CINXE.COM
Search results for: Model tree
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Model tree</title> <meta name="description" content="Search results for: Model tree"> <meta name="keywords" content="Model tree"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Model tree" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Model tree"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17476</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Model tree</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17476</span> Monitoring Three-Dimensional Models of Tree and Forest by Using Digital Close-Range Photogrammetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Cicekli">S. Y. Cicekli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, tree-dimensional model of tree was created by using terrestrial close range photogrammetry. For this close range photos were taken. Photomodeler Pro 5 software was used for camera calibration and create three-dimensional model of trees. In first test, three-dimensional model of a tree was created, in the second test three-dimensional model of three trees were created. This study aim is creating three-dimensional model of trees and indicate the use of close-range photogrammetry in forestry. At the end of the study, three-dimensional model of tree and three trees were created. This study showed that usability of close-range photogrammetry for monitoring tree and forests three-dimensional model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=close-%20range%20photogrammetry" title="close- range photogrammetry">close- range photogrammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20model" title=" three-dimensional model"> three-dimensional model</a> </p> <a href="https://publications.waset.org/abstracts/39825/monitoring-three-dimensional-models-of-tree-and-forest-by-using-digital-close-range-photogrammetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17475</span> Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Yang">Jian Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Yagi"> Atsushi Yagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population-structured%20models" title="population-structured models">population-structured models</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilities%20of%20ecosystems" title=" stabilities of ecosystems"> stabilities of ecosystems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20competitions" title=" thermal competitions"> thermal competitions</a>, <a href="https://publications.waset.org/abstracts/search?q=tree-grass%20coexistence%20systems" title=" tree-grass coexistence systems"> tree-grass coexistence systems</a> </p> <a href="https://publications.waset.org/abstracts/102872/segregation-patterns-of-trees-and-grass-based-on-a-modified-age-structured-continuous-space-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17474</span> A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Armin%20Motahari%20Tabari"> Seyed Armin Motahari Tabari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20tree" title="model tree">model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART" title=" CART"> CART</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shear%20strength" title=" soil shear strength"> soil shear strength</a> </p> <a href="https://publications.waset.org/abstracts/141471/a-hybrid-model-tree-and-logistic-regression-model-for-prediction-of-soil-shear-strength-in-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17473</span> Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komol%20Phaisarn">Komol Phaisarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuphan%20Suttimarn"> Anuphan Suttimarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitchanan%20Keawtong"> Vitchanan Keawtong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittisak%20Thongyoun"> Kittisak Thongyoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiyos%20Jamsawang"> Chaiyos Jamsawang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=customers" title=" customers"> customers</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20insurance%20pay%20package" title=" life insurance pay package"> life insurance pay package</a> </p> <a href="https://publications.waset.org/abstracts/11724/model-for-introducing-products-to-new-customers-through-decision-tree-using-algorithm-c45-j-48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17472</span> An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicodemus%20M.%20J.%20Mbwambo">Nicodemus M. J. Mbwambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Sun"> Yu-Shan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Murali%20Sitaraman"> Murali Sitaraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Joan%20Krone"> Joan Krone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20abstraction" title=" data abstraction"> data abstraction</a>, <a href="https://publications.waset.org/abstracts/search?q=maps" title=" maps"> maps</a>, <a href="https://publications.waset.org/abstracts/search?q=specification" title=" specification"> specification</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a>, <a href="https://publications.waset.org/abstracts/search?q=verification" title=" verification"> verification</a> </p> <a href="https://publications.waset.org/abstracts/131080/an-encapsulation-of-a-navigable-tree-position-theory-specification-and-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17471</span> Application of Model Tree in the Prediction of TBM Rate of Penetration with Synthetic Minority Oversampling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Mehryaar">Ehsan Mehryaar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rate of penetration is (RoP) one of the vital factors in the cost and time of tunnel boring projects; therefore, predicting it can lead to a substantial increase in the efficiency of the project. RoP is heavily dependent geological properties of the project site and TBM properties. In this study, 151-point data from Queen’s water tunnel is collected, which includes unconfined compression strength, peak slope index, angle with weak planes, and distance between planes of weaknesses. Since the size of the data is small, it was observed that it is imbalanced. To solve that problem synthetic minority oversampling technique is utilized. The model based on the model tree is proposed, where each leaf consists of a support vector machine model. Proposed model performance is then compared to existing empirical