CINXE.COM

Search results for: damage cost

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: damage cost</title> <meta name="description" content="Search results for: damage cost"> <meta name="keywords" content="damage cost"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="damage cost" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="damage cost"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8320</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: damage cost</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8320</span> Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gou-Moon%20Choi">Gou-Moon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Young%20Jung"> Woo-Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan-Young%20Yune"> Chan-Young Yune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20cost" title="damage cost">damage cost</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20wind" title=" extreme wind"> extreme wind</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20disaster" title=" natural disaster"> natural disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20property" title=" private property"> private property</a> </p> <a href="https://publications.waset.org/abstracts/44424/damage-cost-for-private-property-by-extreme-wind-over-the-past-10-years-in-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8319</span> Evaluation of Earthquake Induced Cost for Mid-Rise Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Olgun">Gulsah Olgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Bozdag"> Ozgur Bozdag</a>, <a href="https://publications.waset.org/abstracts/search?q=Yildirim%20Ertutar"> Yildirim Ertutar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper mainly focuses on performance assessment of buildings by associating the damage level with the damage cost. For this purpose a methodology is explained and applied to the representative mid-rise concrete building residing in Izmir. In order to consider uncertainties in occurrence of earthquakes, the structural analyses are conducted for all possible earthquakes in the region through the hazard curve. By means of the analyses, probability of the structural response being in different limit states are obtained and used to calculate expected damage cost. The expected damage cost comprises diverse cost components related to earthquake such as cost of casualties, replacement or repair cost of building etc. In this study, inter-story drift is used as an effective response variable to associate expected damage cost with different damage levels. The structural analysis methods performed to obtain inter story drifts are response spectrum method as a linear one, accurate push-over and time history methods to demonstrate the nonlinear effects on loss estimation. Comparison of the results indicates that each method provides similar values of expected damage cost. To sum up, this paper explains an approach which enables to minimize the expected damage cost of buildings and relate performance level to damage cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expected%20damage%20cost" title="expected damage cost">expected damage cost</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20states" title=" limit states"> limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20estimation" title=" loss estimation"> loss estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title=" performance based design"> performance based design</a> </p> <a href="https://publications.waset.org/abstracts/57369/evaluation-of-earthquake-induced-cost-for-mid-rise-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8318</span> Optimal Load Factors for Seismic Design of Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Boj%C3%B3rquez">Juan Boj贸rquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20E.%20Ruiz"> Sonia E. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ed%C3%A9n%20Boj%C3%B3rquez"> Ed茅n Boj贸rquez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20de%20Le%C3%B3n%20Escobedo"> David de Le贸n Escobedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20factors" title="load factors">load factors</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20analysis" title=" life-cycle analysis"> life-cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20buildings" title=" reinforced concrete buildings"> reinforced concrete buildings</a> </p> <a href="https://publications.waset.org/abstracts/22167/optimal-load-factors-for-seismic-design-of-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8317</span> Overview and Post Damage Analysis of Nepal Earthquake 2015</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar%20Singhal">Vipin Kumar Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Kumar%20Mittal"> Rohit Kumar Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavitra%20Ranjan%20Maiti"> Pavitra Ranjan Maiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nepal%20earthquake" title="Nepal earthquake">Nepal earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20analysis" title=" damage analysis"> damage analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20scales" title=" damage scales"> damage scales</a> </p> <a href="https://publications.waset.org/abstracts/54094/overview-and-post-damage-analysis-of-nepal-earthquake-2015" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8316</span> Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philip%20Feig">Philip Feig</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus%20Gschwendtner"> Klaus Gschwendtner</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Schatz"> Julian Schatz</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Diermeyer"> Frank Diermeyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20research" title="accident research">accident research</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20scenarios" title=" accident scenarios"> accident scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=ADAS" title=" ADAS"> ADAS</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=property%20damage%20analysis" title=" property damage analysis"> property damage analysis</a> </p> <a href="https://publications.waset.org/abstracts/47288/vehicle-risk-evaluation-in-low-speed-accidents-consequences-for-relevant-test-scenarios" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8315</span> Modal Approach for Decoupling Damage Cost Dependencies in Building Stories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haj%20Najafi%20Leila">Haj Najafi Leila</a>, <a href="https://publications.waset.org/abstracts/search?q=Tehranizadeh%20Mohsen"> Tehranizadeh Mohsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called &quot;modal cost superposition method&quot; for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories&#39; cost equations by the means of the introduced &quot;substituted matrixes of mass and stiffness&quot;. Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dependency" title="dependency">dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=story-cost" title=" story-cost"> story-cost</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20modes" title=" cost modes"> cost modes</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20demand%20parameter" title=" engineering demand parameter"> engineering demand parameter</a> </p> <a href="https://publications.waset.org/abstracts/77261/modal-approach-for-decoupling-damage-cost-dependencies-in-building-stories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8314</span> Classification of Impact Damages with Respect of Damage Tolerance Design Approach and Airworthiness Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Mrna">T. Mrna</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Doubrava"> R. Doubrava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes airworthiness requirements with respect damage tolerance. Damage tolerance determines the amount and magnitude of damage on parts of the airplane. Airworthiness requirements determine the amount of damage that can still be in flight capable of the condition. Component damage can be defined as barely visible impact damage, visible impact damage or clear visible impact damage. Damage is also distributed it according to the velocity. It is divided into low or high velocity impact damage. The severity of damage to the part of airplane divides the airworthiness requirements into several categories according to severity. Airworthiness requirements are determined by type airplane. All types of airplane do not have the same conditions for airworthiness requirements. This knowledge is important for designing and operating an airplane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airworthiness%20requirements" title="airworthiness requirements">airworthiness requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20and%20high%20velocity%20impact" title=" low and high velocity impact"> low and high velocity impact</a> </p> <a href="https://publications.waset.org/abstracts/82178/classification-of-impact-damages-with-respect-of-damage-tolerance-design-approach-and-airworthiness-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8313</span> Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Ghodrati%20Amiri">Gholamreza Ghodrati Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Jafarian%20Abyaneh"> Mojtaba Jafarian Abyaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zare%20Hosseinzadeh"> Ali Zare Hosseinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frame" title="frame">frame</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20wolf%20optimization%20algorithm" title=" grey wolf optimization algorithm"> grey wolf optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20residual%20force" title=" modal residual force"> modal residual force</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20detection" title=" structural damage detection"> structural damage detection</a> </p> <a href="https://publications.waset.org/abstracts/47524/model-updating-based-approach-for-damage-prognosis-in-frames-via-modal-residual-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8312</span> Experimental Study Damage in a Composite Structure by Vibration Analysis- Glass / Polyester</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Abdeldjebar">R. Abdeldjebar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Labbaci"> B. Labbaci</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Missoum"> L. Missoum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Moudden"> B. Moudden</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Djermane"> M. Djermane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic components of a composite material made him very sensitive to damage, which requires techniques for detecting damage reliable and efficient. This work focuses on the detection of damage by vibration analysis, whose main objective is to exploit the dynamic response of a structure to detect understand the damage. The experimental results are compared with those predicted by numerical models to confirm the effectiveness of the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experimental" title="experimental">experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a> </p> <a href="https://publications.waset.org/abstracts/21019/experimental-study-damage-in-a-composite-structure-by-vibration-analysis-glass-polyester" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8311</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8310</span> Damage Detection in Beams Using Wavelet Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goutham%20Kumar%20Dogiparti">Goutham Kumar Dogiparti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Seshu"> D. R. Seshu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=beams" title=" beams"> beams</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelets" title=" wavelets"> wavelets</a> </p> <a href="https://publications.waset.org/abstracts/42920/damage-detection-in-beams-using-wavelet-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8309</span> Hybrid Seismic Energy Dissipation Devices Made of Viscoelastic Pad and Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim">Jinkoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsung%20Kim"> Minsung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study develops a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A cyclic loading test is conducted on a test specimen to validate the seismic performance of the hybrid damper. Then a moment-framed model structure is designed without seismic load so that it is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis and the life cycle cost evaluation of the structure with and without the dampers. The analysis results show that the model structure has reduced probability of reaching damage states, especially the complete damage state, after seismic retrofit. The expected damage cost and consequently the life cycle cost of the retrofitted structure turn out to be significantly small compared with those of the original structure. Acknowledgement: This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R & D program (N043100016). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title=" slit dampers"> slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20dampers" title=" friction dampers"> friction dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20dampers" title=" hybrid dampers"> hybrid dampers</a> </p> <a href="https://publications.waset.org/abstracts/91332/hybrid-seismic-energy-dissipation-devices-made-of-viscoelastic-pad-and-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8308</span> Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20B.