CINXE.COM
Search results for: gadolinium contrast
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gadolinium contrast</title> <meta name="description" content="Search results for: gadolinium contrast"> <meta name="keywords" content="gadolinium contrast"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gadolinium contrast" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gadolinium contrast"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1514</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gadolinium contrast</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujith%20Rajashekar%20Swamy">Sujith Rajashekar Swamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Meghana%20Rajashekara%20Swamy"> Meghana Rajashekara Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20weighted" title="susceptibility weighted">susceptibility weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=T1%20weighted" title=" T1 weighted"> T1 weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20lesions" title=" brain lesions"> brain lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast" title=" gadolinium contrast"> gadolinium contrast</a> </p> <a href="https://publications.waset.org/abstracts/160957/post-contrast-susceptibility-weighted-imaging-vs-post-contrast-t1-weighted-imaging-for-evaluation-of-brain-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Huang">Jian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cobalt-gadolinium catalyst for Fischer-Tropsch synthesis was prepared by impregnation method with commercial silica gel, and its texture properties were characterized by BET, XRD, and TPR. The catalytic performance of the catalyst was tested in a fixed bed reactor. The results showed that the addition of gadolinium to the cobalt catalyst might decrease the size of cobalt particles, and increased the dispersion of catalytic active cobalt phases. The carbon number distributions for the catalysts was calculated by ASF equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fischer-Tropsch%20synthesis" title="Fischer-Tropsch synthesis">Fischer-Tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt-based%20catalysts" title=" cobalt-based catalysts"> cobalt-based catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20number%20distributions" title=" carbon number distributions"> carbon number distributions</a> </p> <a href="https://publications.waset.org/abstracts/48437/investigation-on-fischer-tropsch-synthesis-over-cobalt-gadolinium-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> Hypersensitivity Reactions Following Intravenous Administration of Contrast Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cydejko">Joanna Cydejko</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Mika"> Paulina Mika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypersensitivity reactions are side effects of medications that resemble an allergic reaction. Anaphylaxis is a generalized, severe allergic reaction of the body caused by exposure to a specific agent at a dose tolerated by a healthy body. The most common causes of anaphylaxis are food (about 70%), Hymenoptera venoms (22%), and medications (7%), despite detailed diagnostics in 1% of people, the cause of the anaphylactic reaction was not indicated. Contrast media are anaphylactic agents of unknown mechanism. Hypersensitivity reactions can occur with both immunological and non-immunological mechanisms. Symptoms of anaphylaxis occur within a few seconds to several minutes after exposure to the allergen. Contrast agents are chemical compounds that make it possible to visualize or improve the visibility of anatomical structures. In the diagnosis of computed tomography, the preparations currently used are derivatives of the triiodide benzene ring. Pharmacokinetic and pharmacodynamic properties, i.e., their osmolality, viscosity, low chemotoxicity and high hydrophilicity, have an impact on better tolerance of the substance by the patient's body. In MRI diagnostics, macrocyclic gadolinium contrast agents are administered during examinations. The aim of this study is to present the results of the number and severity of anaphylactic reactions that occurred in patients in all age groups undergoing diagnostic imaging with intravenous administration of contrast agents. In non-ionic iodine CT and in macrocyclic gadolinium MRI. A retrospective assessment of the number of adverse reactions after contrast administration was carried out on the basis of data from the Department of Radiology of the University Clinical Center in Gdańsk, and it was assessed whether their different physicochemical properties had an impact on the incidence of acute complications. Adverse reactions are divided according to the severity of the patient's condition and the diagnostic method used in a given patient. Complications following the administration of a contrast medium in the form of acute anaphylaxis accounted for less than 0.5% of all diagnostic procedures performed with the use of a contrast agent. In the analysis period from January to December 2022, 34,053 CT scans and 15,279 MRI examinations with the use of contrast medium were performed. The total number of acute complications was 21, of which 17 were complications of iodine-based contrast agents and 5 of gadolinium preparations. The introduction of state-of-the-art contrast formulations was an important step toward improving the safety and tolerability of contrast agents used in imaging. Currently, contrast agents administered to patients are considered to be one of the best-tolerated preparations used in medicine. However, like any drug, they can be responsible for the occurrence of adverse reactions resulting from their toxic effects. The increase in the number of imaging tests performed with the use of contrast agents has a direct impact on the number of adverse events associated with their administration. However, despite the low risk of anaphylaxis, this risk should not be marginalized. The growing threat associated with the mass performance of radiological procedures with the use of contrast agents forces