equations in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Model%20tree" title="Model tree">Model tree</a>, <a href="https://publications.waset.org/abstracts/search?q=SMOTE" title=" SMOTE"> SMOTE</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20penetration" title=" rate of penetration"> rate of penetration</a>, <a href="https://publications.waset.org/abstracts/search?q=TBM%28tunnel%20boring%20machine%29" title=" TBM(tunnel boring machine)"> TBM(tunnel boring machine)</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/141473/application-of-model-tree-in-the-prediction-of-tbm-rate-of-penetration-with-synthetic-minority-oversampling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17470</span> A Ratio-Weighted Decision Tree Algorithm for Imbalance Dataset Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doyin%20Afolabi">Doyin Afolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Adewole"> Phillip Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladipupo%20Sennaike"> Oladipupo Sennaike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most well-known classifiers, including the decision tree algorithm, can make predictions on balanced datasets efficiently. However, the decision tree algorithm tends to be biased towards imbalanced datasets because of the skewness of the distribution of such datasets. To overcome this problem, this study proposes a weighted decision tree algorithm that aims to remove the bias toward the majority class and prevents the reduction of majority observations in imbalance datasets classification. The proposed weighted decision tree algorithm was tested on three imbalanced datasets- cancer dataset, german credit dataset, and banknote dataset. The specificity, sensitivity, and accuracy metrics were used to evaluate the performance of the proposed decision tree algorithm on the datasets. The evaluation results show that for some of the weights of our proposed decision tree, the specificity, sensitivity, and accuracy metrics gave better results compared to that of the ID3 decision tree and decision tree induced with minority entropy for all three datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance%20dataset" title=" imbalance dataset"> imbalance dataset</a> </p> <a href="https://publications.waset.org/abstracts/157609/a-ratio-weighted-decision-tree-algorithm-for-imbalance-dataset-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17469</span> A Kruskal Based Heuxistic for the Application of Spanning Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjan%20Naidu">Anjan Naidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minimum%20Spanning%20tree" title="Minimum Spanning tree">Minimum Spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Heuxistic" title=" Heuxistic"> Heuxistic</a>, <a href="https://publications.waset.org/abstracts/search?q=application" title=" application"> application</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20of%20Sub%2097K90" title=" classification of Sub 97K90"> classification of Sub 97K90</a> </p> <a href="https://publications.waset.org/abstracts/30559/a-kruskal-based-heuxistic-for-the-application-of-spanning-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17468</span> Nearest Neighbor Investigate Using R+ Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rutuja%20Desai">Rutuja Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Search engine is fundamentally a framework used to search the data which is pertinent to the client via WWW. Looking close-by spot identified with the keywords is an imperative concept in developing web advances. For such kind of searching, extent pursuit or closest neighbor is utilized. In range search the forecast is made whether the objects meet to query object. Nearest neighbor is the forecast of the focuses close to the query set by the client. Here, the nearest neighbor methodology is utilized where Data recovery R+ tree is utilized rather than IR2 tree. The disadvantages of IR2 tree is: The false hit number can surpass the limit and the mark in Information Retrieval R-tree must have Voice over IP bit for each one of a kind word in W set is recouped by Data recovery R+ tree. The inquiry is fundamentally subordinate upon the key words and the geometric directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title="information retrieval">information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbor%20search" title=" nearest neighbor search"> nearest neighbor search</a>, <a href="https://publications.waset.org/abstracts/search?q=keyword%20search" title=" keyword search"> keyword search</a>, <a href="https://publications.waset.org/abstracts/search?q=R%2B%20tree" title=" R+ tree"> R+ tree</a> </p> <a href="https://publications.waset.org/abstracts/33680/nearest-neighbor-investigate-using-r-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17467</span> High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilel%20Chalghaf">Bilel Chalghaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathieu%20Varin"> Mathieu Varin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tree%20species" title="tree species">tree species</a>, <a href="https://publications.waset.org/abstracts/search?q=object-based" title=" object-based"> object-based</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=WorldView-3" title=" WorldView-3"> WorldView-3</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a> </p> <a href="https://publications.waset.org/abstracts/119023/high-resolution-satellite-imagery-and-lidar-data-for-object-based-tree-species-classification-in-quebec-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17466</span> Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shokoufeh%20Abrisham">Shokoufeh Abrisham</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mahmoud%20Hossieni"> Seyed Mahmoud Hossieni</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Pishbin"> Elham Pishbin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20cardiac%20life%20support" title="advanced cardiac life support">advanced cardiac life support</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis" title=" fault tree analysis"> fault tree analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20belief%20networks" title=" Bayesian belief networks"> Bayesian belief networks</a>, <a href="https://publications.waset.org/abstracts/search?q=numan%20performance" title=" numan performance"> numan performance</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20systems" title=" healthcare