3%80%8A%E6%95%B0%E5%AD%A6%E5%BF%85%E4%BF%AE4+A%E7%89%88%E3%80%8B&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=978-7-107-20334-3&amp;rft.pub=%E4%BA%BA%E6%B0%91%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第76页</span> </li> <li id="cite_note-tongji-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-tongji_10-0"><sup><b>8.0</b></sup></a> <a href="#cite_ref-tongji_10-1"><sup><b>8.1</b></sup></a> <a href="#cite_ref-tongji_10-2"><sup><b>8.2</b></sup></a> <a href="#cite_ref-tongji_10-3"><sup><b>8.3</b></sup></a></span> <span class="reference-text"><cite class="citation book">同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-040-11941-1" title="Special:网络书源/978-7-040-11941-1"><span title="国际标准书号">ISBN</span>&#160;978-7-040-11941-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E5%90%8C%E6%B5%8E%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E7%B3%BB%E7%BC%96&amp;rft.btitle=%E3%80%8A%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%EF%BC%88%E7%AC%AC4%E7%89%88%EF%BC%89%E3%80%8B&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=978-7-040-11941-1&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第113页</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><cite class="citation book">同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-040-11941-1" title="Special:网络书源/978-7-040-11941-1"><span title="国际标准书号">ISBN</span>&#160;978-7-040-11941-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E5%90%8C%E6%B5%8E%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E7%B3%BB%E7%BC%96&amp;rft.btitle=%E3%80%8A%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%EF%BC%88%E7%AC%AC4%E7%89%88%EF%BC%89%E3%80%8B&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=978-7-040-11941-1&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第82页</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><cite class="citation book"><a href="/wiki/%E9%83%91%E9%92%A7_(%E7%89%A9%E7%90%86%E5%AD%A6%E5%AE%B6)" title="郑钧 (物理学家)">David K. Cheng</a>. <span></span><i>Field and Wave Electromagnetics</i><span></span>. 2014: 第19頁. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9781292026565" title="Special:网络书源/9781292026565"><span title="国际标准书号">ISBN</span>&#160;9781292026565</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=David+K.+Cheng&amp;rft.btitle=Field+and+Wave+Electromagnetics&amp;rft.date=2014&amp;rft.genre=book&amp;rft.isbn=9781292026565&amp;rft.pages=%E7%AC%AC19%E9%A0%81&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><cite class="citation book">同济大学应用数学系编. 《线性代数(第4版)》. 高等教育出版社. 2003. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-040-11941-1" title="Special:网络书源/978-7-040-11941-1"><span title="国际标准书号">ISBN</span>&#160;978-7-040-11941-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.au=%E5%90%8C%E6%B5%8E%E5%A4%A7%E5%AD%A6%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E7%B3%BB%E7%BC%96&amp;rft.btitle=%E3%80%8A%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%EF%BC%88%E7%AC%AC4%E7%89%88%EF%BC%89%E3%80%8B&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=978-7-040-11941-1&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span>,第144至145页</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><cite class="citation web">成功高中 陳冠宏 老師. <a rel="nofollow" class="external text" href="https://resource.learnmode.net/upload/file_2/2d61eebbcd152af95f55f0827cd0f0091b5e568e">向量的線性組合</a>. LearnMode 