the knowledge of the rules of conduct in the event of symptoms of hypersensitivity to these preparations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaphylactic" title="anaphylactic">anaphylactic</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20medium" title=" contrast medium"> contrast medium</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic" title=" diagnostic"> diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imagine" title=" medical imagine"> medical imagine</a> </p> <a href="https://publications.waset.org/abstracts/178982/hypersensitivity-reactions-following-intravenous-administration-of-contrast-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franca%20De%20Sarno">Franca De Sarno</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Maria%20Ponsiglione"> Alfonso Maria Ponsiglione</a>, <a href="https://publications.waset.org/abstracts/search?q=Enza%20Torino"> Enza Torino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a> </p> <a href="https://publications.waset.org/abstracts/92403/gadolinium-based-polymer-nanostructures-as-magnetic-resonance-imaging-contrast-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> Contrast Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jao%20Jo-Chi">Jao Jo-Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Yen-Ku"> Chen Yen-Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaw%20Twei-Shiun"> Jaw Twei-Shiun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Po-Chou"> Chen Po-Chou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5 % human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of Aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast-enhanced%20magnetic%20resonance%20angiography" title="contrast-enhanced magnetic resonance angiography">contrast-enhanced magnetic resonance angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=Gd-BOPTA" title=" Gd-BOPTA"> Gd-BOPTA</a>, <a href="https://publications.waset.org/abstracts/search?q=Gd-DTPA" title=" Gd-DTPA"> Gd-DTPA</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/27739/contrast-enhanced-magnetic-resonance-angiography-in-rats-with-gadobenate-dimeglumine-at-3t" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">628</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Flame Spray Pyrolysis as a High-Throughput Method to Generate Gadolinium Doped Titania Nanoparticles for Augmented Radiotherapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20J.%20Rybak-Smith">Malgorzata J. Rybak-Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Benedicte%20Thiebaut"> Benedicte Thiebaut</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Johnson"> Simon Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Bishop"> Peter Bishop</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20E.%20Townley"> Helen E. Townley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gadolinium doped titania (TiO2:Gd) nanoparticles (NPs) can be activated by X-ray radiation to generate Reactive Oxygen Species (ROS), which can be effective in killing cancer cells. As such, treatment with these NPs can be used to enhance the efficacy of conventional radiotherapy. Incorporation of the NPs in to tumour tissue will permit the extension of radiotherapy to currently untreatable tumours deep within the body, and also reduce damage to neighbouring healthy cells. In an attempt to find a fast and scalable method for the synthesis of the TiO2:Gd NPs, the use of Flame Spray Pyrolysis (FSP) was investigated. A series of TiO2 NPs were generated with 1, 2, 5 and 7 mol% gadolinium dopant. Post-synthesis, the TiO2:Gd NPs were silica-coated to improve their biocompatibility. Physico-chemical characterisation was used to determine the size and stability in aqueous suspensions of the NPs. All analysed TiO2:Gd NPs were shown to have relatively high photocatalytic activity. Furthermore, the FSP synthesized silica-coated TiO2:Gd NPs generated enhanced ROS in chemico. Studies on rhabdomyosarcoma (RMS) cell lines (RD & RH30) demonstrated that in the absence of irradiation all TiO2:Gd NPs were inert. However, application of TiO2:Gd NPs to RMS cells, followed by irradiation, showed a significant decrease in cell proliferation. Consequently, our studies showed that the X-ray-activatable TiO2:Gd NPs can be prepared by a high-throughput scalable technique to provide a novel and affordable anticancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20nanoparticles" title=" titania nanoparticles"> titania nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a> </p> <a href="https://publications.waset.org/abstracts/7506/flame-spray-pyrolysis-as-a-high-throughput-method-to-generate-gadolinium-doped-titania-nanoparticles-for-augmented-radiotherapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Youssef%20El%20Hafidi">Moulay Youssef El Hafidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20cooling" title="magnetic cooling">magnetic cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium" title=" gadolinium"> gadolinium</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnets" title=" permanent magnets"> permanent magnets</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchange" title=" heat exchange"> heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/164794/an-enhanced-room-temperature-magnetic-refrigerator-based-on-nanofluid-from-theoretical-study-to-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> Contrast Enhancement of Color Images with Color Morphing Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Khan">Javed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Saeed%20Malik"> Aamir Saeed Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidal%20Kamel"> Nidal Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarat%20Chandra%20Dass"> Sarat Chandra Dass</a>, <a href="https://publications.waset.org/abstracts/search?q=Azura%20Mohd%20Affandi"> Azura Mohd Affandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhacement" title="contrast enhacement">contrast enhacement</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20RGB" title=" normalized RGB"> normalized RGB</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20histogram%20equalization" title=" adaptive histogram equalization"> adaptive histogram equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20variance." title=" cumulative variance."