%20Habieb">Ahmad B. Habieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Milani"> Gabriele Milani</a>, <a href="https://publications.waset.org/abstracts/search?q=Tavio%20Tavio"> Tavio Tavio</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Milani"> Federico Milani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry" title="masonry">masonry</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20elastomeric%20isolator" title=" low cost elastomeric isolator"> low cost elastomeric isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelasticity" title=" hyperelasticity"> hyperelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=damped%20non-linear%20spring" title=" damped non-linear spring"> damped non-linear spring</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20damage%20plasticity" title=" concrete damage plasticity"> concrete damage plasticity</a> </p> <a href="https://publications.waset.org/abstracts/70133/numerical-model-of-low-cost-rubber-isolators-for-masonry-housing-in-high-seismic-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8307</span> Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ismail">J. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Za%C3%AFri"> F. Za茂ri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Na%C3%AFt-Abdelaziz"> M. Na茂t-Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Azari"> Z. Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/13462/investigation-of-damage-in-glass-subjected-to-static-indentation-using-continuum-damage-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8306</span> A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qi">Lei Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongxin%20Yan"> Rongxin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lichen%20Sun"> Lichen Sun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensor%20array" title="acoustic sensor array">acoustic sensor array</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20assessment" title=" damage assessment"> damage assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=leakage%20location" title=" leakage location"> leakage location</a> </p> <a href="https://publications.waset.org/abstracts/68599/a-study-of-structural-damage-detection-for-spacecraft-in-orbit-based-on-acoustic-sensor-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8305</span> Structural Health Monitoring and Damage Structural Identification Using Dynamic Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Behboodian">Reza Behboodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure" title="failure">failure</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20energy" title=" strain energy"> strain energy</a> </p> <a href="https://publications.waset.org/abstracts/136456/structural-health-monitoring-and-damage-structural-identification-using-dynamic-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8304</span> Damage Identification Using Experimental Modal Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niladri%20Sekhar%20Barma">Niladri Sekhar Barma</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Dhandole"> Satish Dhandole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20identification" title="damage identification">damage identification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20quantification" title=" damage quantification"> damage quantification</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection%20using%20modal%20analysis" title=" damage detection using modal analysis"> damage detection using modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20identification" title=" structural damage identification"> structural damage identification</a> </p> <a href="https://publications.waset.org/abstracts/150078/damage-identification-using-experimental-modal-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8303</span> A Non-linear Damage Model For The Annulus Of the Intervertebral Disc Under Cyclic Loading, Including Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Motiwale">Shruti Motiwale</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianlin%20Zhou"> Xianlin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Reuben%20H.%20Kraft"> Reuben H. Kraft</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Military and sports personnel are often required to wear heavy helmets for extended periods of time. This leads to excessive cyclic loads on the neck and an increased chance of injury. Computational models offer one approach to understand and predict the time progression of disc degeneration under severe cyclic loading. In this paper, we have applied an analytic non-linear damage evolution model to estimate damage evolution in an intervertebral disc due to cyclic loads over decade-long time periods. We have also proposed a novel strategy for inclusion of recovery in the damage model. Our results show that damage only grows 20% in the initial 75% of the life, growing exponentially in the remaining 25% life. The analysis also shows that it is crucial to include recovery in a damage model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervical%20spine" title="cervical spine">cervical spine</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biomechanics" title=" computational biomechanics"> computational biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20evolution" title=" damage evolution"> damage evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title=" intervertebral disc"> intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a> </p> <a href="https://publications.waset.org/abstracts/42698/a-non-linear-damage-model-for-the-annulus-of-the-intervertebral-disc-under-cyclic-loading-including-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8302</span> Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Lu">Ming Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Li"> Xiaojun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bodi%20Lu"> Bodi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Juehui%20Xing"> Juehui Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribute%20index" title="attribute index">attribute index</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20method" title=" classification method"> classification method</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage%20picture" title=" earthquake damage picture"> earthquake damage picture</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20structure" title=" engineering structure"> engineering structure</a> </p> <a href="https://publications.waset.org/abstracts/66126/attribute-index-and-classification-method-of-earthquake-damage-photographs-of-engineering-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">765</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8301</span> Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munenari%20Inoguchi">Munenari Inoguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Keiko%20Tamura"> Keiko Tamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20damage%20inspection" title="building damage inspection">building damage inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a> </p> <a href="https://publications.waset.org/abstracts/119778/suggestion-of-methodology-to-detect-building-damage-level-collectively-with-flood-depth-utilizing-geographic-information-system-at-flood-disaster-in-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8300</span> A Procedure for Post-Earthquake Damage Estimation Based on Detection of High-Frequency Transients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Zhelyazkov">Aleksandar Zhelyazkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniele%20Zonta"> Daniele Zonta</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmut%20Wenzel"> Helmut Wenzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Furtner"> Peter Furtner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research structural health monitoring is considered for addressing the critical issue of post-earthquake damage detection. A non-standard approach for damage detection via acoustic emission is presented - acoustic emissions are monitored in the low frequency range (up to 120 Hz). Such emissions are termed high-frequency transients. Further a damage indicator defined as the Time-Ratio Damage Indicator is introduced. The indicator relies on time-instance measurements of damage initiation and deformation peaks. Based on the time-instance measurements a procedure for estimation of the maximum drift ratio is proposed. Monitoring data is used from a shaking-table test of a full-scale reinforced concrete bridge pier. Damage of the experimental column is successfully detected and the proposed damage indicator is calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission" title="acoustic emission">acoustic emission</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/99423/a-procedure-for-post-earthquake-damage-estimation-based-on-detection-of-high-frequency-transients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8299</span> Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Palizvan">M. Palizvan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Abadi"> M. T. Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Sadr"> M. H. Sadr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homogenization" title="homogenization">homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20zone%20model" title=" cohesive zone model"> cohesive zone model</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-matrix%20debonding" title=" fiber-matrix debonding"> fiber-matrix debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=RVE" title=" RVE"> RVE</a> </p> <a href="https://publications.waset.org/abstracts/99817/micromechanical-modeling-of-fiber-matrix-debonding-in-unidirectional-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8298</span> Damage Assessment and Repair for Older Brick Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20D.%20Sass">Tim D. Sass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experience of engineers and architects practicing today is typically limited to current building code requirements and modern construction methods and materials. However, many cities have a mix of new and old buildings with many buildings constructed over one hundred years ago when building codes and construction methods were much different. When a brick building sustains damage, a structural engineer is often hired to determine the cause of damage as well as determine the necessary repairs. Forensic studies of dozens of brick buildings shows an appreciation of historical building methods and materials is needed to correctly identify the cause of damage and design an appropriate repair. Damage on an older, brick building can be mistakenly attributed to storms or seismic events when the real source of the damage is deficient original construction. Assessing and remediating damaged brickwork on older brick buildings requires an understanding of the original construction, an understanding of older repair methods, and, an understanding of current building code requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick" title="brick">brick</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration" title=" deterioration"> deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=facade" title=" facade"> facade</a> </p> <a href="https://publications.waset.org/abstracts/78577/damage-assessment-and-repair-for-older-brick-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8297</span> Reliability-Based Life-Cycle Cost Model for Engineering Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Lotfalian">Reza Lotfalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Martins"> Sudarshan Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Radziszewski"> Peter Radziszewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20cost" title="initial cost">initial cost</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20cost" title=" life-cycle cost"> life-cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/11947/reliability-based-life-cycle-cost-model-for-engineering-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8296</span> Dynamic Response and Damage Modeling of Glass Fiber Reinforced Epoxy Composite Pipes: Numerical Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Maziz">Ammar Maziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Rechak"> Said Rechak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high mechanical performance of composite pipes can be adversely affected by their low resistance to impact loads. Loads in dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, an advanced 3-D finite element (FE) model, based on the use of intralaminar damage models was developed and used to predict damage under low-velocity impact. The performance of the numerical model is validated with the confrontation with the results of experimental tests. The results show that at low impact energy, the damage happens mainly by matrix cracking and delamination. The model capabilities to simulate the low-velocity impact events on the full-scale composite structures were proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20velocity%20impact" title=" low velocity impact"> low velocity impact</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20damage%20modeling" title=" progressive damage modeling"> progressive damage modeling</a> </p> <a href="https://publications.waset.org/abstracts/107609/dynamic-response-and-damage-modeling-of-glass-fiber-reinforced-epoxy-composite-pipes-numerical-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8295</span> Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ritzman%20Abdul%20Karim">Mohd Ritzman Abdul Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohui%20Huang"> Zhaohui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage-control%20target%20displacement" title="damage-control