學習吧. <span class="reference-accessdate"> &#91;2024.09.19&#93;</span> <span style="font-family: sans-serif; cursor: default; color:var(--color-subtle, #54595d); font-size: 0.8em; bottom: 0.1em; font-weight: bold;" title="连接到中文(臺灣)网页">(中文(臺灣))</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E5%90%91%E9%87%8F&amp;rft.atitle=%E5%90%91%E9%87%8F%E7%9A%84%E7%B7%9A%E6%80%A7%E7%B5%84%E5%90%88&amp;rft.au=%E6%88%90%E5%8A%9F%E9%AB%98%E4%B8%AD+%E9%99%B3%E5%86%A0%E5%AE%8F+%E8%80%81%E5%B8%AB&amp;rft.genre=unknown&amp;rft.jtitle=LearnMode+%E5%AD%B8%E7%BF%92%E5%90%A7&amp;rft_id=https%3A%2F%2Fresource.learnmode.net%2Fupload%2Ffile_2%2F2d61eebbcd152af95f55f0827cd0f0091b5e568e&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">请检查<code style="color:inherit; border:inherit; padding:inherit;">&#124;access-date=</code>中的日期值 (<a href="/wiki/Help:%E5%BC%95%E6%96%87%E6%A0%BC%E5%BC%8F1%E9%94%99%E8%AF%AF#bad_date" title="Help:引文格式1错误">帮助</a>)</span></span> </li> </ol></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><style data-mw-deduplicate="TemplateStyles:r84261037">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{text-align:center;padding-left:1em;padding-right:1em}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf;position:relative}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em;width:auto;padding-left:0.2em;position:absolute;left:1em}.mw-parser-output .navbox .mw-collapsible-toggle{margin-left:0.5em;position:absolute;right:1em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="线性代数的相关概念" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84244141"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%E7%9A%84%E7%9B%B8%E5%85%B3%E6%A6%82%E5%BF%B5" title="Template:线性代数的相关概念"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%E7%9A%84%E7%9B%B8%E5%85%B3%E6%A6%82%E5%BF%B5&amp;action=edit&amp;redlink=1" class="new" title="Template talk:线性代数的相关概念(页面不存在)"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%E7%9A%84%E7%9B%B8%E5%85%B3%E6%A6%82%E5%BF%B5" title="Special:编辑页面/Template:线性代数的相关概念"><abbr title="编辑该模板">编</abbr></a></li></ul></div><div id="线性代数的相关概念" style="font-size:110%;margin:0 5em"><a href="/wiki/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="线性代数">线性代数</a>的相关概念</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">重要概念</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E6%A0%87%E9%87%8F_(%E6%95%B0%E5%AD%A6)" title="标量 (数学)">标量</a></li> <li><a class="mw-selflink selflink">向量</a></li> <li><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%97%B4" title="向量空间">向量空间</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E5%AD%90%E7%A9%BA%E9%97%B4" title="线性子空间">向量子空间</a></li></ul> <ul><li><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%94%9F%E6%88%90%E7%A9%BA%E9%97%B4" title="线性生成空间">线性生成空间</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性映射</a></li> <li><a href="/wiki/%E6%8A%95%E5%BD%B1" class="mw-disambig" title="投影">投影</a></li> <li><a href="/wiki/%E7%B7%9A%E6%80%A7%E7%84%A1%E9%97%9C" title="線性無關">線性無關</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E7%BB%84%E5%90%88" title="线性组合">线性组合</a></li></ul> <ul><li><a href="/wiki/%E5%9F%BA_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="基 (線性代數)">基</a></li> <li><a href="/wiki/%E6%A8%99%E8%A8%98_(%E7%B7%9A%E6%80%A7%E4%BB%A3%E6%95%B8)" title="標記 (線性代數)">標記</a></li> <li><a href="/wiki/%E5%88%97%E7%A9%BA%E9%97%B4" class="mw-redirect" title="列空间">列空间</a></li> <li><a href="/wiki/%E8%A1%8C%E7%A9%BA%E9%97%B4" class="mw-redirect" title="行空间">行空间</a></li> <li><a href="/wiki/%E9%9B%B6%E7%A9%BA%E9%97%B4" title="零空间">零空间</a></li> <li><a href="/wiki/%E5%AF%B9%E5%81%B6%E7%A9%BA%E9%97%B4" title="对偶空间">对偶空间</a></li> <li><a href="/wiki/%E6%AD%A3%E4%BA%A4" title="正交">正交</a></li> <li><a href="/wiki/%E7%89%B9%E5%BE%81%E5%80%BC" class="mw-redirect" title="特征值">特征值</a></li> <li><a href="/wiki/%E7%89%B9%E5%BE%81%E5%90%91%E9%87%8F" class="mw-redirect" title="特征向量">特征向量</a></li></ul> <ul><li><a href="/wiki/%E7%82%B9%E7%A7%AF" title="点积">数量积</a></li> <li><a href="/wiki/%E5%86%85%E7%A7%AF%E7%A9%BA%E9%97%B4" title="内积空间">内积空间</a></li> <li><a href="/wiki/%E7%82%B9%E4%B9%98" class="mw-redirect" title="点乘">点乘</a></li> <li><a href="/wiki/%E8%BD%89%E7%BD%AE" class="mw-redirect" title="轉置">轉置</a></li> <li><a href="/wiki/%E6%A0%BC%E6%8B%89%E5%A7%86-%E6%96%BD%E5%AF%86%E7%89%B9%E6%AD%A3%E4%BA%A4%E5%8C%96" title="格拉姆-施密特正交化">格拉姆-施密特正交化</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84" title="线性方程组">线性方程组</a></li> <li><a href="/wiki/%E5%85%8B%E8%90%8A%E5%A7%86%E6%B3%95%E5%89%87" title="克萊姆法則">克萊姆法則</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">矩阵</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%9F%A9%E9%98%B5" title="矩阵">矩阵</a></li> <li><a href="/wiki/%E7%9F%A9%E9%99%A3%E4%B9%98%E6%B3%95" title="矩陣乘法">矩陣乘法</a></li> <li><a href="/wiki/%E7%9F%A9%E9%98%B5%E5%88%86%E8%A7%A3" title="矩阵分解">矩阵分解</a></li> <li><a href="/wiki/%E8%A1%8C%E5%88%97%E5%BC%8F" title="行列式">行列式</a></li> <li><a href="/wiki/%E5%AD%90%E5%BC%8F%E5%92%8C%E4%BD%99%E5%AD%90%E5%BC%8F" title="子式和余子式">子式和余子式</a></li> <li><a href="/wiki/%E7%A7%A9_(%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0)" title="秩 (线性代数)">矩阵的秩</a></li> <li><a href="/wiki/%E5%85%8B%E8%90%8A%E5%A7%86%E6%B3%95%E5%89%87" title="克萊姆法則">克萊姆法則</a></li> <li><a href="/wiki/%E9%80%86%E7%9F%A9%E9%98%B5" title="逆矩阵">逆矩阵</a></li> <li><a href="/wiki/%E9%AB%98%E6%96%AF%E6%B6%88%E5%8E%BB%E6%B3%95" title="高斯消去法">高斯消去法</a></li> <li><a href="/wiki/%E7%BA%BF%E6%80%A7%E6%98%A0%E5%B0%84" title="线性映射">线性变换</a></li> <li><a href="/wiki/%E5%88%86%E5%A1%8A%E7%9F%A9%E9%99%A3" title="分塊矩陣">分块矩阵</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E6%95%B0%E5%80%BC%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0" title="数值线性代数">数值线性代数</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E6%B5%AE%E7%82%B9%E6%95%B0%E8%BF%90%E7%AE%97" title="浮点数运算">浮点数</a></li> <li><a href="/wiki/%E6%95%B0%E5%80%BC%E7%A8%B3%E5%AE%9A%E6%80%A7" title="数值稳定性">数值稳定性</a></li> <li><a href="/wiki/BLAS" title="BLAS">基础线性代数程序集</a></li> <li><a href="/wiki/%E7%A8%80%E7%96%8F%E7%9F%A9%E9%98%B5" title="稀疏矩阵">稀疏矩阵</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐m9zdp Cached time: 20241124083727 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.716 seconds Real time usage: 1.130 seconds Preprocessor visited node count: 6343/1000000 Post‐expand include size: 124272/2097152 bytes Template argument size: 9162/2097152 bytes Highest expansion depth: 28/100 Expensive parser function count: 8/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 40035/5000000 bytes Lua time usage: 0.223/10.000 seconds Lua memory usage: 4135452/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 530.880 1 -total 21.58% 114.584 1 Template:Reflist 19.14% 101.633 1 Template:NoteTA 18.10% 96.103 12 Template:Lang 16.45% 87.337 12 Template:Category_handler 15.84% 84.105 1 Template:线性代数 15.42% 81.836 1 Template:ScienceNavigation 12.25% 65.012 1 Template:Tnavbar 11.10% 58.919 1 Template:术语在线 10.56% 56.077 1 Template:线性代数的相关概念 --> <!