systems"> healthcare systems</a> </p> <a href="https://publications.waset.org/abstracts/100435/human-performance-evaluating-of-advanced-cardiac-life-support-procedure-using-fault-tree-and-bayesian-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17465</span> Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Mindas">Jozef Mindas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Skvarenina"> Jaroslav Skvarenina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Skvareninova"> Jana Skvareninova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Norway%20spruce%20forests" title=" Norway spruce forests"> Norway spruce forests</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20model" title=" gap model"> gap model</a> </p> <a href="https://publications.waset.org/abstracts/43557/biodiversity-and-climate-change-consequences-for-norway-spruce-mountain-forests-in-slovakia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17464</span> An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/70715/an-alternative-approach-for-assessing-the-impact-of-cutting-conditions-on-surface-roughness-using-single-decision-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17463</span> Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahd%20Sabry%20Esmail">Fahd Sabry Esmail</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Badr%20Senousy"> M. Badr Senousy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ragaie"> Mohamed Ragaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20techniques" title=" classification techniques"> classification techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20rule" title=" classification rule"> classification rule</a>, <a href="https://publications.waset.org/abstracts/search?q=leukemia%20diseases" title=" leukemia diseases"> leukemia diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray%20data" title=" microarray data"> microarray data</a> </p> <a href="https://publications.waset.org/abstracts/44376/predication-model-for-leukemia-diseases-based-on-data-mining-classification-algorithms-with-best-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17462</span> Fault Tree Analysis (FTA) of CNC Turning Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Patil">R. B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Kothavale"> B. S. Kothavale</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Y.%20Waghmode"> L. Y. Waghmode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the CNC turning center becomes an important machine tool for manufacturing industry worldwide. However, as the breakdown of a single CNC turning center may result in the production of an entire plant being halted. For this reason, operations and preventive maintenance have to be minimized to ensure availability of the system. Indeed, improving the availability of the CNC turning center as a whole, objectively leads to a substantial reduction in production loss, operating, maintenance and support cost. In this paper, fault tree analysis (FTA) method is used for reliability analysis of CNC turning center. The major faults associated with the system and the causes for the faults are presented graphically. Boolean algebra is used for evaluating fault tree (FT) diagram and for deriving governing reliability model for CNC turning center. Failure data over a period of six years has been collected and used for evaluating the model. Qualitative and quantitative analysis is also carried out to identify critical sub-systems and components of CNC turning center. It is found that, at the end of the warranty period (one year), the reliability of the CNC turning center as a whole is around 0.61628. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis%20%28FTA%29" title="fault tree analysis (FTA)">fault tree analysis (FTA)</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title=" hazard analysis"> hazard analysis</a> </p> <a href="https://publications.waset.org/abstracts/41777/fault-tree-analysis-fta-of-cnc-turning-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17461</span> Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Okechukwu%20Nwafor">Emmanuel Okechukwu Nwafor</a>, <a href="https://publications.waset.org/abstracts/search?q=Folake%20Olubunmi%20Akintayo"> Folake Olubunmi Akintayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Alcides%20Rezende"> Denis Alcides Rezende</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree%20algorithm" title="decision tree algorithm">decision tree algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=trip%20purpose" title=" trip purpose"> trip purpose</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transport" title=" intelligent transport"> intelligent transport</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20digital%20city" title=" strategic digital city"> strategic digital city</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20pattern" title=" travel pattern"> travel pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transport" title=" sustainable transport"> sustainable transport</a> </p> <a href="https://publications.waset.org/abstracts/191019/commuters-trip-purpose-decision-tree-based-model-of-makurdi-metropolis-nigeria-and-strategic-digital-city-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17460</span> A Novel PSO Based Decision Tree Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Farzan">Ali Farzan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20criteria" title=" splitting criteria"> splitting criteria</a>, <a href="https://publications.waset.org/abstracts/search?q=metaheuristic" title=" metaheuristic"> metaheuristic</a> </p> <a href="https://publications.waset.org/abstracts/32425/a-novel-pso-based-decision-tree-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17459</span> Optimization Model for Support Decision for Maximizing Production of Mixed Fruit Tree Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20I.