CINXE.COM
12 equal temperament - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>12 equal temperament - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"f0176507-1686-4e17-9827-9e593fa91754","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"12_equal_temperament","wgTitle":"12 equal temperament","wgCurRevisionId":1258631704,"wgRevisionId":1258631704,"wgArticleId":3350774,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Pages using the Phonos extension","All articles with unsourced statements","Articles with unsourced statements from May 2023","Articles containing German-language text","Articles with short description","Short description is different from Wikidata","Articles with unsourced statements from November 2021","Articles containing Chinese-language text","All articles with specifically marked weasel-worded phrases", "Articles with specifically marked weasel-worded phrases from May 2019","Articles containing Dutch-language text","Articles containing Italian-language text","Articles containing French-language text","Wikipedia articles needing clarification from May 2023","Articles with unsourced statements from October 2013","Articles with unsourced statements from June 2011","Articles with unsourced statements from June 2021","CS1 Italian-language sources (it)","All articles with dead external links","Articles with dead external links from August 2019","Articles with permanently dead external links","Webarchive template wayback links","Equal temperaments","Chinese discoveries"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"12_equal_temperament","wgRelevantArticleId":3350774,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q21087560","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.phonos.styles":"ready","ext.phonos.icons":"ready","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.phonos.init","ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin" ,"mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.phonos.icons%2Cstyles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="12 equal temperament - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/12_equal_temperament"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=12_equal_temperament&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/12_equal_temperament"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-12_equal_temperament rootpage-12_equal_temperament skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=12+equal+temperament" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=12+equal+temperament" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=12+equal+temperament" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=12+equal+temperament" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-China" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#China"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>China</span> </div> </a> <ul id="toc-China-sublist" class="vector-toc-list"> <li id="toc-Early_history" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Early_history"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.1</span> <span>Early history</span> </div> </a> <ul id="toc-Early_history-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zhu_Zaiyu" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Zhu_Zaiyu"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.2</span> <span>Zhu Zaiyu</span> </div> </a> <ul id="toc-Zhu_Zaiyu-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Europe" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Europe"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Europe</span> </div> </a> <ul id="toc-Europe-sublist" class="vector-toc-list"> <li id="toc-Early_history_2" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Early_history_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.1</span> <span>Early history</span> </div> </a> <ul id="toc-Early_history_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Simon_Stevin" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Simon_Stevin"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.2</span> <span>Simon Stevin</span> </div> </a> <ul id="toc-Simon_Stevin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Baroque_era" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Baroque_era"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.3</span> <span>Baroque era</span> </div> </a> <ul id="toc-Baroque_era-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Comparison_of_historical_approximations_of_the_semitone" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Comparison_of_historical_approximations_of_the_semitone"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Comparison of historical approximations of the semitone</span> </div> </a> <ul id="toc-Comparison_of_historical_approximations_of_the_semitone-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Mathematical_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Mathematical_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Mathematical properties</span> </div> </a> <button aria-controls="toc-Mathematical_properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Mathematical properties subsection</span> </button> <ul id="toc-Mathematical_properties-sublist" class="vector-toc-list"> <li id="toc-Calculating_absolute_frequencies" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculating_absolute_frequencies"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Calculating absolute frequencies</span> </div> </a> <ul id="toc-Calculating_absolute_frequencies-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Just_intervals" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Just_intervals"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Just intervals</span> </div> </a> <button aria-controls="toc-Just_intervals-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Just intervals subsection</span> </button> <ul id="toc-Just_intervals-sublist" class="vector-toc-list"> <li id="toc-By_limit" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#By_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>By limit</span> </div> </a> <ul id="toc-By_limit-sublist" class="vector-toc-list"> <li id="toc-3_limit" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#3_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.1</span> <span>3 limit</span> </div> </a> <ul id="toc-3_limit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-5_limit" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#5_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.2</span> <span>5 limit</span> </div> </a> <ul id="toc-5_limit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-7_limit" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#7_limit"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.3</span> <span>7 limit</span> </div> </a> <ul id="toc-7_limit-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-11_and_13_limits" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#11_and_13_limits"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.4</span> <span>11 and 13 limits</span> </div> </a> <ul id="toc-11_and_13_limits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-17_and_19_limits" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#17_and_19_limits"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1.5</span> <span>17 and 19 limits</span> </div> </a> <ul id="toc-17_and_19_limits-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Table" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Table"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Table</span> </div> </a> <ul id="toc-Table-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Commas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commas"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Commas</span> </div> </a> <ul id="toc-Commas-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Similar_tuning_systems" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Similar_tuning_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Similar tuning systems</span> </div> </a> <ul id="toc-Similar_tuning_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Subsets" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Subsets"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Subsets</span> </div> </a> <ul id="toc-Subsets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">12 equal temperament</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 4 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Escala_temperada" title="Escala temperada – Catalan" lang="ca" hreflang="ca" data-title="Escala temperada" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/V%C3%B5rdtempereeritud_12-helis%C3%BCsteem" title="Võrdtempereeritud 12-helisüsteem – Estonian" lang="et" hreflang="et" data-title="Võrdtempereeritud 12-helisüsteem" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/12_temperamentos_iguais" title="12 temperamentos iguais – Portuguese" lang="pt" hreflang="pt" data-title="12 temperamentos iguais" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%81%E4%BA%8C%E5%B9%B3%E5%9D%87%E5%BE%8B" title="十二平均律 – Chinese" lang="zh" hreflang="zh" data-title="十二平均律" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q21087560#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/12_equal_temperament" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:12_equal_temperament" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/12_equal_temperament"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=12_equal_temperament&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=12_equal_temperament&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/12_equal_temperament"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=12_equal_temperament&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=12_equal_temperament&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/12_equal_temperament" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/12_equal_temperament" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=12_equal_temperament&oldid=1258631704" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=12_equal_temperament&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=12_equal_temperament&id=1258631704&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F12_equal_temperament"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2F12_equal_temperament"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=12_equal_temperament&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=12_equal_temperament&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q21087560" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Equal temperament system in music</div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Chromatische_toonladder.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Chromatische_toonladder.png/300px-Chromatische_toonladder.png" decoding="async" width="300" height="45" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Chromatische_toonladder.png/450px-Chromatische_toonladder.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Chromatische_toonladder.png/600px-Chromatische_toonladder.png 2x" data-file-width="1424" data-file-height="214" /></a><figcaption>12-tone equal temperament chromatic scale on C, one full octave ascending, notated only with sharps. <span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-1" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f0\/ChromaticScaleUpDown.ogg\/ChromaticScaleUpDown.ogg.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play ascending and descending"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"ChromaticScaleUpDown.ogg"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f0/ChromaticScaleUpDown.ogg/ChromaticScaleUpDown.ogg.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play ascending and descending</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:ChromaticScaleUpDown.ogg" title="File:ChromaticScaleUpDown.ogg">ⓘ</a></sup></span></span></figcaption></figure> <p><b>12 equal temperament</b> (<b>12-ET</b>)<sup id="cite_ref-12TET_1-0" class="reference"><a href="#cite_note-12TET-1"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> is the musical system that divides the <a href="/wiki/Octave" title="Octave">octave</a> into 12 parts, all of which are <a href="/wiki/Equal_temperament" title="Equal temperament">equally tempered</a> (equally spaced) on a <a href="/wiki/Logarithmic_scale" title="Logarithmic scale">logarithmic scale</a>, with a ratio equal to the <a href="/wiki/Twelfth_root_of_two" title="Twelfth root of two">12th root of 2</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt[{12}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt[{12}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f276a910a28604e3b8afd8ba62a4678a37193480" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.107ex; height:3.009ex;" alt="{\textstyle {\sqrt[{12}]{2}}}"></span> ≈ 1.05946). That resulting smallest interval, <style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>⁄<span class="den">12</span></span> the width of an octave, is called a <a href="/wiki/Semitone" title="Semitone">semitone</a> or half step. </p><p>Twelve-tone equal temperament is the most widespread system in music today. It has been the predominant tuning system of Western music, starting with <a href="/wiki/Classical_music" title="Classical music">classical music</a>, since the 18th century, and Europe almost exclusively used approximations of it for millennia before that.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim is bold and vague at best. (November 2021)">citation needed</span></a></i>]</sup> It has also been used in other cultures. </p><p>In modern times, 12-ET is usually tuned relative to a <a href="/wiki/Standard_pitch" class="mw-redirect" title="Standard pitch">standard pitch</a> of 440 Hz, called <a href="/wiki/A440_(pitch_standard)" title="A440 (pitch standard)">A440</a>, meaning one note, <a href="/wiki/A_(musical_note)" title="A (musical note)">A</a>, is tuned to 440 <a href="/wiki/Hertz" title="Hertz">hertz</a> and all other notes are defined as some multiple of semitones apart from it, either higher or lower in <a href="/wiki/Frequency" title="Frequency">frequency</a>. The standard pitch has not always been 440 Hz. It has varied and generally risen over the past few hundred years.<sup id="cite_ref-FOOTNOTEvon_HelmholtzEllis1885493–511_2-0" class="reference"><a href="#cite_note-FOOTNOTEvon_HelmholtzEllis1885493–511-2"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two figures frequently credited with the achievement of exact calculation of twelve-tone equal temperament are <a href="/wiki/Zhu_Zaiyu" title="Zhu Zaiyu">Zhu Zaiyu</a> (also romanized as Chu-Tsaiyu. Chinese: <span title="Chinese-language text"><span lang="zh">朱載堉</span></span>) in 1584 and <a href="/wiki/Simon_Stevin" title="Simon Stevin">Simon Stevin</a> in 1585. According to Fritz A. Kuttner, a critic of the theory,<sup id="cite_ref-FOOTNOTEKuttner1975163_3-0" class="reference"><a href="#cite_note-FOOTNOTEKuttner1975163-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> it is known that "Chu-Tsaiyu presented a highly precise, simple and ingenious method for arithmetic calculation of equal temperament mono-chords in 1584" and that "Simon Stevin offered a mathematical definition of equal temperament plus a somewhat less precise computation of the corresponding numerical values in 1585 or later." The developments occurred independently.