-- Saved in parser cache with key zhwiki:pcache:idhash:69524-0!canonical!zh and timestamp 20241124083727 and revision id 85045607. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=向量&amp;oldid=85045607">https://zh.wikipedia.org/w/index.php?title=向量&amp;oldid=85045607</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E5%90%91%E9%87%8F" title="Category:向量">向量</a></li><li><a href="/wiki/Category:%E5%90%91%E9%87%8F%E5%88%86%E6%9E%90" title="Category:向量分析">向量分析</a></li><li><a href="/wiki/Category:%E5%9F%BA%E6%9C%AC%E7%89%A9%E7%90%86%E6%A6%82%E5%BF%B5" title="Category:基本物理概念">基本物理概念</a></li><li><a href="/wiki/Category:%E7%89%A9%E7%90%86%E9%87%8F" title="Category:物理量">物理量</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:%E5%BC%95%E6%96%87%E6%A0%BC%E5%BC%8F1%E9%94%99%E8%AF%AF%EF%BC%9A%E6%97%A5%E6%9C%9F" title="Category:引文格式1错误:日期">引文格式1错误:日期</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E8%8B%B1%E8%AA%9E%E7%9A%84%E6%A2%9D%E7%9B%AE" title="Category:含有英語的條目">含有英語的條目</a></li><li><a href="/wiki/Category:%E6%9C%89%E6%9C%AA%E5%88%97%E6%98%8E%E6%9D%A5%E6%BA%90%E8%AF%AD%E5%8F%A5%E7%9A%84%E6%9D%A1%E7%9B%AE" title="Category:有未列明来源语句的条目">有未列明来源语句的条目</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2024年11月21日 (星期四) 01:07。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E5%90%91%E9%87%8F&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6b7f745dd4-x5c7j","wgBackendResponseTime":215,"wgPageParseReport":{"limitreport":{"cputime":"0.716","walltime":"1.130","ppvisitednodes":{"value":6343,"limit":1000000},"postexpandincludesize":{"value":124272,"limit":2097152},"templateargumentsize":{"value":9162,"limit":2097152},"expansiondepth":{"value":28,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":40035,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 530.880 1 -total"," 21.58% 114.584 1 Template:Reflist"," 19.14% 101.633 1 Template:NoteTA"," 18.10% 96.103 12 Template:Lang"," 16.45% 87.337 12 Template:Category_handler"," 15.84% 84.105 1 Template:线性代数"," 15.42% 81.836 1 Template:ScienceNavigation"," 12.25% 65.012 1 Template:Tnavbar"," 11.10% 58.919 1 Template:术语在线"," 10.56% 56.077 1 Template:线性代数的相关概念"]},"scribunto":{"limitreport-timeusage":{"value":"0.223","limit":"10.000"},"limitreport-memusage":{"value":4135452,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-m9zdp","timestamp":"20241124083727","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u5411\u91cf","url":"https:\/\/zh.wikipedia.org\/wiki\/%E5%90%91%E9%87%8F","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44528","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44528","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-12-08T15:09:37Z","dateModified":"2024-11-21T01:07:59Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/c\/c8\/Vector_space_illust.svg","headline":"\u5177\u6709\u5e45\u5ea6\uff08\u6216\u9577\u5ea6\uff09\u548c\u65b9\u5411\u7684\u5e7e\u4f55\u5c0d\u8c61"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10