%20%C3%81vila">Andrés I. Ávila</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Aros"> Patricia Aros</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20San%20Mart%C3%ADn"> César San Martín</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Kehr"> Elizabeth Kehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Yovana%20Leal"> Yovana Leal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider a linear programming model to help farmers to decide if it is convinient to choose among three kinds of export fruits for their future investment. We consider area, investment, water, productivitiy minimal unit, and harvest restrictions and a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability and initia investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20problem" title="mixed integer problem">mixed integer problem</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20production" title=" fruit production"> fruit production</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20decision%20model" title=" support decision model"> support decision model</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20tree%20farms" title=" fruit tree farms"> fruit tree farms</a> </p> <a href="https://publications.waset.org/abstracts/18920/optimization-model-for-support-decision-for-maximizing-production-of-mixed-fruit-tree-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17458</span> Hierarchical Tree Long Short-Term Memory for Sentence Representations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuying%20Wang">Xiuying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Changliang%20Li"> Changliang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20tree%20long%20short-term%20memory" title=" hierarchical tree long short-term memory"> hierarchical tree long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=sentence%20representation" title=" sentence representation"> sentence representation</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a> </p> <a href="https://publications.waset.org/abstracts/83787/hierarchical-tree-long-short-term-memory-for-sentence-representations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17457</span> A Dynamic Round Robin Routing for Z-Fat Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Adda">M. O. Adda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a topology called Zoned fat tree (Z-Fat tree) which is a further extension to the classical fat trees. The extension relates to the provision of extra degree of connectivity to maximize the number of deployed ports per routing nodes, and hence increases the bisection bandwidth especially for slimmed fat trees. The extra links, when classical routing is used, tend, in deterministic environment, to be under-utilized for some traffic patterns, hence achieving poor performance. We suggest two versions of a dynamic round robin scheme that outperforms the classical D-mod-k and S-mod-K routing and show by simulation that our proposal utilize all the extra added links to the classical fat tree, and achieve better performance for general applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deterministic%20routing" title="deterministic routing">deterministic routing</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20tree" title=" fat tree"> fat tree</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnection" title=" interconnection"> interconnection</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20pattern" title=" traffic pattern"> traffic pattern</a> </p> <a href="https://publications.waset.org/abstracts/40045/a-dynamic-round-robin-routing-for-z-fat-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17456</span> A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaojun%20Wang">Yaojun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaoqing%20Wang"> Yaoqing Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case-based%20reasoning" title="case-based reasoning">case-based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=stock%20selection" title=" stock selection"> stock selection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/48974/a-case-based-reasoning-decision-tree-hybrid-system-for-stock-selection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17455</span> The Pressure Losses in the Model of Human Lungs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Chovancova">Michaela Chovancova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Niedoba"> Pavel Niedoba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20lungs" title="human lungs">human lungs</a>, <a href="https://publications.waset.org/abstracts/search?q=bronchial%20tree" title=" bronchial tree"> bronchial tree</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20losses" title=" pressure losses"> pressure losses</a>, <a href="https://publications.waset.org/abstracts/search?q=airways%20resistance" title=" airways resistance"> airways resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a>, <a href="https://publications.waset.org/abstracts/search?q=breathing" title=" breathing "> breathing </a> </p> <a href="https://publications.waset.org/abstracts/19141/the-pressure-losses-in-the-model-of-human-lungs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17454</span> Historical Landscape Affects Present Tree Density in Paddy Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha%20T.%20Pham">Ha T. Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuichi%20Miyagawa"> Shuichi Miyagawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing landscape transformation is one of the major causes behind disappearance of traditional landscapes, and lead to species and resource loss. Tree in paddy fields in the northeast of Thailand is one of those traditional landscapes. Using three different historical time layers, we acknowledged the severe deforestation and rapid urbanization happened in the region. Despite the general thinking of decline in tree density as consequences, the heterogeneous trend of changes in total tree density in three studied landscapes denied the hypothesis that number of trees in paddy field depend on the length of land use practice. On the other hand, due to selection of planting new trees on levees, existence of trees in paddy field are now rely on their values for human use. Besides, changes in land use and landscape structure had a significant impact on decision of which tree density level is considered as suitable for the landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20photographs" title="aerial photographs">aerial photographs</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20change" title=" land use change"> land use change</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20landscape" title=" traditional landscape"> traditional landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20in%20paddy%20fields" title=" tree in paddy fields"> tree in paddy fields</a> </p> <a