<sup id="cite_ref-FOOTNOTEKuttner1975200_4-0" class="reference"><a href="#cite_note-FOOTNOTEKuttner1975200-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Kenneth Robinson attributes the invention of equal temperament to Zhu Zaiyu<sup id="cite_ref-FOOTNOTERobinson1980vii_5-0" class="reference"><a href="#cite_note-FOOTNOTERobinson1980vii-5"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and provides textual quotations as evidence.<sup id="cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-0" class="reference"><a href="#cite_note-FOOTNOTENeedhamLingRobinson1962221-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Zhu Zaiyu is quoted as saying that, in a text dating from 1584, "I have founded a new system. I establish one foot as the number from which the others are to be extracted, and using proportions I extract them. Altogether one has to find the exact figures for the pitch-pipers in twelve operations."<sup id="cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-1" class="reference"><a href="#cite_note-FOOTNOTENeedhamLingRobinson1962221-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Kuttner disagrees and remarks that his claim "cannot be considered correct without major qualifications."<sup id="cite_ref-FOOTNOTEKuttner1975163_3-1" class="reference"><a href="#cite_note-FOOTNOTEKuttner1975163-3"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Kuttner proposes that neither Zhu Zaiyu or Simon Stevin achieved equal temperament and that neither of the two should be treated as inventors.<sup id="cite_ref-FOOTNOTEKuttner1975200_4-1" class="reference"><a href="#cite_note-FOOTNOTEKuttner1975200-4"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="China">China</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=2" title="Edit section: China"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Early_history">Early history</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=3" title="Edit section: Early history"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A complete set of bronze chime bells, among many musical instruments found in the tomb of the Marquis Yi of Zeng (early Warring States, <abbr title="circa">c.</abbr><span style="white-space:nowrap;"> 5th century BCE</span> in the Chinese Bronze Age), covers five full 7-note octaves in the key of C Major, including 12 note semi-tones in the middle of the range.<sup id="cite_ref-FOOTNOTEKwang-chih_ChangPingfang_XuLiancheng_Lu2005140_7-0" class="reference"><a href="#cite_note-FOOTNOTEKwang-chih_ChangPingfang_XuLiancheng_Lu2005140-7"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>An approximation for equal temperament was described by <a href="/w/index.php?title=He_Chengtian&action=edit&redlink=1" class="new" title="He Chengtian (page does not exist)">He Chengtian</a><span class="noprint" style="font-size:85%; font-style: normal;"> [<a href="https://zh.wikipedia.org/wiki/%E4%BD%95%E6%89%BF%E5%A4%A9_(%E5%8D%97%E6%9C%9D)" class="extiw" title="zh:何承天 (南朝)">zh</a>]</span>, a mathematician of the <a href="/wiki/Southern_and_Northern_Dynasties" class="mw-redirect" title="Southern and Northern Dynasties">Southern and Northern Dynasties</a> who lived from 370 to 447.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> He came out with the earliest recorded approximate numerical sequence in relation to equal temperament in history: 900 849 802 758 715 677 638 601 570 536 509.5 479 450.<sup id="cite_ref-FOOTNOTEBarbour200455–56_9-0" class="reference"><a href="#cite_note-FOOTNOTEBarbour200455–56-9"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Zhu_Zaiyu">Zhu Zaiyu</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=4" title="Edit section: Zhu Zaiyu"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg/310px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg" decoding="async" width="310" height="424" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg/465px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg/620px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-2297.jpg 2x" data-file-width="731" data-file-height="1000" /></a><figcaption>Prince Zhu Zaiyu constructed 12 string equal temperament tuning instrument, front and back view</figcaption></figure> <p><a href="/wiki/Zhu_Zaiyu" title="Zhu Zaiyu">Zhu Zaiyu</a> (<span title="Chinese-language text"><span lang="zh">朱載堉</span></span>), a prince of the <a href="/wiki/Ming_Dynasty" class="mw-redirect" title="Ming Dynasty">Ming</a> court, spent thirty years on research based on the equal temperament idea originally postulated by his father. He described his new pitch theory in his <i>Fusion of Music and Calendar</i> <span title="Chinese-language text"><span lang="zh">律暦融通</span></span> published in 1580. This was followed by the publication of a detailed account of the new theory of the equal temperament with a precise numerical specification for 12-ET in his 5,000-page work <i>Complete Compendium of Music and Pitch</i> (<i>Yuelü quan shu</i> <span title="Chinese-language text"><span lang="zh">樂律全書</span></span>) in 1584.<sup id="cite_ref-FOOTNOTEHart1998_10-0" class="reference"><a href="#cite_note-FOOTNOTEHart1998-10"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> An extended account is also given by Joseph Needham.<sup id="cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-2" class="reference"><a href="#cite_note-FOOTNOTENeedhamLingRobinson1962221-6"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> Zhu obtained his result mathematically by dividing the length of string and pipe successively by <span class="nowrap"><sup style="margin-right: -0.5em; vertical-align: 0.8em;">12</sup>√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span> ≈ 1.059463, and for pipe length by <span class="nowrap"><sup style="margin-right: -0.5em; vertical-align: 0.8em;">24</sup>√<span style="border-top:1px solid; padding:0 0.1em;">2</span></span>,<sup id="cite_ref-FOOTNOTENeedhamRonan1978385_11-0" class="reference"><a href="#cite_note-FOOTNOTENeedhamRonan1978385-11"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> such that after twelve divisions (an octave) the length was divided by a factor of 2: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\sqrt[{12}]{2}}\right)^{12}=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msup> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\sqrt[{12}]{2}}\right)^{12}=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f0e94dc870dfc2af0eb35a7b362eb3776054719" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.374ex; height:3.843ex;" alt="{\displaystyle \left({\sqrt[{12}]{2}}\right)^{12}=2}"></span> </p><p>Similarly, after 84 divisions (7 octaves) the length was divided by a factor of 128: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\sqrt[{12}]{2}}\right)^{84}=2^{7}=128}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>84</mn> </mrow> </msup> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>=</mo> <mn>128</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\sqrt[{12}]{2}}\right)^{84}=2^{7}=128}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efc85da07cabc4f33cc3fc965e9ef6e74361e7c7" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.014ex; height:3.843ex;" alt="{\displaystyle \left({\sqrt[{12}]{2}}\right)^{84}=2^{7}=128}"></span> </p><p>Zhu Zaiyu has been credited as the first person to solve the equal temperament problem mathematically.<sup id="cite_ref-FOOTNOTECho2010_12-0" class="reference"><a href="#cite_note-FOOTNOTECho2010-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> At least one researcher has proposed that <a href="/wiki/Matteo_Ricci" title="Matteo Ricci">Matteo Ricci</a>, a <a href="/wiki/Jesuit" class="mw-redirect" title="Jesuit">Jesuit</a> in China recorded this work in his personal journal<sup id="cite_ref-FOOTNOTECho2010_12-1" class="reference"><a href="#cite_note-FOOTNOTECho2010-12"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTELienhard1997_13-0" class="reference"><a href="#cite_note-FOOTNOTELienhard1997-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> and may have transmitted the work back to Europe. (Standard resources on the topic make no mention of any such transfer.<sup id="cite_ref-FOOTNOTEChristensen2002205_14-0" class="reference"><a href="#cite_note-FOOTNOTEChristensen2002205-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup>) In 1620, Zhu's work was referenced by a European mathematician.<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Manual_of_Style/Words_to_watch#Unsupported_attributions" title="Wikipedia:Manual of Style/Words to watch"><span title="The material near this tag possibly uses too-vague attribution or weasel words. (May 2019)">who?</span></a></i>]</sup><sup id="cite_ref-FOOTNOTELienhard1997_13-1" class="reference"><a href="#cite_note-FOOTNOTELienhard1997-13"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> <a href="/wiki/J._Murray_Barbour" class="mw-redirect" title="J. Murray Barbour">Murray Barbour</a> said, "The first known appearance in print of the correct figures for equal temperament was in China, where Prince Tsaiyü's brilliant solution remains an enigma."<sup id="cite_ref-FOOTNOTEBarbour20047_15-0" class="reference"><a href="#cite_note-FOOTNOTEBarbour20047-15"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> The 19th-century German physicist <a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">Hermann von Helmholtz</a> wrote in <i>On the Sensations of Tone</i> that a Chinese prince (see below) introduced a scale of seven notes, and that the division of the octave into twelve semitones was discovered in China.<sup id="cite_ref-FOOTNOTEvon_HelmholtzEllis1885258_16-0" class="reference"><a href="#cite_note-FOOTNOTEvon_HelmholtzEllis1885258-16"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg/220px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg" decoding="async" width="220" height="295" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f2/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg/330px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f2/%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg/440px-%E4%B9%90%E5%BE%8B%E5%85%A8%E4%B9%A6%E5%85%A8-1154.jpg 2x" data-file-width="747" data-file-height="1000" /></a><figcaption>Zhu Zaiyu's equal temperament pitch pipes</figcaption></figure> <p>Zhu Zaiyu illustrated his equal temperament theory by the construction of a set of 36 bamboo tuning pipes ranging in 3 octaves, with instructions of the type of bamboo, color of paint, and detailed specification on their length and inner and outer diameters. He also constructed a 12-string tuning instrument, with a set of tuning pitch pipes hidden inside its bottom cavity. In 1890, <a href="/wiki/Victor-Charles_Mahillon" title="Victor-Charles Mahillon">Victor-Charles Mahillon</a>, curator of the Conservatoire museum in Brussels, duplicated a set of pitch pipes according to Zhu Zaiyu's specification. He said that the Chinese theory of tones knew more about the length of pitch pipes than its Western counterpart, and that the set of pipes duplicated according to the Zaiyu data proved the accuracy of this theory. </p> <div class="mw-heading mw-heading3"><h3 id="Europe">Europe</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=5" title="Edit section: Europe"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:De_Spiegheling_der_signconst.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/De_Spiegheling_der_signconst.jpg/310px-De_Spiegheling_der_signconst.jpg" decoding="async" width="310" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/De_Spiegheling_der_signconst.jpg/465px-De_Spiegheling_der_signconst.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/De_Spiegheling_der_signconst.jpg/620px-De_Spiegheling_der_signconst.jpg 2x" data-file-width="653" data-file-height="491" /></a><figcaption>Simon Stevin's <span title="Dutch-language text"><i lang="nl">Van de Spiegheling der singconst</i></span> <abbr title="circa">c.</abbr><span style="white-space:nowrap;"> 1605</span>.</figcaption></figure> <div class="mw-heading mw-heading4"><h4 id="Early_history_2">Early history</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=6" title="Edit section: Early history"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One of the earliest discussions of equal temperament occurs in the writing of <a href="/wiki/Aristoxenus" title="Aristoxenus">Aristoxenus</a> in the 4th century BC.<sup id="cite_ref-FOOTNOTETrue201861–74_17-0" class="reference"><a href="#cite_note-FOOTNOTETrue201861–74-17"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Vincenzo_Galilei" title="Vincenzo Galilei">Vincenzo Galilei</a> (father of <a href="/wiki/Galileo_Galilei" title="Galileo Galilei">Galileo Galilei</a>) was one of the first practical advocates of twelve-tone equal temperament. He composed a set of dance suites on each of the 12 notes of the chromatic scale in all the "transposition keys", and published also, in his 1584 "<a href="/wiki/Fronimo_Dialogo" title="Fronimo Dialogo">Fronimo</a>", 24 + 1 <a href="/wiki/Ricercar" title="Ricercar">ricercars</a>.<sup id="cite_ref-FOOTNOTEGalilei158480–89_18-0" class="reference"><a href="#cite_note-FOOTNOTEGalilei158480–89-18"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> He used the 18:17 ratio for fretting the lute (although some adjustment was necessary for pure octaves).<sup id="cite_ref-FOOTNOTEBarbour20048_19-0" class="reference"><a href="#cite_note-FOOTNOTEBarbour20048-19"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p><p>Galilei's countryman and fellow <a href="/wiki/Lutenist" class="mw-redirect" title="Lutenist">lutenist</a> <a href="/w/index.php?title=Giacomo_Gorzanis&action=edit&redlink=1" class="new" title="Giacomo Gorzanis (page does not exist)">Giacomo Gorzanis</a> had written music based on equal temperament by 1567.<sup id="cite_ref-FOOTNOTEde_Gorzanis1981_20-0" class="reference"><a href="#cite_note-FOOTNOTEde_Gorzanis1981-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Gorzanis was not the only lutenist to explore all modes or keys: <a href="/wiki/Francesco_Spinacino" title="Francesco Spinacino">Francesco Spinacino</a> wrote a <span title="Italian-language text"><span lang="it" style="font-style: normal;">"Recercare de tutti li Toni"</span></span> (<a href="/wiki/Ricercar" title="Ricercar">Ricercar</a> in all the Tones) as early as 1507.<sup id="cite_ref-appstate.edu_21-0" class="reference"><a href="#cite_note-appstate.edu-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> In the 17th century lutenist-composer <a href="/wiki/John_Wilson_(composer)" title="John Wilson (composer)">John Wilson</a> wrote a set of 30 preludes including 24 in all the major/minor keys.<sup id="cite_ref-FOOTNOTEWilson1997_22-0" class="reference"><a href="#cite_note-FOOTNOTEWilson1997-22"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-FOOTNOTEJorgens1986_23-0" class="reference"><a href="#cite_note-FOOTNOTEJorgens1986-23"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Henricus_Grammateus" title="Henricus Grammateus">Henricus Grammateus</a> drew a close approximation to equal temperament in 1518. The first tuning rules in equal temperament were given by <a href="/w/index.php?title=Giovani_Maria_Lanfranco&action=edit&redlink=1" class="new" title="Giovani Maria Lanfranco (page does not exist)">Giovani Maria Lanfranco</a> in his "Scintille de musica".