> cumulative variance.</a> </p> <a href="https://publications.waset.org/abstracts/42755/contrast-enhancement-of-color-images-with-color-morphing-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> Comparative Study of Different Enhancement Techniques for Computed Tomography Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Jinimole">C. G. Jinimole</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Harsha"> A. Harsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20techniques" title=" enhancement techniques"> enhancement techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=increasing%20contrast" title=" increasing contrast"> increasing contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR%20and%20MSE" title=" PSNR and MSE"> PSNR and MSE</a> </p> <a href="https://publications.waset.org/abstracts/69868/comparative-study-of-different-enhancement-techniques-for-computed-tomography-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1505</span> New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lise%20Paule%20Lab%C3%A9jof">Lise Paule Labéjof</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%ADza%20Sales%20Pereira%20Bizerra"> Raíza Sales Pereira Bizerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Galileu%20Barbosa%20Costa"> Galileu Barbosa Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Tha%C3%ADsa%20Barros%20dos%20Santos"> Thaísa Barros dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20quality" title="image quality">image quality</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy%20research" title=" microscopy research"> microscopy research</a>, <a href="https://publications.waset.org/abstracts/search?q=staining%20technique" title=" staining technique"> staining technique</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20thin%20section" title=" ultra thin section"> ultra thin section</a> </p> <a href="https://publications.waset.org/abstracts/26993/new-method-to-increase-contrast-of-electromicrograph-of-rat-tissues-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1504</span> Edge Detection in Low Contrast Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K.%20Pandey"> Rajesh K. Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The edges of low contrast images are not clearly distinguishable to the human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20contrast%20image" title="low contrast image">low contrast image</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20differentiator" title="fractional order differentiator">fractional order differentiator</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian%20%28LoG%29%20method" title="Laplacian of Gaussian (LoG) method">Laplacian of Gaussian (LoG) method</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%20polynomial" title=" chebyshev polynomial"> chebyshev polynomial</a> </p> <a href="https://publications.waset.org/abstracts/21264/edge-detection-in-low-contrast-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1503</span> New Variational Approach for Contrast Enhancement of Color Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seongchae%20Seo"> Seongchae Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20image" title="color image">color image</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20enhancement%20technique" title=" contrast enhancement technique"> contrast enhancement technique</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20approach" title=" variational approach"> variational approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Lagrang%20equation" title=" Euler-Lagrang equation"> Euler-Lagrang equation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20approximation%20method" title=" dynamic approximation method"> dynamic approximation method</a>, <a href="https://publications.waset.org/abstracts/search?q=EME%20measure" title=" EME measure"> EME measure</a> </p> <a href="https://publications.waset.org/abstracts/10574/new-variational-approach-for-contrast-enhancement-of-color-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1502</span> Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.A.%20Kuchma">E.A. Kuchma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X-ray%20induced%20photodynamic%20therapy" title="X-ray induced photodynamic therapy">X-ray induced photodynamic therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillating%20nanoparticle" title=" scintillating nanoparticle"> scintillating nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=radiosensitizer" title=" radiosensitizer"> radiosensitizer</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitizer" title=" photosensitizer"> photosensitizer</a> </p> <a href="https://publications.waset.org/abstracts/152618/peg-at-gdf3tb3-rb-nanocomposites-for-deep-seated-x-ray-induced-photodynamic-therapy-in-oncology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1501</span> Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O%E2%80%99Day%20Luke">O’Day Luke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-layer%20spectral%20computed%20tomography" title="dual-layer spectral computed tomography">dual-layer spectral computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20non-contrast" title=" virtual non-contrast"> virtual non-contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20non-contrast" title=" true non-contrast"> true non-contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20comparison" title=" clinical comparison"> clinical comparison</a> </p> <a href="https://publications.waset.org/abstracts/143396/comparison-of-virtual-non-contrast-to-true-non-contrast-images-using-dual-layer-spectral-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1500</span> Contrast Media Effects and Radiation Dose Assessment in Contrast Enhanced Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Samaila">Buhari Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabiu%20Abdullahi"> Sabiu Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Buhari%20Maidamma"> Buhari