target displacement">damage-control target displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20limit%20states" title=" damage limit states"> damage limit states</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20bridge%20pier" title=" reinforced concrete bridge pier"> reinforced concrete bridge pier</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20displacement" title=" yield displacement"> yield displacement</a> </p> <a href="https://publications.waset.org/abstracts/99016/analysis-of-a-damage-control-target-displacement-of-reinforced-concrete-bridge-pier-for-seismic-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8294</span> Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elassaly">Mohamed Elassaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20content" title=" frequency content"> frequency content</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=PGA" title=" PGA"> PGA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20building" title=" RC building"> RC building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/18914/effects-of-ground-motion-characteristics-on-damage-of-rc-buildings-a-detailed-investiagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8293</span> Analysis of the Influence of Support Failure on the Dynamic Effect of Bridge Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Fan">Sun Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Xiaoguang"> Wu Xiaoguang</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Miaomiao"> Fang Miaomiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Chi"> Wei Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degree of damage to the support is simulated by finite element software, and its influence on the static and dynamic effects of the bridge structure is analyzed. Four working conditions are selected for the study of bearing damage impact: the bearing is intact (condition 1), the bearing damage coefficient is 0.8 (condition 2), the bearing damage coefficient is 0.6 (condition 3), and the bearing damage coefficient is 0.4 (Working Condition 4). The effect value of the bridge structure under each working condition is calculated, and the simple-supported girder bridge and continuous girder bridge with typical spans are taken as examples to analyze the overall change of the bridge structure after the bearing completely fails. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20bearing%20damage" title="bridge bearing damage">bridge bearing damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20conditions" title=" load conditions"> load conditions</a> </p> <a href="https://publications.waset.org/abstracts/138578/analysis-of-the-influence-of-support-failure-on-the-dynamic-effect-of-bridge-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8292</span> Retrospective Analysis of the Damage of Agricultural Crops from Hail in Eastern Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valerian%20Omsarashvili">Valerian Omsarashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Jamrishvili"> Nino Jamrishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Georgia is one of the hail-dangerous countries of world. The work on action on hail processes in Georgia was conducted in 1960-1989 (East Georgia) over the total area of approximately 1.2 million hectares with average positive economic effect near 75 %. In 2015 in East Georgia, the anti-hail service was restored. Therefore, for the estimation of the effectiveness of action on the hail processes at present, arose the need for the detailed analysis of damage from the hail in the past. The work presents the analysis of the data about the number of days with the hail, the areas of damage of agricultural crops (general and to 100 %), and also the economic damage from the hail, of the caused loss to agricultural crops on the territories land of 123 separate populated areas of into 1982 and 1984-1989. In particular, on the average to one populated area, the total area of agricultural crops damaged from the hail was approximately 140 hectares, to 100% damage - 60 hectares, economic damage - 120 thousand US dollars. The corresponding maps of the distribution of the damaged areas on the investigated territory with the use of GIS-technologies are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20to%20agricultural%20crops" title="damage to agricultural crops">damage to agricultural crops</a>, <a href="https://publications.waset.org/abstracts/search?q=hail" title=" hail"> hail</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgia" title=" Georgia"> Georgia</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20damage" title=" economic damage"> economic damage</a> </p> <a href="https://publications.waset.org/abstracts/85793/retrospective-analysis-of-the-damage-of-agricultural-crops-from-hail-in-eastern-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8291</span> Structural Damage Detection Using Sensors Optimally Located</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20Riveros">Carlos Alberto Riveros</a>, <a href="https://publications.waset.org/abstracts/search?q=Edwin%20Fabi%C3%A1n%20Garc%C3%ADa"> Edwin Fabi谩n Garc铆a</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enrique%20Rivero"> Javier Enrique Rivero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The measured data obtained from sensors in continuous monitoring of civil structures are mainly used for modal identification and damage detection. Therefore when modal identification analysis is carried out the quality in the identification of the modes will highly influence the damage detection results. It is also widely recognized that the usefulness of the measured data used for modal identification and damage detection is significantly influenced by the number and locations of sensors. The objective of this study is the numerical implementation of two widely known optimum sensor placement methods in beam-like structures <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20sensor%20placement" title="optimum sensor placement">optimum sensor placement</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20damage%20detection" title=" structural damage detection"> structural damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20identification" title=" modal identification"> modal identification</a>, <a href="https://publications.waset.org/abstracts/search?q=beam-like%20structures." title=" beam-like structures. "> beam-like structures. </a> </p> <a href="https://publications.waset.org/abstracts/15240/structural-damage-detection-using-sensors-optimally-located" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=277">277</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=278">278</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=damage%20cost&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10