href="https://publications.waset.org/abstracts/15536/historical-landscape-affects-present-tree-density-in-paddy-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17453</span> The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Jafari">Mina Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kobra%20Hamraee"> Kobra Hamraee</a>, <a href="https://publications.waset.org/abstracts/search?q=Saied%20Hossein%20Hosseini"> Saied Hossein Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a> </p> <a href="https://publications.waset.org/abstracts/128692/the-best-prediction-data-mining-model-for-breast-cancer-probability-in-women-residents-in-kabul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17452</span> Unconventional Dating of Old Peepal Tree of Chandigarh (India) Using Optically Stimulated Luminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rita%20Rani">Rita Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Kumar"> Ramesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intend of the current study is to date an old grand Peepal tree that is still alive. The tree is situated in Kalibard village, Sector 9, Chandigarh (India). Due to its huge structure, it has got the status of ‘Heritage tree.’ Optically Stimulated Luminescence of sediments beneath the roots is used to determine the age of the tree. Optical dating is preferred over conventional dating methods due to more precession. The methodology includes OSL of quartz grain using SAR protocol for accumulated dose measurement. The age determination of an alive tree using sedimentary quartz is in close agreement with the approximated age provided by the related agency. This is the first attempt at using optically stimulated luminescence in the age determination of alive trees in this region. The study concludes that the Luminescence dating of alive trees is the nondestructive and more precise method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=luminescence" title="luminescence">luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=dose%20rate" title=" dose rate"> dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20dating" title=" optical dating"> optical dating</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/140440/unconventional-dating-of-old-peepal-tree-of-chandigarh-india-using-optically-stimulated-luminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17451</span> Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ahzam%20Tariq">Syed Ahzam Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Atharva%20Modi"> Atharva Modi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis%20water%20tube%20boiler" title="fault tree analysis water tube boiler">fault tree analysis water tube boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20probability%20score" title=" fuzzy probability score"> fuzzy probability score</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a> </p> <a href="https://publications.waset.org/abstracts/140431/fuzzy-approach-for-fault-tree-analysis-of-water-tube-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17450</span> Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arturo%20J.%20Anci%20Alm%C3%A9star">Arturo J. Anci Alméstar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20D.%20Fernandez%20Huapaya"> Jose D. Fernandez Huapaya</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Mauricio"> David Mauricio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20payment%20medium" title="digital payment medium">digital payment medium</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20payments%20taxonomy" title=" digital payments taxonomy"> digital payments taxonomy</a> </p> <a href="https://publications.waset.org/abstracts/85328/decision-tree-model-for-the-recommendation-of-digital-and-alternate-payment-methods-for-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17449</span> An Evaluation Model for Automatic Map Generalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quynhan%20Tran">Quynhan Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Fan"> Hong Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Quockhanh%20Pham"> Quockhanh Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20cartography%20generalization" title="automatic cartography generalization">automatic cartography generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20model" title=" evaluation model"> evaluation model</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20feature%20distribution" title=" geographic feature distribution"> geographic feature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20spanning%20tree" title=" minimal spanning tree"> minimal spanning tree</a> </p> <a href="https://publications.waset.org/abstracts/23148/an-evaluation-model-for-automatic-map-generalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17448</span> Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kourd">Y. Kourd</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lefebvre"> D. Lefebvre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title="decision tree">decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=residuals%20analysis" title=" residuals analysis"> residuals analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title=" ANFIS"> ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title=" fault diagnosis"> fault diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/26932/faults-diagnosis-by-thresholding-and-decision-tree-with-neuro-fuzzy-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17447</span> About the Case Portfolio Management Algorithms and Their Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chumburidze">M. Chumburidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salia"> N. Salia</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Namchevadze"> T. Namchevadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=credit%20network" title="credit network">credit network</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20portfolio" title=" case portfolio"> case portfolio</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20queue" title=" priority queue"> priority queue</a>, <a href="https://publications.waset.org/abstracts/search?q=stack" title=" stack"> stack</a> </p> <a href="https://publications.waset.org/abstracts/168639/about-the-case-portfolio-management-algorithms-and-their-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=582">582</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=583">583</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Model%20tree&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>