Maidamma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast-enhanced computed tomography (CE-CT) is a technique that uses contrast media to improve image quality and diagnostic accuracy. It is a widely used imaging modality in medical diagnostics, offering high-resolution images for accurate diagnosis. However, concerns regarding the potential adverse effects of contrast media and radiation dose exposure have prompted ongoing investigation and assessment. It is important to assess the effects of contrast media and radiation dose in CE-CT procedures. Objective: This study aims to assess the effects of contrast media and radiation dose in contrast-enhanced computed tomography (CECT) procedures. Methods: A comprehensive review of the literature was conducted to identify studies related to contrast media effects and radiation dose assessment in CECT. Relevant data, including location, type of research, objective, method, findings, conclusion, authors, and year of publications, were extracted, analyzed, and reported. Results: The findings revealed that several studies have investigated the impacts of contrast media and radiation doses in CECT procedures, with iodinated contrast agents being the most commonly employed. Adverse effects associated with contrast media administration were reported, including allergic reactions, nephrotoxicity, and thyroid dysfunction, albeit at relatively low incidence rates. Additionally, radiation dose levels varied depending on the imaging protocol and anatomical region scanned. Efforts to minimize radiation exposure through optimization techniques were evident across studies. Conclusion: Contrast-enhanced computed tomography (CECT) remains an invaluable tool in medical imaging; however, careful consideration of contrast media effects and radiation dose exposure is imperative. Healthcare practitioners should weigh the diagnostic benefits against potential risks, employing strategies to mitigate adverse effects and optimize radiation dose levels for patient safety and effective diagnosis. Further research is warranted to enhance the understanding and management of contrast media effects and radiation dose optimization in CECT procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT" title="CT">CT</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title=" contrast media"> contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20radiation" title=" effect of radiation"> effect of radiation</a> </p> <a href="https://publications.waset.org/abstracts/192678/contrast-media-effects-and-radiation-dose-assessment-in-contrast-enhanced-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1499</span> Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kamra">Amit Kamra</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Jain"> V. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pragya"> Pragya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other state-of-the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=mammography" title=" mammography"> mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-scale" title=" multi-scale"> multi-scale</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a> </p> <a href="https://publications.waset.org/abstracts/29677/contrast-enhancement-of-masses-in-mammograms-using-multiscale-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1498</span> Prospective Randomized Trial of Na/K Citrate for the Prevention of Contrast-Induced Nephropathy in High-Risk Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leili%20Iranirad">Leili Iranirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Fakhreddin%20Hejazi"> Seyed Fakhreddin Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Negar%20Vakili%20Razlighi"> Negar Vakili Razlighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Contrast-induced nephropathy (CIN) or contrast-induced acute kidney injury (CI-AKI) is an unknown acute kidney injury (AKI) occurring after exposure to contrast media (CM). Contrast agents are most often used for diagnostic procedures or therapeutic angiographic interventions. Recently, Na/K citrate as a urine alkalinization has been evaluated for the prevention of CIN. We conducted this experiment to evaluate the efficiency of Na/K citrate on CIN in high-risk patients treated with cardiac catheterization. Methods: A prospective randomized clinical trial was conducted on 400 patients having moderate to high-risk factors for CIN treated with elective percutaneous coronary intervention (PCI) and were assigned randomly to the control group or the Na/K citrate group. The Na/K citrate group (n=200) received 5 g Na/K citrate solution, which was diluted in 200 mL water two h before and four hours after the first administration and intravenous hydration for two h prior to and six h after the procedure, while the control group (n=200) only received intravenous hydration. Serum creatinine (SCr) was calculated prior to the contrast exposure and after 48 h. CIN was described as a 25% increase in creatinine of serum (SCr) or >0.5 mg/dl 48 h after contrast administration. Results: CIN was observed in 33 patients (16.5%) in the control group and in 6 patients (3%) in the Na/K citrate group. A significant variation was recorded in the CIN incidence between the two groups 48 h after the radiocontrast agent administration (p < 0.001). Conclusion: Our results show that Na/K citrate is useful and substantially reduces the incidence of CIN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title="contrast media">contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=citrate" title=" citrate"> citrate</a>, <a href="https://publications.waset.org/abstracts/search?q=PCI" title=" PCI"> PCI</a> </p> <a href="https://publications.waset.org/abstracts/159055/prospective-randomized-trial-of-nak-citrate-for-the-prevention-of-contrast-induced-nephropathy-in-high-risk-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1497</span> Effect of Phonological Complexity in Children with Specific