<sup id="cite_ref-Scintille_24-0" class="reference"><a href="#cite_note-Scintille-24"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Zarlino" class="mw-redirect" title="Zarlino">Zarlino</a> in his <a href="/wiki/Polemic" title="Polemic">polemic</a> with Galilei initially opposed equal temperament but eventually conceded to it in relation to the <a href="/wiki/Lute" title="Lute">lute</a> in his <span title="Italian-language text"><i lang="it">Sopplimenti musicali</i></span> in 1588. </p> <div class="mw-heading mw-heading4"><h4 id="Simon_Stevin">Simon Stevin</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=7" title="Edit section: Simon Stevin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The first mention of equal temperament related to the <a href="/wiki/Twelfth_root_of_two" title="Twelfth root of two">twelfth root of two</a> in the West appeared in <a href="/wiki/Simon_Stevin" title="Simon Stevin">Simon Stevin</a>'s manuscript <span title="Dutch-language text"><i lang="nl">Van De Spiegheling der singconst</i></span> (c. 1605), published posthumously nearly three centuries later in 1884.<sup id="cite_ref-FOOTNOTECohen1987471–488_25-0" class="reference"><a href="#cite_note-FOOTNOTECohen1987471–488-25"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> However, due to insufficient accuracy of his calculation, many of the chord length numbers he obtained were off by one or two units from the correct values.<sup id="cite_ref-FOOTNOTEChristensen2002205_14-1" class="reference"><a href="#cite_note-FOOTNOTEChristensen2002205-14"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> As a result, the frequency ratios of Simon Stevin's chords has no unified ratio, but one ratio per tone, which is claimed by Gene Cho as incorrect.<sup id="cite_ref-FOOTNOTECho2003223_26-0" class="reference"><a href="#cite_note-FOOTNOTECho2003223-26"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p>The following were Simon Stevin's chord length from <span title="Dutch-language text"><i lang="nl">Van de Spiegheling der singconst</i></span>:<sup id="cite_ref-FOOTNOTECho2003222_27-0" class="reference"><a href="#cite_note-FOOTNOTECho2003222-27"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <table class="wikitable" style="margin:auto;"> <tbody><tr> <th>Tone </th> <th>Chord 10000 from Simon Stevin </th> <th>Ratio </th> <th>Corrected chord </th></tr> <tr> <td>semitone </td> <td>9438 </td> <td>1.0595465 </td> <td>9438.7 </td></tr> <tr> <td>whole tone </td> <td>8909 </td> <td>1.0593781 </td> <td> </td></tr> <tr> <td>tone and a half </td> <td>8404 </td> <td>1.0600904 </td> <td>8409 </td></tr> <tr> <td>ditone </td> <td>7936 </td> <td>1.0594758 </td> <td>7937 </td></tr> <tr> <td>ditone and a half </td> <td>7491 </td> <td>1.0594046 </td> <td>7491.5 </td></tr> <tr> <td>tritone </td> <td>7071 </td> <td>1.0593975 </td> <td>7071.1 </td></tr> <tr> <td>tritone and a half </td> <td>6674 </td> <td>1.0594845 </td> <td>6674.2 </td></tr> <tr> <td>four-tone </td> <td>6298 </td> <td>1.0597014 </td> <td>6299 </td></tr> <tr> <td>four-tone and a half </td> <td>5944 </td> <td>1.0595558 </td> <td>5946 </td></tr> <tr> <td>five-tone </td> <td>5611 </td> <td>1.0593477 </td> <td>5612.3 </td></tr> <tr> <td>five-tone and a half </td> <td>5296 </td> <td>1.0594788 </td> <td>5297.2 </td></tr> <tr> <td>full tone </td> <td> </td> <td>1.0592000 </td> <td> </td></tr></tbody></table> <p>A generation later, French mathematician <a href="/wiki/Marin_Mersenne" title="Marin Mersenne">Marin Mersenne</a> presented several equal tempered chord lengths obtained by Jean Beaugrand, Ismael Bouillaud, and Jean Galle.<sup id="cite_ref-FOOTNOTEChristensen2002207_28-0" class="reference"><a href="#cite_note-FOOTNOTEChristensen2002207-28"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>In 1630 <a href="/wiki/Johann_Faulhaber" title="Johann Faulhaber">Johann Faulhaber</a> published a 100-cent monochord table, which contained several errors due to his use of logarithmic tables. He did not explain how he obtained his results.<sup id="cite_ref-FOOTNOTEChristensen200278_29-0" class="reference"><a href="#cite_note-FOOTNOTEChristensen200278-29"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Baroque_era">Baroque era</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=8" title="Edit section: Baroque era"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From 1450 to about 1800, plucked instrument players (lutenists and guitarists) generally favored equal temperament,<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> and the Brossard lute manuscript compiled in the last quarter of the 17th century contains a series of 18 preludes attributed to <a href="/wiki/Mlle_Bocquet" title="Mlle Bocquet">Bocquet</a> written in all keys, including the last prelude, entitled <span title="French-language text"><i lang="fr">Prélude sur tous les tons</i></span>, which enharmonically modulates through all keys.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="incomprehensibly abbreviated citation – do it in full (May 2023)">clarification needed</span></a></i>]</sup> <a href="/wiki/Angelo_Michele_Bartolotti" title="Angelo Michele Bartolotti">Angelo Michele Bartolotti</a> published a series of <a href="/wiki/Passacaglia" title="Passacaglia">passacaglias</a> in all keys, with connecting enharmonically modulating passages. Among the 17th-century keyboard composers <a href="/wiki/Girolamo_Frescobaldi" title="Girolamo Frescobaldi">Girolamo Frescobaldi</a> advocated equal temperament. Some theorists, such as <a href="/wiki/Giuseppe_Tartini" title="Giuseppe Tartini">Giuseppe Tartini</a>, were opposed to the adoption of equal temperament; they felt that degrading the purity of each chord degraded the aesthetic appeal of music, although <a href="/wiki/Andreas_Werckmeister" title="Andreas Werckmeister">Andreas Werckmeister</a> emphatically advocated equal temperament in his 1707 treatise published posthumously.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> </p><p>Twelve-tone equal temperament took hold for a variety of reasons. It was a convenient fit for the existing keyboard design, and permitted total harmonic freedom with the burden of moderate impurity in every interval, particularly imperfect consonances. This allowed greater expression through <a href="/wiki/Modulation_(music)" title="Modulation (music)">enharmonic modulation</a>, which became extremely important in the 18th century in music of such composers as <a href="/wiki/Francesco_Geminiani" title="Francesco Geminiani">Francesco Geminiani</a>, <a href="/wiki/Wilhelm_Friedemann_Bach" title="Wilhelm Friedemann Bach">Wilhelm Friedemann Bach</a>, <a href="/wiki/Carl_Philipp_Emmanuel_Bach" class="mw-redirect" title="Carl Philipp Emmanuel Bach">Carl Philipp Emmanuel Bach</a>, and <a href="/wiki/Johann_Gottfried_M%C3%BCthel" title="Johann Gottfried Müthel">Johann Gottfried Müthel</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2013)">citation needed</span></a></i>]</sup> Twelve-tone equal temperament did have some disadvantages, such as imperfect thirds, but as Europe switched to equal temperament, it changed the music that it wrote in order to accommodate the system and minimize dissonance.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> </p><p>The progress of equal temperament from the mid-18th century on is described with detail in quite a few modern scholarly publications: It was already the temperament of choice during the Classical era (second half of the 18th century),<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2013)">citation needed</span></a></i>]</sup> and it became standard during the Early Romantic era (first decade of the 19th century),<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2013)">citation needed</span></a></i>]</sup> except for organs that switched to it more gradually, completing only in the second decade of the 19th century. (In England, some cathedral organists and choirmasters held out against it even after that date; <a href="/wiki/Samuel_Sebastian_Wesley" title="Samuel Sebastian Wesley">Samuel Sebastian Wesley</a>, for instance, opposed it all along. He died in 1876.)<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2011)">citation needed</span></a></i>]</sup> </p><p>A precise equal temperament is possible using the 17th century Sabbatini method of splitting the octave first into three tempered major thirds.<sup id="cite_ref-FOOTNOTEDi_Veroli2009140,_142_and_256_34-0" class="reference"><a href="#cite_note-FOOTNOTEDi_Veroli2009140,_142_and_256-34"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> This was also proposed by several writers during the Classical era. Tuning without beat rates but employing several checks, achieving virtually modern accuracy, was already done in the first decades of the 19th century.<sup id="cite_ref-FOOTNOTEMoody2003_35-0" class="reference"><a href="#cite_note-FOOTNOTEMoody2003-35"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> Using beat rates, first proposed in 1749, became common after their diffusion by Helmholtz and Ellis in the second half of the 19th century.<sup id="cite_ref-FOOTNOTEvon_HelmholtzEllis1885548_36-0" class="reference"><a href="#cite_note-FOOTNOTEvon_HelmholtzEllis1885548-36"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> The ultimate precision was available with 2 decimal tables published by White in 1917.<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> </p><p>It is in the environment of equal temperament that the new styles of symmetrical tonality and <a href="/wiki/Polytonality" title="Polytonality">polytonality</a>, <a href="/wiki/Atonality" title="Atonality">atonal music</a> such as that written with the <a href="/wiki/Twelve_tone_technique" class="mw-redirect" title="Twelve tone technique">twelve tone technique</a> or <a href="/wiki/Serialism" title="Serialism">serialism</a>, and <a href="/wiki/Jazz" title="Jazz">jazz</a> (at least its piano component) developed and flourished. </p> <div class="mw-heading mw-heading3"><h3 id="Comparison_of_historical_approximations_of_the_semitone">Comparison of historical approximations of the semitone</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=9" title="Edit section: Comparison of historical approximations of the semitone"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <table class="wikitable" style="margin:auto;"> <tbody><tr> <th>Year </th> <th>Name </th> <th>Ratio<sup id="cite_ref-FOOTNOTEBarbour200455–78_38-0" class="reference"><a href="#cite_note-FOOTNOTEBarbour200455–78-38"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </th> <th>Cents </th></tr> <tr> <td>400 </td> <td><a href="/w/index.php?title=He_Chengtian&action=edit&redlink=1" class="new" title="He Chengtian (page does not exist)">He Chengtian</a> </td> <td>1.060070671 </td> <td>101.0 </td></tr> <tr> <td>1580 </td> <td><a href="/wiki/Vincenzo_Galilei" title="Vincenzo Galilei">Vincenzo Galilei</a> </td> <td>18:17 [1.058823529] </td> <td>99.0 </td></tr> <tr> <td>1581 </td> <td><a href="/wiki/Zhu_Zaiyu" title="Zhu Zaiyu">Zhu Zaiyu</a> </td> <td>1.059463094 </td> <td>100.0 </td></tr> <tr> <td>1585 </td> <td><a href="/wiki/Simon_Stevin" title="Simon Stevin">Simon Stevin</a> </td> <td>1.059546514 </td> <td>100.1 </td></tr> <tr> <td>1630 </td> <td><a href="/wiki/Marin_Mersenne" title="Marin Mersenne">Marin Mersenne</a> </td> <td>1.059322034 </td> <td>99.8 </td></tr> <tr> <td>1630 </td> <td><a href="/wiki/Johann_Faulhaber" title="Johann Faulhaber">Johann Faulhaber</a> </td> <td>1.059490385 </td> <td>100.0 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Mathematical_properties">Mathematical properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=10" title="Edit section: Mathematical properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Monochord_ET.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Monochord_ET.png/220px-Monochord_ET.png" decoding="async" width="220" height="366" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Monochord_ET.png/330px-Monochord_ET.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Monochord_ET.png/440px-Monochord_ET.png 2x" data-file-width="456" data-file-height="758" /></a><figcaption>One octave of 12-ET on a monochord</figcaption></figure> <p>In twelve-tone equal temperament, which divides the octave into 12 equal parts, the width of a <a href="/wiki/Semitone" title="Semitone">semitone</a>, i.e. the <a href="/wiki/Interval_ratio" title="Interval ratio">frequency ratio</a> of the interval between two adjacent notes, is the <a href="/wiki/Twelfth_root_of_two" title="Twelfth root of two">twelfth root of two</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{12}]{2}}=2^{\frac {1}{12}}\approx 1.059463}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> </msup> <mo>≈<!-- ≈ --></mo> <mn>1.059463</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{12}]{2}}=2^{\frac {1}{12}}\approx 1.059463}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/232c2beab28b1c46c328080d982595d9ef196e08" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.653ex; height:3.843ex;" alt="{\displaystyle {\sqrt[{12}]{2}}=2^{\frac {1}{12}}\approx 1.059463}"></span> </p><p>This interval is divided into 100 <a href="/wiki/Cent_(music)" title="Cent (music)">cents</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Calculating_absolute_frequencies">Calculating absolute frequencies</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=11" title="Edit section: Calculating absolute frequencies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Piano_key_frequencies" title="Piano key frequencies">Piano key frequencies</a></div> <p>To find the frequency, <span class="texhtml"><var style="padding-right: 1px;">P</var><sub><var style="padding-right: 1px;">n</var></sub></span>, of a note in 12-ET, the following definition may be used: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}=P_{a}\left({\sqrt[{12}]{2}}\right)^{(n-a)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}=P_{a}\left({\sqrt[{12}]{2}}\right)^{(n-a)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3381e111c79f7e16a073bbe05c6cabeaba2ff79a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.286ex; height:4.009ex;" alt="{\displaystyle P_{n}=P_{a}\left({\sqrt[{12}]{2}}\right)^{(n-a)}}"></span> </p><p>In this formula <span class="texhtml"><var style="padding-right: 1px;">P</var><sub><var style="padding-right: 1px;">n</var></sub></span> refers to the pitch, or frequency (usually in <a href="/wiki/Hertz" title="Hertz">hertz</a>), you are trying to find. <span class="texhtml"><var style="padding-right: 1px;">P</var><sub><var style="padding-right: 1px;">a</var></sub></span> refers to the frequency of a reference pitch. <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">a</span> refer to numbers assigned to the desired pitch and the reference pitch, respectively. These two numbers are from a list of consecutive integers assigned to consecutive semitones. For example, A<sub>4</sub> (the reference pitch) is the 49th key from the left end of a piano (tuned to <a href="/wiki/A440_(pitch_standard)" title="A440 (pitch standard)">440 Hz</a>), and C<sub>4</sub> (<a href="/wiki/Middle_C" class="mw-redirect" title="Middle C">middle C</a>), and F#<sub>4</sub> are the 40th and 46th key respectively. These numbers can be used to find the frequency of C<sub>4</sub> and F#<sub>4</sub>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}P_{40}&=440\left({\sqrt[{12}]{2}}\right)^{(40-49)}&&\approx 261.626\ \mathrm {Hz} \\P_{46}&=440\left({\sqrt[{12}]{2}}\right)^{(46-49)}&&\approx 369.994\ \mathrm {Hz} \end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>40</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>440</mn> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>40</mn> <mo>−<!-- − --></mo> <mn>49</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>261.626</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>46</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>440</mn> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>46</mn> <mo>−<!