Language Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfana%20M.">Irfana M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyandi%20Kabasi"> Priyandi Kabasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarticulation" title="coarticulation">coarticulation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20contrast" title=" minimal contrast"> minimal contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=phonological%20complexity" title=" phonological complexity"> phonological complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20language%20impairment" title=" specific language impairment"> specific language impairment</a> </p> <a href="https://publications.waset.org/abstracts/146147/effect-of-phonological-complexity-in-children-with-specific-language-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1496</span> Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20Mohamed%20Y.%20Abdallah">Yousif Mohamed Y. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Razan%20Manofely"> Razan Manofely</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajab%20M.%20Ben%20Yousef"> Rajab M. Ben Yousef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=x-rays" title=" x-rays"> x-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel%20intensity%20values" title=" pixel intensity values"> pixel intensity values</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab" title=" MatLab"> MatLab</a> </p> <a href="https://publications.waset.org/abstracts/31031/enhancement-of-x-rays-images-intensity-using-pixel-values-adjustments-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1495</span> Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Suecharoen">Pranee Suecharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaturat%20Kanpittaya"> Jaturat Kanpittaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20reactions" title="adverse reactions">adverse reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title=" contrast media"> contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=iodinated%20contrast%20agents" title=" iodinated contrast agents"> iodinated contrast agents</a> </p> <a href="https://publications.waset.org/abstracts/38173/adverse-reactions-from-contrast-media-in-patients-undergone-computed-tomography-at-the-department-of-radiology-srinagarind-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1494</span> An Inquiry on Imaging of Soft Tissues in Micro-Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matej%20Patzelt">Matej Patzelt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jana%20Mrzilkova"> Jana Mrzilkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Dudak"> Jan Dudak</a>, <a href="https://publications.waset.org/abstracts/search?q=Frantisek%20Krejci"> Frantisek Krejci</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Zemlicka"> Jan Zemlicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdenek%20Wurst"> Zdenek Wurst</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Zach"> Petr Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Musil"> Vladimir Musil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to elaborate methodology for soft tissue samples imaging in micro-CT. Methodology: We used organs of rats and mice. We either did a preparation of the organs and fixation in contrast solution or we did cannulation of blood vessels and their injection for imaging of the vascular system. First, we scanned native specimens, then we created corrosive specimens by resins. In the next step, we injected vascular system either by Aurovist contrast agent or by Exitron. In the next step, we focused on soft tissues contrast increase. We scanned samples fixated in Lugol solution, samples fixated in pure ethanol and in formaldehyde solution. All used methods were afterwards compared. Results: Native specimens did not provide sufficient contrast of the tissues in any of organs. Corrosive samples of the blood stream provided great contrast and details; on the other hand, it was necessary to destroy the organ. Further examined possibility was injection of the AuroVist contrast that leads to the great bloodstream contrast. Injection of Exitron contrast agent comparing to Aurovist did not provide such a great contrast. The soft tissues (kidney, heart, lungs, brain, and liver) were best visualized after fixation in ethanol. This type of fixation showed best results in all studied tissues. Lugol solution had great results in muscle tissue. Fixation by formaldehyde solution showed similar quality of contrast in the tissues like ethanol. Conclusion: Before imaging, we need to, first, determinate which structures of the soft tissues we want to visualize. In the case of the bloodstream, the best was AuroVist and corrosive specimens. Muscle tissue is best visualized by Lugol solution. In the case of the organs containing cavities, like kidneys or brain, the best way was ethanol fixation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental%20imaging" title="experimental imaging">experimental imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fixation" title=" fixation"> fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissues" title=" soft tissues"> soft tissues</a> </p> <a href="https://publications.waset.org/abstracts/51423/an-inquiry-on-imaging-of-soft-tissues-in-micro-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1493</span> Cone Contrast Sensitivity of Normal Trichromats and Those with Red-Green Dichromats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatsuya%20Iizuka">Tatsuya Iizuka</a>, <a href="https://publications.waset.org/abstracts/search?q=Takushi%20Kawamorita"> Takushi Kawamorita</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoya%20Handa"> Tomoya Handa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Ishikawa"> Hitoshi Ishikawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report normative cone contrast sensitivity values and sensitivity and specificity values for a computer-based color vision test, the cone contrast test-HD (CCT-HD). The participants included 50 phakic eyes with normal color vision (NCV) and 20 dichromatic eyes (ten with protanopia and ten with deuteranopia). The CCT-HD was used to measure L, M, and S-CCT-HD scores (color vision deficiency, L-, M-cone logCS≦1.65, S-cone logCS≦0.425) to investigate the sensitivity and specificity of CCT-HD based on anomalous-type diagnosis with animalscope. The mean ± standard error L-, M-, S-cone logCS for protanopia were 0.90±0.04, 1.65±0.03, and 0.63±0.02, respectively; for deuteranopia 1.74±0.03, 1.31±0.03, and 0.61±0.06, respectively; and for age-matched NCV were 1.89±0.04, 1.84±0.04, and 0.60±0.03, respectively, with significant differences for each group except for S-CCT-HD (Bonferroni corrected α = 0.0167, p < 0.0167). The sensitivity and specificity of CCT-HD were 100% for protan and deutan in diagnosing abnormal types from 20 to 64 years of age, but the specificity decreased to 65% for protan and 55% for deutan in older persons > 65. CCT-HD is comparable to the diagnostic performance of the anomalous type in the anomaloscope for the 20-64-year-old age group. However, the results should be interpreted cautiously in those ≥ 65 years. They are more susceptible to acquired color vision deficiencies due to the yellowing of the crystalline lens and other factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20contrast%20test%20HD" title="cone contrast test HD">cone contrast test HD</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20vision%20test" title=" color vision test"> color vision test</a>, <a href="https://publications.waset.org/abstracts/search?q=congenital%20color%20vision%20deficiency" title=" congenital color vision deficiency"> congenital color vision deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=red-green%20dichromacy" title=" red-green dichromacy"> red-green dichromacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20contrast%20sensitivity" title=" cone contrast sensitivity"> cone contrast sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/159154/cone-contrast-sensitivity-of-normal-trichromats-and-those-with-red-green-dichromats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1492</span> Transformation of Aluminum Unstable Oxyhydroxides in Ultrafine α-Al2O3 in Presence of Various Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Kuchukhidze">T. Kuchukhidze</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jalagonia"> N. Jalagonia</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Phachulia"> Z. Phachulia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chedia"> R. Chedia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic obtained on the base of aluminum oxide has wide application range, because it has unique properties, for example, wear-resistance, dielectric characteristics, exploitation ability at high temperatures and in corrosive atmosphere. Low temperature synthesis of α-Al2O3 is energo-economical process and it is actual for developing technologies of corundum ceramics fabrication. In the present work possibilities of low temperature transformation of oxyhydroxides in α-Al2O3, during a presence of small amount of rare–earth elements compounds (also Th, Re), have been discussed. Aluminium unstable oxyhydroxides have been obtained by hydrolysis of aluminium isopropoxide, nitrates, sulphate, chloride in alkaline environment at 80-90ºC tempertures. β-Al(OH)3 has been received from aluminium powder by ultrasonic development. Drying of oxyhydroxide sol has been conducted with presence of various types seeds, which amount reaches 0,1-0,2% (mas). Neodymium, holmium, thorium, lanthanum, cerium, gadolinium, disprosium nitrates and rhenium carbonyls have been used as seeds and they have been added to the sol specimens in amount of 0.1-0.2% (mas) calculated on metals. Annealing of obtained gels is carried out at 70 – 1100ºC for 2 hrs. The same specimen transforms in α-Al2O3 at 1100ºC. At this temperature in case of presence of lanthanum and gadolinium transformation takes place by 70-85%. In case of presence of thorium stabilization of γ-and θ-phases takes place. It is established, that thorium causes inhibition of α-phase generation at 1100ºC, at the time in all other doped specimens α-phase is generated at lower temperatures (1000-1050ºC). During the work the following devices have been used: X-ray difractometer DRON-3M (Cu-Kα, Ni filter, 2º/min), High temperature vacuum furnace OXY-GON, electronic scanning microscopes Nikon ECLIPSE LV 150, NMM-800TRF, planetary mill Pulverisette 7 premium line, SHIMADZU Dynamic Ultra Micro Hardness Tester, DUH-211S, Analysette 12 Dyna sizer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Alumina" title="α-Alumina">α-Alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=seeding" title=" seeding"> seeding</a> </p> <a href="https://publications.waset.org/abstracts/23629/transformation-of-aluminum-unstable-oxyhydroxides-in-ultrafine-a-al2o3-in-presence-of-various-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23629.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1491</span> Allopurinol Prophylactic Therapy in the Prevention of Contrast Induced Nephropathy in High Risk Patients Undergoing Coronary Angiography: A Prospective Randomized Controlled Trial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Fakhreddin%20Hejazi">Seyed Fakhreddin Hejazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Leili%20Iranirad"> Leili Iranirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Sadeghi"> Mohammad Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Talebizadeh"> Mohsen Talebizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast-induced nephropathy (CIN) remains to be a potentially serious complication of radiographic procedures. We performed this clinical trial to assess the preventive effect of allopurinol against CIN in high-risk patients undergoing coronary angiography. Methods: In this prospective randomized controlled trial, 140 patients with at least two risk factors for CIN undergoing coronary angiography were randomly assigned to either the allopurinol group or the control group. Patients in the allopurinol group received 300 mg allopurinol 24 hours before a procedure and intravenous hydration for 12 hours before and after coronary angiography, whereas patients in the control group received intravenous hydration. Serum creatinine (SCr), blood urea nitrogen (BUN) and uric acid were measured before contrast exposure and at 48 hours. CIN was defined as an increase of 25% in serum creatinine (SCr) or >0.5 mg/dl 48 hours after contrast administration. Results: CIN occurred in 11 out of 70 (7.9%) patients in the control group and in 8 out of 70 (5.7%) patients in the allopurinol group. There was no significant difference in the incidence of CIN between the two groups at 48 hours after administering the radiocontrast agent (p = 0.459). However, there were significant differences between the two groups in SCr, BUN, uric acid, and eGFR 48 hours after radiocontrast administration (p < 0.05). Conclusion: Our findings revealed that allopurinol had no substantial efficacy over hydration protocol in high-risk patients for the development of CIN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contrast-induced%20nephropathy" title="contrast-induced nephropathy">contrast-induced nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=allopurinol" title=" allopurinol"> allopurinol</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20angiography" title=" coronary angiography"> coronary angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20agent" title=" contrast agent"> contrast agent</a> </p> <a href="https://publications.waset.org/abstracts/53315/allopurinol-prophylactic-therapy-in-the-prevention-of-contrast-induced-nephropathy-in-high-risk-patients-undergoing-coronary-angiography-a-prospective-randomized-controlled-trial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1490</span> Study of Contrast Induced Nephropathy in Patients Undergoing Cardiac Catheterization: Upper Egypt Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kassem">Ali Kassem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharf%20Eldeen-Shazly"> Sharf Eldeen-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=Alshemaa%20Lotfy"> Alshemaa Lotfy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Contrast-induced nephropathy (CIN) has been the third leading cause of hospital-acquired renal failure. Patients with cardiac diseases are particularly at risk especially with repeated injections of contrast media. CIN is generally defined as an increase in serum creatinine concentration of > 0.5 mg/dL or 25% above baseline within 48 hours after contrast administration. Aim of work: To examine the frequency of CIN for patients undergoing cardiac catheterization at Sohag University Hospital (Upper Egypt) and to identify possible risk factors for CIN in these patients. Material and methods: The study included 104 patients with mean age 56.11 ±10.03, 64(61.5%) are males while 40(38.5%) are females. 44(42.3%) patients are diabetics, 43(41%) patients are hypertensive, 6(5.7%) patients have congestive heart failure, 69(66.3%) patients on statins, 74 (71.2 %) are on ACEIs or ARBs, 19(15.4%) are on metformin, 6 (5.8%) are on NSAIDs, 30(28.8%) are on diuretics. RESULTS: Patients were classified at the end of the study into two groups: Group A: Included 91 patients who did not develop CIN. Group B: Included 13 patients who developed CIN, of which serum creatinine raised > 0.5mg/dl in 6 patients and raised > 25% from the baseline after the procedure in 13 patients. The overall incidence of CIN was 12.5%. CIN increased with older age. There was an increase in the incidence of CIN in diabetic versus non-diabetic patients (20.5% and 6.7%) respectively. (p< 0.03). There was a highly significant increase in the incidence of CIN in patients with CHF versus those without CHF (100% and 71%) respectively, (P<0001). Patients on diuretics showed a significant increase in the incidence of CIN representing 61.5% of all patients who developed CIN. Conclusion: Older patients, diabetic patients, patients with CHF and patients on diuretics have higher risk of developing CIN during coronary catheterization and should receive reno-protective measures before contrast exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20diseases" title="cardiac diseases">cardiac diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast-induced%20nephropathy" title=" contrast-induced nephropathy"> contrast-induced nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20catheterization" title=" coronary catheterization"> coronary catheterization</a>, <a href="https://publications.waset.org/abstracts/search?q=CIN" title=" CIN"> CIN</a> </p> <a href="https://publications.waset.org/abstracts/32783/study-of-contrast-induced-nephropathy-in-patients-undergoing-cardiac-catheterization-upper-egypt-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1489</span> Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiqiang%20Ni">Yiqiang Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuanlong%20Chen"> Xuanlong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Enliang%20Li"> Enliang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Linting%20Zheng"> Linting Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shizheng%20Yang"> Shizheng Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bipolar%20IC" title="bipolar IC">bipolar IC</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20localization" title=" failure localization"> failure localization</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20break" title=" metal break"> metal break</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20failure" title=" open failure"> open failure</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20contrast" title=" voltage contrast"> voltage contrast</a> </p> <a href="https://publications.waset.org/abstracts/132527/failure-localization-of-bipolar-integrated-circuits-by-implementing-active-voltage-contrast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1488</span> Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tian%20Xia">Tian Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=small%20target%20detection" title="small target detection">small target detection</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20contrast" title=" local contrast"> local contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20vision%20system" title=" human vision system"> human vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20of%20Gaussian" title=" Laplacian of Gaussian"> Laplacian of Gaussian</a> </p> <a href="https://publications.waset.org/abstracts/19199/biologically-inspired-small-infrared-target-detection-using-local-contrast-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1487</span> Beam Spatio-Temporal Multiplexing Approach for Improving Control Accuracy of High Contrast Pulse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Li">Ping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Feng"> Bing Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Junpu%20Zhao"> Junpu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xudong%20Xie"> Xudong Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Dangpeng%20Xu"> Dangpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuixing%20Zheng"> Kuixing Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qihua%20Zhu"> Qihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Wei"> Xiaofeng Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In laser driven inertial confinement fusion (ICF), the control of the temporal shape of the laser pulse is a key point to ensure an optimal interaction of laser-target. One of the main difficulties in controlling the temporal shape is the foot part control accuracy of high contrast pulse. Based on the analysis of pulse perturbation in the process of amplification and frequency conversion in high power lasers, an approach of beam spatio-temporal multiplexing is proposed to improve the control precision of high contrast pulse. In the approach, the foot and peak part of high contrast pulse are controlled independently, which propagate separately in the near field, and combine together in the far field to form the required pulse shape. For high contrast pulse, the beam area ratio of the two parts is optimized, and then beam fluence and intensity of the foot part are increased, which brings great convenience to the control of pulse. Meanwhile, the near field distribution of the two parts is also carefully designed to make sure their F-numbers are the same, which is another important parameter for laser-target interaction. The integrated calculation results show that for a pulse with a contrast of up to 500, the deviation of foot part can be improved from 20% to 5% by using beam spatio-temporal multiplexing approach with beam area ratio of 1/20, which is almost the same as that of peak part. The research results are expected to bring a breakthrough in power balance of high power laser facility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inertial%20confinement%20fusion" title="inertial confinement fusion">inertial confinement fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20pulse%20control" title=" laser pulse control"> laser pulse control</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20spatio-temporal%20multiplexing" title=" beam spatio-temporal multiplexing"> beam spatio-temporal multiplexing</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20balance" title=" power balance"> power balance</a> </p> <a href="https://publications.waset.org/abstracts/103616/beam-spatio-temporal-multiplexing-approach-for-improving-control-accuracy-of-high-contrast-pulse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1486</span> CT Doses Pre and Post SAFIRE: Sinogram Affirmed Iterative Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Noroozian">N. Noroozian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Halim"> M. Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Holloway"> B. Holloway</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computed Tomography (CT) has become the largest source of radiation exposure in modern countries however, recent technological advances have created new methods to reduce dose without negatively affecting image quality. SAFIRE has emerged as a new software package which utilizes full raw data projections for iterative reconstruction, thereby allowing for lower CT dose to be used. this audit was performed to compare CT doses in certain examinations before and after the introduction of SAFIRE at our Radiology department which showed CT doses were significantly lower using SAFIRE compared with pre-SAFIRE software at SAFIRE 3 setting for the following studies:CSKUH Unenhanced brain scans (-20.9%), CABPEC Abdomen and pelvis with contrast (-21.5%), CCHAPC Chest with contrast (-24.4%), CCHAPC Abdomen and pelvis with contrast (-16.1%), CCHAPC Total chest, abdomen and pelvis (-18.7%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dose%20reduction" title="dose reduction">dose reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20reconstruction" title=" iterative reconstruction"> iterative reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20dose%20CT%20techniques" title=" low dose CT techniques"> low dose CT techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=SAFIRE" title=" SAFIRE"> SAFIRE</a> </p> <a href="https://publications.waset.org/abstracts/18344/ct-doses-pre-and-post-safire-sinogram-affirmed-iterative-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1485</span> Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Riley">Peter J. Riley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20dose%20optimization" title="patient dose optimization">patient dose optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=radiological%20physics" title=" radiological physics"> radiological physics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20contrast" title=" tissue contrast"> tissue contrast</a> </p> <a href="https://publications.waset.org/abstracts/165659/simulation-of-x-ray-tissue-contrast-and-dose-optimisation-in-radiological-physics-to-improve-medical-imaging-students-skills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=50">50</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>