-- − --></mo> <mn>49</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mtd> <mtd /> <mtd> <mi></mi> <mo>≈<!-- ≈ --></mo> <mn>369.994</mn> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">z</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}P_{40}&=440\left({\sqrt[{12}]{2}}\right)^{(40-49)}&&\approx 261.626\ \mathrm {Hz} \\P_{46}&=440\left({\sqrt[{12}]{2}}\right)^{(46-49)}&&\approx 369.994\ \mathrm {Hz} \end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b2cc77efb874655e7633d236cfd2c9f7e5b8229" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:36.097ex; height:8.176ex;" alt="{\displaystyle {\begin{alignedat}{3}P_{40}&=440\left({\sqrt[{12}]{2}}\right)^{(40-49)}&&\approx 261.626\ \mathrm {Hz} \\P_{46}&=440\left({\sqrt[{12}]{2}}\right)^{(46-49)}&&\approx 369.994\ \mathrm {Hz} \end{alignedat}}}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Just_intervals">Just intervals <span class="anchor" id="just_interval_anchor"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=12" title="Edit section: Just intervals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:12ed2-5Limit.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/12ed2-5Limit.svg/250px-12ed2-5Limit.svg.png" decoding="async" width="250" height="360" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/12ed2-5Limit.svg/375px-12ed2-5Limit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/12ed2-5Limit.svg/500px-12ed2-5Limit.svg.png 2x" data-file-width="500" data-file-height="720" /></a><figcaption>5-Limit just intervals approximated in 12-ET</figcaption></figure> <p>The intervals of 12-ET closely approximate some intervals in <a href="/wiki/Just_intonation" title="Just intonation">just intonation</a>.<sup id="cite_ref-FOOTNOTEPartch1979134_39-0" class="reference"><a href="#cite_note-FOOTNOTEPartch1979134-39"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="By_limit">By limit</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=13" title="Edit section: By limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>12 ET is very accurate in the 3 limit, but as one increases prime limits to 11, it gradually gets worse by about a sixth of a semitone each time. Its eleventh and thirteenth harmonics are extremely inaccurate. 12 ET's seventeenth and nineteenth harmonics are almost as accurate as its third harmonic, but by this point, the prime limit has gotten too high to sound consonant to most people.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="3_limit">3 limit</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=14" title="Edit section: 3 limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Pythagorean_tuning" title="Pythagorean tuning">Pythagorean tuning</a></div> <p>12 ET has a very good approximation of the perfect fifth <span class="nowrap">(<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num"> 3 </span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>)</span> and its <a href="/wiki/Inversion_(music)#Intervals" title="Inversion (music)">inversion</a>, the perfect fourth <span class="nowrap">(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 4 </span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span>),</span> especially for the division of the octave into a relatively small number of tones. Specifically, a just perfect fifth is only one fifty-first of a semitone sharper than the equally-tempered approximation. Because the major tone <span class="nowrap">(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 9 </span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>)</span> is simply two perfect fifths minus an octave, and its inversion, the Pythagorean minor seventh <span class="nowrap">(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 16 </span><span class="sr-only">/</span><span class="den">9</span></span>⁠</span>),</span> is simply two perfect fourths combined, they, for the most part, retain the accuracy of their predecessors; the error is doubled, but it remains small – so small, in fact, that humans cannot perceive it. One can continue to use fractions with higher powers of three, the next two being <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 27 </span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 32 </span><span class="sr-only">/</span><span class="den">27</span></span>⁠</span>, but as the terms of the fractions grow larger, they become less pleasing to the ear.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="5_limit">5 limit</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=15" title="Edit section: 5 limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Five-limit_tuning" title="Five-limit tuning">Five-limit tuning</a></div> <p>12 ET's approximation of the fifth harmonic (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 5 </span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>) is approximately one-seventh of a semitone off. Because intervals that are less than a quarter of a scale step off still sound in tune, other five-limit intervals in 12 ET, such as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 5 </span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 8 </span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span>, have similarly sized errors. The <a href="/wiki/Major_triad" class="mw-redirect" title="Major triad">major triad</a>, therefore, sounds in tune as its frequency ratio is approximately 4:5:6, further, merged with its first inversion, and two sub-octave tonics, it is 1:2:3:4:5:6, all six lowest natural harmonics of the bass tone.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="7_limit">7 limit</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=16" title="Edit section: 7 limit"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/7-limit_tuning" title="7-limit tuning">7-limit tuning</a></div> <p>12 ET's approximation of the seventh harmonic (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 7 </span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>) is about one-third of a semitone off. Because the error is greater than a quarter of a semitone, seven-limit intervals in 12 ET tend to sound out of tune. In the tritone fractions <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 7 </span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 10 </span><span class="sr-only">/</span><span class="den">7</span></span>⁠</span>, the errors of the fifth and seventh harmonics partially cancel each other out so that the just fractions are within a quarter of a semitone of their equally-tempered equivalents.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="11_and_13_limits">11 and 13 limits</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=17" title="Edit section: 11 and 13 limits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The eleventh harmonic (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 11 </span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>), at 551.32 cents, falls almost exactly halfway between the nearest two equally-tempered intervals in 12 ET and therefore is not approximated by either. In fact, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 11 </span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> is almost as far from any equally-tempered approximation as possible in 12 ET. The thirteenth harmonic (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 13 </span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>), at two-fifths of a semitone sharper than a minor sixth, is almost as inaccurate. Although this means that the fraction <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 13 </span><span class="sr-only">/</span><span class="den">11</span></span>⁠</span> and also its inversion (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 22 </span><span class="sr-only">/</span><span class="den">13</span></span>⁠</span>) are accurately approximated (specifically, by three semitones), since the errors of the eleventh and thirteenth harmonics mostly cancel out, most people who are not familiar with <a href="/wiki/Quarter_tone" title="Quarter tone">quarter tones</a> or microtonality will not be familiar with the eleventh and thirteenth harmonics. Similarly, while the error of the eleventh or thirteenth harmonic could be mostly canceled out by the error of the seventh harmonic, most Western musicians would not find the resulting fractions consonant since 12 ET does not approximate them accurately.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading4"><h4 id="17_and_19_limits">17 and 19 limits</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=18" title="Edit section: 17 and 19 limits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The seventeenth harmonic (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 17 </span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span>) is only about 5 cents sharper than one semitone in 12 ET. It can be combined with 12 ET's approximation of the third harmonic in order to yield <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 17 </span><span class="sr-only">/</span><span class="den">12</span></span>⁠</span>, which is, as the next <a href="/wiki/Pell_number" title="Pell number">Pell approximation</a> after <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 7 </span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span>, only about three cents away from the equally-tempered tritone (the square root of two), and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 17 </span><span class="sr-only">/</span><span class="den">9</span></span>⁠</span>, which is only one cent away from 12 ET's major seventh. The nineteenth harmonic is only about 2.5 cents flatter than three of 12 ET's semitones, so it can likewise be combined with the third harmonic to yield <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 19 </span><span class="sr-only">/</span><span class="den">12</span></span>⁠</span>, which is about 4.5 cents flatter than an equally-tempered minor sixth, and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 19 </span><span class="sr-only">/</span><span class="den">18</span></span>⁠</span>, which is about 6.5 cents flatter than a semitone. However, because 17 and 19 are rather large for consonant ratios and most people are unfamiliar with 17 limit and 19 limit intervals, 17 limit and 19 limit intervals are not useful for most purposes, so they can likely not be judged as playing a part in any consonances of 12 ET.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Table">Table</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=19" title="Edit section: Table"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the following table the sizes of various just intervals are compared against their equal-tempered counterparts, given as a ratio as well as <a href="/wiki/Cent_(music)" title="Cent (music)">cents</a>. Differences of less than six cents cannot be noticed by most people, and intervals that are more than a quarter of a step; which in this case is 25 cents, off sound out of tune.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>]</sup> </p> <table class="wikitable collapsible" style="margin:auto;"> <tbody><tr> <th>Number of steps </th> <th>Note going up from C </th> <th>Exact value in 12-ET </th> <th>Decimal value in 12-ET </th> <th>Equally-tempered audio </th> <th>Cents </th> <th>Just intonation interval name </th> <th>Just intonation interval fraction </th> <th>Justly-intoned audio </th> <th>Cents in just intonation </th> <th>Difference </th></tr> <tr> <td>0 </td> <td><a href="/wiki/C_(musical_note)" title="C (musical note)">C</a> </td> <td>2<sup><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">0</span>⁄<span class="den">12</span></span></sup> = 1 </td> <td>1 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-2" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/4c\/Unison_on_C.mid\/Unison_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Unison on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/Unison_on_C.mid/Unison_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Unison_on_C.mid" title="File:Unison on C.mid">ⓘ</a></sup></span></span> </td> <td>0 </td> <td><a href="/wiki/Unison" title="Unison">Unison</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">1</span></span> = 1 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-3" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/4c\/Unison_on_C.mid\/Unison_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Unison on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/Unison_on_C.mid/Unison_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Unison_on_C.mid" title="File:Unison on C.mid">ⓘ</a></sup></span></span> </td> <td>0 </td> <td>0 </td></tr> <tr> <td rowspan="15">1 </td> <td rowspan="15"><a href="/wiki/C%E2%99%AF_(musical_note)" title="C♯ (musical note)">C<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span></a> or <a href="/wiki/D%E2%99%AD_(musical_note)" title="D♭ (musical note)">D<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span></a> </td> <td rowspan="15">2<sup><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{12}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{12}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc835f27425fb3140e1f75a5faa35b1e8b9efc35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.107ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{12}]{2}}}"></span> </td> <td rowspan="15">1.05946... </td> <td rowspan="15"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-4" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/8a\/Minor_second_on_C.mid\/Minor_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/8a/Minor_second_on_C.mid/Minor_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_second_on_C.mid" title="File:Minor second on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="15">100 </td> <td><a href="/wiki/Septimal_third_tone" title="Septimal third tone">Septimal third tone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">28</span>⁄<span class="den">27</span></span> = 1.03703... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-5" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/60\/Septimal_minor_second_on_C.mid\/Septimal_minor_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal minor second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/60/Septimal_minor_second_on_C.mid/Septimal_minor_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_minor_second_on_C.mid" title="File:Septimal minor second on C.mid">ⓘ</a></sup></span></span> </td> <td>62.96 </td> <td>-37.04 </td></tr> <tr> <td><a href="/wiki/Just_chromatic_semitone" class="mw-redirect" title="Just chromatic semitone">Just chromatic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">25</span>⁄<span class="den">24</span></span> = 1.04166... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-6" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/1\/1d\/Just_chromatic_semitone_on_C.mid\/Just_chromatic_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just chromatic semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/1/1d/Just_chromatic_semitone_on_C.mid/Just_chromatic_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_chromatic_semitone_on_C.mid" title="File:Just chromatic semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>70.67 </td> <td>-29.33 </td></tr> <tr> <td>Undecimal semitone </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">22</span>⁄<span class="den">21</span></span> = 1.04761... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-7" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/6d\/Undecimal_two-fifth_tone_on_C.mid\/Undecimal_two-fifth_tone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Undecimal two-fifth tone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/6d/Undecimal_two-fifth_tone_on_C.mid/Undecimal_two-fifth_tone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Undecimal_two-fifth_tone_on_C.mid" title="File:Undecimal two-fifth tone on C.mid">ⓘ</a></sup></span></span> </td> <td>80.54 </td> <td>-19.46 </td></tr> <tr> <td><a href="/wiki/Septimal_chromatic_semitone" title="Septimal chromatic semitone">Septimal chromatic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 21</span>⁄<span class="den"> 20</span></span> = 1.05 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-8" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/ba\/Septimal_chromatic_semitone_on_C.mid\/Septimal_chromatic_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal chromatic semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/ba/Septimal_chromatic_semitone_on_C.mid/Septimal_chromatic_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_chromatic_semitone_on_C.mid" title="File:Septimal chromatic semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>84.47 </td></tr> <tr> <td>Novendecimal chromatic semitone </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 20</span>⁄<span class="den"> 19</span></span> = 1.05263... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-9" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/3\/39\/Novendecimal_augmented_unison_on_C.mid\/Novendecimal_augmented_unison_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Novendecimal augmented unison on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/3/39/Novendecimal_augmented_unison_on_C.mid/Novendecimal_augmented_unison_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Novendecimal_augmented_unison_on_C.mid" title="File:Novendecimal augmented unison on C.mid">ⓘ</a></sup></span></span> </td> <td>88.80 </td></tr> <tr> <td><a href="/wiki/Pythagorean_diatonic_semitone" class="mw-redirect" title="Pythagorean diatonic semitone">Pythagorean diatonic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 256</span>⁄<span class="den"> 243</span></span> = 1.05349... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-10" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/6e\/Pythagorean_minor_semitone_on_C.mid\/Pythagorean_minor_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean minor semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/6e/Pythagorean_minor_semitone_on_C.mid/Pythagorean_minor_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_minor_semitone_on_C.mid" title="File:Pythagorean minor semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>90.22 </td></tr> <tr> <td><a href="/wiki/Larger_chromatic_semitone" class="mw-redirect" title="Larger chromatic semitone">Larger chromatic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 135</span>⁄<span class="den"> 128</span></span> = 1.05468... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-11" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/1\/11\/Greater_chromatic_semitone_on_C.mid\/Greater_chromatic_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Greater chromatic semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/1/11/Greater_chromatic_semitone_on_C.mid/Greater_chromatic_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Greater_chromatic_semitone_on_C.mid" title="File:Greater chromatic semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>92.18 </td></tr> <tr> <td>Novendecimal diatonic semitone </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 19</span>⁄<span class="den"> 18</span></span> = 1.05555... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-12" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/0\/0d\/Novendecimal_minor_second_on_C.mid\/Novendecimal_minor_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Novendecimal minor second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/0/0d/Novendecimal_minor_second_on_C.mid/Novendecimal_minor_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Novendecimal_minor_second_on_C.mid" title="File:Novendecimal minor second on C.mid">ⓘ</a></sup></span></span> </td> <td>93.60 </td></tr> <tr> <td>Septadecimal chromatic semitone </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 18</span>⁄<span class="den"> 17</span></span> = 1.05882... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-13" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/94\/Just_minor_semitone_on_C.mid\/Just_minor_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just minor semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/94/Just_minor_semitone_on_C.mid/Just_minor_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_minor_semitone_on_C.mid" title="File:Just minor semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>98.95 </td></tr> <tr> <td><a href="/wiki/Seventeenth_harmonic" class="mw-redirect" title="Seventeenth harmonic">Seventeenth harmonic</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 17</span>⁄<span class="den"> 16</span></span> = 1.0625... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-14" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/48\/Just_major_semitone_on_C.mid\/Just_major_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just major semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/48/Just_major_semitone_on_C.mid/Just_major_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_major_semitone_on_C.mid" title="File:Just major semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>104.96 </td> <td>+4.96 </td></tr> <tr> <td><a href="/wiki/Just_diatonic_semitone" class="mw-redirect" title="Just diatonic semitone">Just diatonic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 16</span>⁄<span class="den"> 15</span></span> = 1.06666... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-15" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/be\/Just_diatonic_semitone_on_C.mid\/Just_diatonic_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just diatonic semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/be/Just_diatonic_semitone_on_C.mid/Just_diatonic_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_diatonic_semitone_on_C.mid" title="File:Just diatonic semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>111.73 </td> <td>+11.73 </td></tr> <tr> <td><a href="/wiki/Pythagorean_chromatic_semitone" class="mw-redirect" title="Pythagorean chromatic semitone">Pythagorean chromatic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 2187</span>⁄<span class="den"> 2048</span></span> = 1.06787... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-16" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/3\/30\/Pythagorean_apotome_on_C.mid\/Pythagorean_apotome_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean apotome on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/3/30/Pythagorean_apotome_on_C.mid/Pythagorean_apotome_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_apotome_on_C.mid" title="File:Pythagorean apotome on C.mid">ⓘ</a></sup></span></span> </td> <td>113.69 </td> <td>+13.69 </td></tr> <tr> <td><a href="/wiki/Septimal_diatonic_semitone" title="Septimal diatonic semitone">Septimal diatonic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 15</span>⁄<span class="den"> 14</span></span> = 1.07142... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-17" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/69\/Septimal_diatonic_semitone_on_C.mid\/Septimal_diatonic_semitone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal diatonic semitone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/69/Septimal_diatonic_semitone_on_C.mid/Septimal_diatonic_semitone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_diatonic_semitone_on_C.mid" title="File:Septimal diatonic semitone on C.mid">ⓘ</a></sup></span></span> </td> <td>119.44 </td> <td>+19.44 </td></tr> <tr> <td>Lesser tridecimal 2/3-tone </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 14</span>⁄<span class="den"> 13</span></span> = 1.07692... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-18" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/58\/Lesser_tridecimal_two-third_tone_on_C.mid\/Lesser_tridecimal_two-third_tone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Lesser tridecimal two-third tone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/58/Lesser_tridecimal_two-third_tone_on_C.mid/Lesser_tridecimal_two-third_tone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Lesser_tridecimal_two-third_tone_on_C.mid" title="File:Lesser tridecimal two-third tone on C.mid">ⓘ</a></sup></span></span> </td> <td>128.30 </td> <td>+28.30 </td></tr> <tr> <td><a href="/wiki/Major_diatonic_semitone" class="mw-redirect" title="Major diatonic semitone">Major diatonic semitone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 27</span>⁄<span class="den"> 25</span></span> = 1.08 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-19" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/4a\/Semitone_Maximus_on_C.mid\/Semitone_Maximus_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Semitone Maximus on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/4a/Semitone_Maximus_on_C.mid/Semitone_Maximus_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Semitone_Maximus_on_C.mid" title="File:Semitone Maximus on C.mid">ⓘ</a></sup></span></span> </td> <td>133.24 </td> <td>+33.24 </td></tr> <tr> <td rowspan="4">2 </td> <td rowspan="4"><a href="/wiki/D_(musical_note)" title="D (musical note)"> D</a> </td> <td rowspan="4">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 2</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{6}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{6}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fd2e90711da1208f1bf08c8992ab44739cb9c57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{6}]{2}}}"></span> </td> <td rowspan="4">1.12246... </td> <td rowspan="4"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-20" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/b9\/Major_second_on_C.mid\/Major_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b9/Major_second_on_C.mid/Major_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_second_on_C.mid" title="File:Major second on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="4">200 </td> <td><a href="/wiki/Pythagorean_diminished_third" class="mw-redirect" title="Pythagorean diminished third">Pythagorean diminished third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 65536</span>⁄<span class="den"> 59049</span></span> = 1.10985... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-21" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/fd\/Pythagorean_diminished_third.mid\/Pythagorean_diminished_third.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean diminished third.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/fd/Pythagorean_diminished_third.mid/Pythagorean_diminished_third.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_diminished_third.mid" title="File:Pythagorean diminished third.mid">ⓘ</a></sup></span></span> </td> <td>180.45 </td></tr> <tr> <td><a href="/wiki/Minor_tone" class="mw-redirect" title="Minor tone">Minor tone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 10</span>⁄<span class="den"> 9</span></span> = 1.11111... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-22" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/89\/Minor_tone_on_C.mid\/Minor_tone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor tone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/89/Minor_tone_on_C.mid/Minor_tone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_tone_on_C.mid" title="File:Minor tone on C.mid">ⓘ</a></sup></span></span> </td> <td>182.40 </td></tr> <tr> <td><a href="/wiki/Major_tone" class="mw-redirect" title="Major tone">Major tone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 9</span>⁄<span class="den"> 8</span></span> = 1.125 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-23" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/7\/7b\/Major_tone_on_C.mid\/Major_tone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major tone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/7/7b/Major_tone_on_C.mid/Major_tone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_tone_on_C.mid" title="File:Major tone on C.mid">ⓘ</a></sup></span></span> </td> <td>203.91 </td> <td>+3.91 </td></tr> <tr> <td><a href="/wiki/Septimal_whole_tone" title="Septimal whole tone">Septimal whole tone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 8</span>⁄<span class="den"> 7</span></span> = 1.14285... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-24" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/4f\/Septimal_major_second_on_C.mid\/Septimal_major_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal major second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/4f/Septimal_major_second_on_C.mid/Septimal_major_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_major_second_on_C.mid" title="File:Septimal major second on C.mid">ⓘ</a></sup></span></span> </td> <td>231.17 </td> <td>+31.17 </td></tr> <tr> <td rowspan="6">3 </td> <td rowspan="6"><a href="/wiki/D%E2%99%AF_(musical_note)" title="D♯ (musical note)"> D<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span></a> or <a href="/wiki/E%E2%99%AD_(musical_note)" title="E♭ (musical note)"> E<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span></a> </td> <td rowspan="6">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 3</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{4}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{4}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aa163183b2c3828db27e22253d454a643a4c936" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{4}]{2}}}"></span> </td> <td rowspan="6">1.18920... </td> <td rowspan="6"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-25" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/3\/31\/Minor_third_on_C.mid\/Minor_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/3/31/Minor_third_on_C.mid/Minor_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_third_on_C.mid" title="File:Minor third on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="6">300 </td> <td><a href="/wiki/Septimal_minor_third" title="Septimal minor third">Septimal minor third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 7</span>⁄<span class="den"> 6</span></span> = 1.16666... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-26" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/7\/73\/Septimal_minor_third_on_C.mid\/Septimal_minor_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal minor third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/7/73/Septimal_minor_third_on_C.mid/Septimal_minor_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_minor_third_on_C.mid" title="File:Septimal minor third on C.mid">ⓘ</a></sup></span></span> </td> <td>266.87 </td></tr> <tr> <td><a href="/wiki/Tridecimal_minor_third" class="mw-redirect" title="Tridecimal minor third">Tridecimal minor third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 13</span>⁄<span class="den"> 11</span></span> = 1.18181... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-27" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/d\/de\/Tridecimal_minor_third_on_C.mid\/Tridecimal_minor_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Tridecimal minor third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/d/de/Tridecimal_minor_third_on_C.mid/Tridecimal_minor_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Tridecimal_minor_third_on_C.mid" title="File:Tridecimal minor third on C.mid">ⓘ</a></sup></span></span> </td> <td>289.21 </td></tr> <tr> <td><a href="/wiki/Pythagorean_minor_third" class="mw-redirect" title="Pythagorean minor third">Pythagorean minor third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 32</span>⁄<span class="den"> 27</span></span> = 1.18518... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-28" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/9f\/Pythagorean_minor_third_on_C.mid\/Pythagorean_minor_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean minor third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9f/Pythagorean_minor_third_on_C.mid/Pythagorean_minor_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_minor_third_on_C.mid" title="File:Pythagorean minor third on C.mid">ⓘ</a></sup></span></span> </td> <td>294.13 </td></tr> <tr> <td><a href="/wiki/Nineteenth_harmonic" class="mw-redirect" title="Nineteenth harmonic">Nineteenth harmonic</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 19</span>⁄<span class="den"> 16</span></span> = 1.1875 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-29" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/29\/19th_harmonic_on_C.mid\/19th_harmonic_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"19th harmonic on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/29/19th_harmonic_on_C.mid/19th_harmonic_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:19th_harmonic_on_C.mid" title="File:19th harmonic on C.mid">ⓘ</a></sup></span></span> </td> <td>297.51 </td></tr> <tr> <td><a href="/wiki/Just_minor_third" class="mw-redirect" title="Just minor third">Just minor third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 6</span>⁄<span class="den"> 5</span></span> = 1.2 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-30" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/42\/Just_minor_third_on_C.mid\/Just_minor_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just minor third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/42/Just_minor_third_on_C.mid/Just_minor_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_minor_third_on_C.mid" title="File:Just minor third on C.mid">ⓘ</a></sup></span></span> </td> <td>315.64 </td> <td>+15.64 </td></tr> <tr> <td><a href="/wiki/Pythagorean_augmented_second" class="mw-redirect" title="Pythagorean augmented second">Pythagorean augmented second</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 19683</span>⁄<span class="den"> 16384</span></span> = 1.20135... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-31" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f3\/Pythagorean_augmented_second_on_C.mid\/Pythagorean_augmented_second_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean augmented second on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f3/Pythagorean_augmented_second_on_C.mid/Pythagorean_augmented_second_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_augmented_second_on_C.mid" title="File:Pythagorean augmented second on C.mid">ⓘ</a></sup></span></span> </td> <td>317.60 </td> <td>+17.60 </td></tr> <tr> <td rowspan="5">4 </td> <td rowspan="5"><a href="/wiki/E_(musical_note)" title="E (musical note)"> E</a> </td> <td rowspan="5">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 4</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ca071ab504481c2bb76081aacb03f5519930710" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{2}}}"></span> </td> <td rowspan="5">1.25992... </td> <td rowspan="5"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-32" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/91\/Major_third_on_C.mid\/Major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/91/Major_third_on_C.mid/Major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_third_on_C.mid" title="File:Major third on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="5">400 </td> <td><a href="/wiki/Pythagorean_diminished_fourth" class="mw-redirect" title="Pythagorean diminished fourth">Pythagorean diminished fourth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 8192</span>⁄<span class="den"> 6561</span></span> = 1.24859... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-33" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/2c\/Pythagorean_diminished_fourth_on_C.mid\/Pythagorean_diminished_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean diminished fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/2c/Pythagorean_diminished_fourth_on_C.mid/Pythagorean_diminished_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_diminished_fourth_on_C.mid" title="File:Pythagorean diminished fourth on C.mid">ⓘ</a></sup></span></span> </td> <td>384.36 </td> <td>-15.64 </td></tr> <tr> <td><a href="/wiki/Just_major_third" class="mw-redirect" title="Just major third">Just major third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 5</span>⁄<span class="den"> 4</span></span> = 1.25 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-34" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/2a\/Just_major_third_on_C.mid\/Just_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/2a/Just_major_third_on_C.mid/Just_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_major_third_on_C.mid" title="File:Just major third on C.mid">ⓘ</a></sup></span></span> </td> <td>386.31 </td> <td>-13.69 </td></tr> <tr> <td><a href="/wiki/Pythagorean_major_third" class="mw-redirect" title="Pythagorean major third">Pythagorean major third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 81</span>⁄<span class="den"> 64</span></span> = 1.265625 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-35" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/44\/Pythagorean_major_third_on_C.mid\/Pythagorean_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/44/Pythagorean_major_third_on_C.mid/Pythagorean_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_major_third_on_C.mid" title="File:Pythagorean major third on C.mid">ⓘ</a></sup></span></span> </td> <td>407.82 </td> <td>+7.82 </td></tr> <tr> <td><a href="/wiki/Undecimal_major_third" class="mw-redirect" title="Undecimal major third">Undecimal major third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 14</span>⁄<span class="den"> 11</span></span> = 1.27272... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-36" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/67\/Undecimal_major_third_on_C.mid\/Undecimal_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Undecimal major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/67/Undecimal_major_third_on_C.mid/Undecimal_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Undecimal_major_third_on_C.mid" title="File:Undecimal major third on C.mid">ⓘ</a></sup></span></span> </td> <td>417.51 </td> <td>+17.51 </td></tr> <tr> <td><a href="/wiki/Septimal_major_third" title="Septimal major third">Septimal major third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 9</span>⁄<span class="den"> 7</span></span> = 1.28571... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-37" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/55\/Septimal_major_third_on_C.mid\/Septimal_major_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal major third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Septimal_major_third_on_C.mid/Septimal_major_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_major_third_on_C.mid" title="File:Septimal major third on C.mid">ⓘ</a></sup></span></span> </td> <td>435.08 </td> <td>+35.08 </td></tr> <tr> <td rowspan="2">5 </td> <td rowspan="2"><a href="/wiki/F_(musical_note)" title="F (musical note)"> F</a> </td> <td rowspan="2">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 5</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{12}]{32}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>32</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{12}]{32}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9744b1d14b93f31471a1ad0e7176cbd2e42f1a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.269ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{12}]{32}}}"></span> </td> <td rowspan="2">1.33484... </td> <td rowspan="2"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-38" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/87\/Perfect_fourth_on_C.mid\/Perfect_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Perfect fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/87/Perfect_fourth_on_C.mid/Perfect_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Perfect_fourth_on_C.mid" title="File:Perfect fourth on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="2">500 </td> <td><a href="/wiki/Just_perfect_fourth" class="mw-redirect" title="Just perfect fourth">Just perfect fourth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 4</span>⁄<span class="den"> 3</span></span> = 1.33333... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-39" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/be\/Just_perfect_fourth_on_C.mid\/Just_perfect_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just perfect fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/be/Just_perfect_fourth_on_C.mid/Just_perfect_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_perfect_fourth_on_C.mid" title="File:Just perfect fourth on C.mid">ⓘ</a></sup></span></span> </td> <td>498.04 </td> <td>-1.96 </td></tr> <tr> <td><a href="/wiki/Pythagorean_augmented_third" class="mw-redirect" title="Pythagorean augmented third">Pythagorean augmented third</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 177147</span>⁄<span class="den"> 131072</span></span> = 1.35152... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-40" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/86\/Pythagorean_augmented_third_on_C.mid\/Pythagorean_augmented_third_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean augmented third on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/86/Pythagorean_augmented_third_on_C.mid/Pythagorean_augmented_third_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_augmented_third_on_C.mid" title="File:Pythagorean augmented third on C.mid">ⓘ</a></sup></span></span> </td> <td>521.51 </td> <td>+21.51 </td></tr> <tr> <td rowspan="8">6 </td> <td rowspan="8"><a href="/wiki/F%E2%99%AF_(musical_note)" title="F♯ (musical note)"> F<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span></a> or <a href="/wiki/G%E2%99%AD_(musical_note)" title="G♭ (musical note)"> G<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span></a> </td> <td rowspan="8">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 6</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4afc1e27d418021bf10898eb44a7f5f315735ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt {2}}}"></span> </td> <td rowspan="8">1.41421... </td> <td rowspan="8"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-41" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/58\/Tritone_on_C.mid\/Tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/58/Tritone_on_C.mid/Tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Tritone_on_C.mid" title="File:Tritone on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="8">600 </td> <td>Classic augmented fourth </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 25</span>⁄<span class="den"> 18</span></span> = 1.38888... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-42" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/e\/ee\/Classic_augmented_fourth_on_C.mid\/Classic_augmented_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Classic augmented fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Classic_augmented_fourth_on_C.mid/Classic_augmented_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Classic_augmented_fourth_on_C.mid" title="File:Classic augmented fourth on C.mid">ⓘ</a></sup></span></span> </td> <td>568.72 </td> <td>-31.28 </td></tr> <tr> <td><a href="/wiki/Huygens%27_tritone" class="mw-redirect" title="Huygens' tritone">Huygens' tritone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 7</span>⁄<span class="den"> 5</span></span> = 1.4 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-43" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/24\/Lesser_septimal_tritone_on_C.mid\/Lesser_septimal_tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Lesser septimal tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/24/Lesser_septimal_tritone_on_C.mid/Lesser_septimal_tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Lesser_septimal_tritone_on_C.mid" title="File:Lesser septimal tritone on C.mid">ⓘ</a></sup></span></span> </td> <td>582.51 </td> <td>-17.49 </td></tr> <tr> <td><a href="/wiki/Pythagorean_diminished_fifth" class="mw-redirect" title="Pythagorean diminished fifth">Pythagorean diminished fifth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 1024</span>⁄<span class="den"> 729</span></span> = 1.40466... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-44" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/a\/a8\/Diminished_fifth_tritone_on_C.mid\/Diminished_fifth_tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Diminished fifth tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a8/Diminished_fifth_tritone_on_C.mid/Diminished_fifth_tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Diminished_fifth_tritone_on_C.mid" title="File:Diminished fifth tritone on C.mid">ⓘ</a></sup></span></span> </td> <td>588.27 </td> <td>-11.73 </td></tr> <tr> <td><a href="/wiki/Just_augmented_fourth" class="mw-redirect" title="Just augmented fourth">Just augmented fourth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 45</span>⁄<span class="den"> 32</span></span> = 1.40625 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-45" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/8\/80\/Just_augmented_fourth_on_C.mid\/Just_augmented_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just augmented fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/8/80/Just_augmented_fourth_on_C.mid/Just_augmented_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_augmented_fourth_on_C.mid" title="File:Just augmented fourth on C.mid">ⓘ</a></sup></span></span> </td> <td>590.22 </td> <td>-9.78 </td></tr> <tr> <td><a href="/wiki/Just_diminished_fifth" class="mw-redirect" title="Just diminished fifth">Just diminished fifth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 64</span>⁄<span class="den"> 45</span></span> = 1.42222... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-46" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f7\/Just_tritone_on_C.mid\/Just_tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f7/Just_tritone_on_C.mid/Just_tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_tritone_on_C.mid" title="File:Just tritone on C.mid">ⓘ</a></sup></span></span> </td> <td>609.78 </td> <td>+9.78 </td></tr> <tr> <td><a href="/wiki/Pythagorean_augmented_fourth" class="mw-redirect" title="Pythagorean augmented fourth">Pythagorean augmented fourth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 729</span>⁄<span class="den"> 512</span></span> = 1.42382... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-47" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/c\/cf\/Pythagorean_augmented_fourth_on_C.mid\/Pythagorean_augmented_fourth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean augmented fourth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/c/cf/Pythagorean_augmented_fourth_on_C.mid/Pythagorean_augmented_fourth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_augmented_fourth_on_C.mid" title="File:Pythagorean augmented fourth on C.mid">ⓘ</a></sup></span></span> </td> <td>611.73 </td> <td>+11.73 </td></tr> <tr> <td><a href="/wiki/Euler%27s_tritone" class="mw-redirect" title="Euler's tritone">Euler's tritone</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 10</span>⁄<span class="den"> 7</span></span> = 1.42857... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-48" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/e\/e3\/Greater_septimal_tritone_on_C.mid\/Greater_septimal_tritone_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Greater septimal tritone on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/e/e3/Greater_septimal_tritone_on_C.mid/Greater_septimal_tritone_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Greater_septimal_tritone_on_C.mid" title="File:Greater septimal tritone on C.mid">ⓘ</a></sup></span></span> </td> <td>617.49 </td> <td>+17.49 </td></tr> <tr> <td>Classic diminished fifth </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 36</span>⁄<span class="den"> 25</span></span> = 1.44 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-49" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/b8\/Just_diminished_fifth_on_C.mid\/Just_diminished_fifth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just diminished fifth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b8/Just_diminished_fifth_on_C.mid/Just_diminished_fifth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_diminished_fifth_on_C.mid" title="File:Just diminished fifth on C.mid">ⓘ</a></sup></span></span> </td> <td>631.28 </td> <td>+31.28 </td></tr> <tr> <td rowspan="2">7 </td> <td rowspan="2"><a href="/wiki/G_(musical_note)" title="G (musical note)"> G</a> </td> <td rowspan="2">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 7</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{12}]{128}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>128</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{12}]{128}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fe1257282e06f592d5b60e9ce503586594b865c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.432ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{12}]{128}}}"></span> </td> <td rowspan="2">1.49830... </td> <td rowspan="2"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-50" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/20\/Perfect_fifth_on_C.mid\/Perfect_fifth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Perfect fifth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/20/Perfect_fifth_on_C.mid/Perfect_fifth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Perfect_fifth_on_C.mid" title="File:Perfect fifth on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="2">700 </td> <td><a href="/wiki/Pythagorean_diminished_sixth" class="mw-redirect" title="Pythagorean diminished sixth">Pythagorean diminished sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 262144</span>⁄<span class="den"> 177147</span></span> = 1.47981... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-51" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/d\/d2\/Pythagorean_diminished_sixth_on_C.mid\/Pythagorean_diminished_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean diminished sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/d/d2/Pythagorean_diminished_sixth_on_C.mid/Pythagorean_diminished_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_diminished_sixth_on_C.mid" title="File:Pythagorean diminished sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>678.49 </td></tr> <tr> <td><a href="/wiki/Just_perfect_fifth" class="mw-redirect" title="Just perfect fifth">Just perfect fifth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 3</span>⁄<span class="den"> 2</span></span> = 1.5 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-52" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/5c\/Just_perfect_fifth_on_C.mid\/Just_perfect_fifth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just perfect fifth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/5c/Just_perfect_fifth_on_C.mid/Just_perfect_fifth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_perfect_fifth_on_C.mid" title="File:Just perfect fifth on C.mid">ⓘ</a></sup></span></span> </td> <td>701.96 </td> <td>+1.96 </td></tr> <tr> <td rowspan="5">8 </td> <td rowspan="5"><a href="/wiki/G%E2%99%AF_(musical_note)" title="G♯ (musical note)"> G<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span></a> or <a href="/wiki/A%E2%99%AD_(musical_note)" title="A♭ (musical note)"> A<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span></a> </td> <td rowspan="5">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 8</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{3}]{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{3}]{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb5da5142ec773ea1ba79813278a00c8d9ee202" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{3}]{4}}}"></span> </td> <td rowspan="5">1.58740... </td> <td rowspan="5"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-53" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/9a\/Minor_sixth_on_C.mid\/Minor_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9a/Minor_sixth_on_C.mid/Minor_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_sixth_on_C.mid" title="File:Minor sixth on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="5">800 </td> <td><a href="/wiki/Septimal_minor_sixth" class="mw-redirect" title="Septimal minor sixth">Septimal minor sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 14</span>⁄<span class="den"> 9</span></span> = 1.55555... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-54" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/3\/3a\/Septimal_minor_sixth_on_C.mid\/Septimal_minor_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal minor sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/3/3a/Septimal_minor_sixth_on_C.mid/Septimal_minor_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_minor_sixth_on_C.mid" title="File:Septimal minor sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>764.92 </td> <td>-35.08 </td></tr> <tr> <td><a href="/wiki/Undecimal_minor_sixth" class="mw-redirect" title="Undecimal minor sixth">Undecimal minor sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 11</span>⁄<span class="den"> 7</span></span> = 1.57142... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-55" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/7\/7c\/Undecimal_minor_sixth_on_C.mid\/Undecimal_minor_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Undecimal minor sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/7/7c/Undecimal_minor_sixth_on_C.mid/Undecimal_minor_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Undecimal_minor_sixth_on_C.mid" title="File:Undecimal minor sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>782.49 </td> <td>-17.51 </td></tr> <tr> <td><a href="/wiki/Pythagorean_minor_sixth" class="mw-redirect" title="Pythagorean minor sixth">Pythagorean minor sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 128</span>⁄<span class="den"> 81</span></span> = 1.58024... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-56" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/6\/68\/Pythagorean_minor_sixth_on_C.mid\/Pythagorean_minor_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean minor sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/6/68/Pythagorean_minor_sixth_on_C.mid/Pythagorean_minor_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_minor_sixth_on_C.mid" title="File:Pythagorean minor sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>792.18 </td> <td>-7.82 </td></tr> <tr> <td><a href="/wiki/Just_minor_sixth" class="mw-redirect" title="Just minor sixth">Just minor sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 8</span>⁄<span class="den"> 5</span></span> = 1.6 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-57" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/41\/Just_minor_sixth_on_C.mid\/Just_minor_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just minor sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/41/Just_minor_sixth_on_C.mid/Just_minor_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_minor_sixth_on_C.mid" title="File:Just minor sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>813.69 </td> <td>+13.69 </td></tr> <tr> <td><a href="/wiki/Pythagorean_augmented_fifth" class="mw-redirect" title="Pythagorean augmented fifth">Pythagorean augmented fifth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 6561</span>⁄<span class="den"> 4096</span></span> = 1.60180... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-58" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/90\/Pythagorean_augmented_fifth_on_C.mid\/Pythagorean_augmented_fifth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean augmented fifth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/90/Pythagorean_augmented_fifth_on_C.mid/Pythagorean_augmented_fifth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_augmented_fifth_on_C.mid" title="File:Pythagorean augmented fifth on C.mid">ⓘ</a></sup></span></span> </td> <td>815.64 </td> <td>+15.64 </td></tr> <tr> <td rowspan="5">9 </td> <td rowspan="5"><a href="/wiki/A_(musical_note)" title="A (musical note)"> A</a> </td> <td rowspan="5">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 9</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{4}]{8}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>8</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{4}]{8}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/675096532680297bc0b8e3ef793ed8b9271f628e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.098ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{4}]{8}}}"></span> </td> <td rowspan="5">1.68179... </td> <td rowspan="5"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-59" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/d\/df\/Major_sixth_on_C.mid\/Major_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/d/df/Major_sixth_on_C.mid/Major_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_sixth_on_C.mid" title="File:Major sixth on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="5">900 </td> <td><a href="/wiki/Pythagorean_diminished_seventh" class="mw-redirect" title="Pythagorean diminished seventh">Pythagorean diminished seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 32768</span>⁄<span class="den"> 19683</span></span> = 1.66478... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-60" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/b\/bb\/Pythagorean_diminished_seventh_on_C.mid\/Pythagorean_diminished_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean diminished seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/b/bb/Pythagorean_diminished_seventh_on_C.mid/Pythagorean_diminished_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_diminished_seventh_on_C.mid" title="File:Pythagorean diminished seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>882.40 </td></tr> <tr> <td><a href="/wiki/Just_major_sixth" class="mw-redirect" title="Just major sixth">Just major sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 5</span>⁄<span class="den"> 3</span></span> = 1.66666... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-61" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/98\/Just_major_sixth_on_C.mid\/Just_major_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just major sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/98/Just_major_sixth_on_C.mid/Just_major_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_major_sixth_on_C.mid" title="File:Just major sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>884.36 </td></tr> <tr> <td><a href="/wiki/Nineteenth_subharmonic" class="mw-redirect" title="Nineteenth subharmonic">Nineteenth subharmonic</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 32</span>⁄<span class="den"> 19</span></span> = 1.68421... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-62" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/57\/19th_subharmonic_on_C.mid\/19th_subharmonic_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"19th subharmonic on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/57/19th_subharmonic_on_C.mid/19th_subharmonic_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:19th_subharmonic_on_C.mid" title="File:19th subharmonic on C.mid">ⓘ</a></sup></span></span> </td> <td>902.49 </td> <td>+2.49 </td></tr> <tr> <td><a href="/wiki/Pythagorean_major_sixth" class="mw-redirect" title="Pythagorean major sixth">Pythagorean major sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 27</span>⁄<span class="den"> 16</span></span> = 1.6875 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-63" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/5e\/Pythagorean_major_sixth_on_C.mid\/Pythagorean_major_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean major sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/5e/Pythagorean_major_sixth_on_C.mid/Pythagorean_major_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_major_sixth_on_C.mid" title="File:Pythagorean major sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>905.87 </td> <td>+5.87 </td></tr> <tr> <td><a href="/wiki/Septimal_major_sixth" class="mw-redirect" title="Septimal major sixth">Septimal major sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 12</span>⁄<span class="den"> 7</span></span> = 1.71428... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-64" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/9\/94\/Septimal_major_sixth_on_C.mid\/Septimal_major_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"Play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Septimal major sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/9/94/Septimal_major_sixth_on_C.mid/Septimal_major_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">Play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Septimal_major_sixth_on_C.mid" title="File:Septimal major sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>933.13 </td> <td>+33.13 </td></tr> <tr> <td rowspan="4">10 </td> <td rowspan="4"><a href="/wiki/A%E2%99%AF_(musical_note)" title="A♯ (musical note)"> A<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-sharp">♯</span></span></a> or <a href="/wiki/B%E2%99%AD_(musical_note)" title="B♭ (musical note)"> B<span class="music-symbol" style="font-family: Arial Unicode MS, Lucida Sans Unicode;"><span class="music-flat">♭</span></span></a> </td> <td rowspan="4">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 10</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{6}]{32}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>32</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{6}]{32}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e75f5ed7285d717db47b68736ff2e37df9f71737" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.261ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{6}]{32}}}"></span> </td> <td rowspan="4">1.78179... </td> <td rowspan="4"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-65" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/a\/a5\/Minor_seventh_on_C.mid\/Minor_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Minor seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a5/Minor_seventh_on_C.mid/Minor_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Minor_seventh_on_C.mid" title="File:Minor seventh on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="4">1000 </td> <td><a href="/wiki/Harmonic_seventh" title="Harmonic seventh">Harmonic seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 7</span>⁄<span class="den"> 4</span></span> = 1.75 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-66" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/d\/dd\/Harmonic_seventh_on_C.mid\/Harmonic_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Harmonic seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/d/dd/Harmonic_seventh_on_C.mid/Harmonic_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Harmonic_seventh_on_C.mid" title="File:Harmonic seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>968.83 </td> <td>-31.17 </td></tr> <tr> <td><a href="/wiki/Pythagorean_minor_seventh" class="mw-redirect" title="Pythagorean minor seventh">Pythagorean minor seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 16</span>⁄<span class="den"> 9</span></span> = 1.77777... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-67" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/e\/e9\/Lesser_just_minor_seventh_on_C.mid\/Lesser_just_minor_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Lesser just minor seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/e/e9/Lesser_just_minor_seventh_on_C.mid/Lesser_just_minor_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Lesser_just_minor_seventh_on_C.mid" title="File:Lesser just minor seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>996.09 </td> <td>-3.91 </td></tr> <tr> <td><a href="/wiki/Large_minor_seventh" class="mw-redirect" title="Large minor seventh">Large minor seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 9</span>⁄<span class="den"> 5</span></span> = 1.8 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-68" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/e\/e2\/Greater_just_minor_seventh_on_C.mid\/Greater_just_minor_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Greater just minor seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/e/e2/Greater_just_minor_seventh_on_C.mid/Greater_just_minor_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Greater_just_minor_seventh_on_C.mid" title="File:Greater just minor seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>1017.60 </td> <td>+17.60 </td></tr> <tr> <td><a href="/wiki/Pythagorean_augmented_sixth" class="mw-redirect" title="Pythagorean augmented sixth">Pythagorean augmented sixth</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 59049</span>⁄<span class="den"> 32768</span></span> = 1.80203... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-69" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/2\/26\/Pythagorean_augmented_sixth_on_C.mid\/Pythagorean_augmented_sixth_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean augmented sixth on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/2/26/Pythagorean_augmented_sixth_on_C.mid/Pythagorean_augmented_sixth_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_augmented_sixth_on_C.mid" title="File:Pythagorean augmented sixth on C.mid">ⓘ</a></sup></span></span> </td> <td>1019.55 </td> <td>+19.55 </td></tr> <tr> <td rowspan="6">11 </td> <td rowspan="6"><a href="/wiki/B_(musical_note)" title="B (musical note)"> B</a> </td> <td rowspan="6">2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 11</span>⁄<span class="den"> 12</span></span></sup> = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt[{12}]{2048}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mn>2048</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt[{12}]{2048}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/744decb84a19d221e7ce8df0ec3d315384fdd5ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.594ex; height:3.009ex;" alt="{\displaystyle {\sqrt[{12}]{2048}}}"></span> </td> <td rowspan="6">1.88774... </td> <td rowspan="6"><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-70" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/c\/cb\/Major_seventh_on_C.mid\/Major_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Major seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/c/cb/Major_seventh_on_C.mid/Major_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Major_seventh_on_C.mid" title="File:Major seventh on C.mid">ⓘ</a></sup></span></span> </td> <td rowspan="6">1100 </td> <td>Tridecimal neutral seventh </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 13</span>⁄<span class="den"> 7</span></span> = 1.85714... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-71" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/44\/Tridecimal_neutral_seventh_on_C.mid\/Tridecimal_neutral_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Tridecimal neutral seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/44/Tridecimal_neutral_seventh_on_C.mid/Tridecimal_neutral_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Tridecimal_neutral_seventh_on_C.mid" title="File:Tridecimal neutral seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>1071.70 </td> <td>-28.30 </td></tr> <tr> <td><a href="/wiki/Pythagorean_diminished_octave" class="mw-redirect" title="Pythagorean diminished octave">Pythagorean diminished octave</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 4096</span>⁄<span class="den"> 2187</span></span> = 1.87288... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-72" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/5\/59\/Pythagorean_diminished_octave_on_C.mid\/Pythagorean_diminished_octave_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean diminished octave on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/5/59/Pythagorean_diminished_octave_on_C.mid/Pythagorean_diminished_octave_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_diminished_octave_on_C.mid" title="File:Pythagorean diminished octave on C.mid">ⓘ</a></sup></span></span> </td> <td>1086.31 </td> <td>-13.69 </td></tr> <tr> <td><a href="/wiki/Just_major_seventh" class="mw-redirect" title="Just major seventh">Just major seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 15</span>⁄<span class="den"> 8</span></span> = 1.875 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-73" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/a\/a4\/Just_major_seventh_on_C.mid\/Just_major_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Just major seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/a/a4/Just_major_seventh_on_C.mid/Just_major_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Just_major_seventh_on_C.mid" title="File:Just major seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>1088.27 </td> <td>-11.73 </td></tr> <tr> <td><a href="/wiki/Seventeenth_subharmonic" class="mw-redirect" title="Seventeenth subharmonic">Seventeenth subharmonic</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 32</span>⁄<span class="den"> 17</span></span> = 1.88235... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-74" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/4\/4a\/17th_subharmonic_on_C.mid\/17th_subharmonic_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"17th subharmonic on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/4/4a/17th_subharmonic_on_C.mid/17th_subharmonic_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:17th_subharmonic_on_C.mid" title="File:17th subharmonic on C.mid">ⓘ</a></sup></span></span> </td> <td>1095.04 </td> <td>-4.96 </td></tr> <tr> <td><a href="/wiki/Pythagorean_major_seventh" class="mw-redirect" title="Pythagorean major seventh">Pythagorean major seventh</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 243</span>⁄<span class="den"> 128</span></span> = 1.89843... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-75" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f4\/Pythagorean_major_seventh_on_C.mid\/Pythagorean_major_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean major seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f4/Pythagorean_major_seventh_on_C.mid/Pythagorean_major_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_major_seventh_on_C.mid" title="File:Pythagorean major seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>1109.78 </td> <td>+9.78 </td></tr> <tr> <td>Septimal major seventh </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 27</span>⁄<span class="den"> 14</span></span> = 1.92857... </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-76" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f4\/Pythagorean_major_seventh_on_C.mid\/Pythagorean_major_seventh_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Pythagorean major seventh on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f4/Pythagorean_major_seventh_on_C.mid/Pythagorean_major_seventh_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Pythagorean_major_seventh_on_C.mid" title="File:Pythagorean major seventh on C.mid">ⓘ</a></sup></span></span> </td> <td>1137.04 </td> <td>+37.04 </td></tr> <tr> <td>12 </td> <td><a href="/wiki/C_(musical_note)" title="C (musical note)"> C</a> </td> <td>2<sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 12</span>⁄<span class="den"> 12</span></span></sup> = 2 </td> <td>2 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-77" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f0\/Perfect_octave_on_C.mid\/Perfect_octave_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Perfect octave on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f0/Perfect_octave_on_C.mid/Perfect_octave_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Perfect_octave_on_C.mid" title="File:Perfect octave on C.mid">ⓘ</a></sup></span></span> </td> <td>1200 </td> <td><a href="/wiki/Octave" title="Octave">Octave</a> </td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num"> 2</span>⁄<span class="den"> 1</span></span> = 2 </td> <td><span class="noprint"><span class="ext-phonos"><span data-nosnippet="" id="ooui-php-78" class="ext-phonos-PhonosButton noexcerpt oo-ui-widget oo-ui-widget-enabled oo-ui-buttonElement oo-ui-buttonElement-frameless oo-ui-iconElement oo-ui-labelElement oo-ui-buttonWidget" data-ooui="{"_":"mw.Phonos.PhonosButton","href":"\/\/upload.wikimedia.org\/wikipedia\/commons\/transcoded\/f\/f0\/Perfect_octave_on_C.mid\/Perfect_octave_on_C.mid.mp3","rel":["nofollow"],"framed":false,"icon":"volumeUp","label":{"html":"play"},"data":{"ipa":"","text":"","lang":"en","wikibase":"","file":"Perfect octave on C.mid"},"classes":["ext-phonos-PhonosButton","noexcerpt"]}"><a role="button" tabindex="0" href="//upload.wikimedia.org/wikipedia/commons/transcoded/f/f0/Perfect_octave_on_C.mid/Perfect_octave_on_C.mid.mp3" rel="nofollow" aria-label="Play audio" title="Play audio" class="oo-ui-buttonElement-button"><span class="oo-ui-iconElement-icon oo-ui-icon-volumeUp"></span><span class="oo-ui-labelElement-label">play</span><span class="oo-ui-indicatorElement-indicator oo-ui-indicatorElement-noIndicator"></span></a></span><sup class="ext-phonos-attribution noexcerpt navigation-not-searchable"><a href="/wiki/File:Perfect_octave_on_C.mid" title="File:Perfect octave on C.mid">ⓘ</a></sup></span></span> </td> <td>1200.00 </td> <td>0 </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Commas">Commas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=20" title="Edit section: Commas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>12-ET tempers out several <a href="/wiki/Comma_(music)" title="Comma (music)">commas</a>, meaning that there are several fractions close to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 1 </span><span class="sr-only">/</span><span class="den">1</span></span>⁠</span> that are treated as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 1 </span><span class="sr-only">/</span><span class="den">1</span></span>⁠</span> by 12-ET due to its mapping of different fractions to the same equally-tempered interval. For example, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">729</span><span class="sr-only">/</span><span class="den">512</span></span>⁠</span> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 3<sup>6</sup> </span><span class="sr-only">/</span><span class="den">2<sup>9</sup></span></span>⁠</span>) and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 1024 </span><span class="sr-only">/</span><span class="den">729</span></span>⁠</span> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>10</sup> </span><span class="sr-only">/</span><span class="den">3<sup>6</sup></span></span>⁠</span>) are each mapped to the tritone, so they are treated as nominally the same interval; therefore, their quotient, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 3<sup>12</sup> </span><span class="sr-only">/</span><span class="den">2<sup>19</sup></span></span>⁠</span>) is mapped to/treated as unison. This is the <a href="/wiki/Pythagorean_comma" title="Pythagorean comma">Pythagorean comma</a>, and it is 12-ET's only 3-limit comma. However, as one increases the prime limit and includes more intervals, the number of commas increases. 12-ET's most important five-limit comma is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span> (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3<sup>4</sup></span><span class="sr-only">/</span><span class="den"> 2<sup>4</sup> × 5<sup>1</sup> </span></span>⁠</span>), which is known as the <a href="/wiki/Syntonic_comma" title="Syntonic comma">syntonic comma</a> and is the factor between Pythagorean thirds and sixths and their just counterparts. 12-ET's other 5-limit commas include: </p> <ul><li><a href="/wiki/Schisma" title="Schisma">Schisma</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">32805</span><span class="sr-only">/</span><span class="den"> 32768 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 3<sup>8</sup> × 5<sup>1</sup> </span><span class="sr-only">/</span><span class="den">2<sup>15</sup></span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>−1</sup></li> <li><a href="/wiki/Diaschisma" title="Diaschisma">Diaschisma</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2048</span><span class="sr-only">/</span><span class="den"> 2025 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<sup>11</sup></span><span class="sr-only">/</span><span class="den"> 3<sup>4</sup> × 5<sup>2</sup> </span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>2</sup></li> <li><a href="/wiki/Lesser_diesis" class="mw-redirect" title="Lesser diesis">Lesser diesis</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">128</span><span class="sr-only">/</span><span class="den"> 125 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>7</sup> </span><span class="sr-only">/</span><span class="den">5<sup>3</sup></span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>3</sup></li> <li><a href="/wiki/Greater_diesis" class="mw-redirect" title="Greater diesis">Greater diesis</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">648</span><span class="sr-only">/</span><span class="den"> 625 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>3</sup> × 3<sup>4</sup> </span><span class="sr-only">/</span><span class="den">5<sup>4</sup></span></span>⁠</span>=(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>4</sup></li></ul> <p>One of the 7-limit commas that 12-ET tempers out is the <a href="/wiki/Septimal_kleisma" title="Septimal kleisma">septimal kleisma</a>, which is equal to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">225</span><span class="sr-only">/</span><span class="den"> 224 </span></span>⁠</span>, or <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 3<sup>2</sup>×5<sup>2</sup> </span><span class="sr-only">/</span><span class="den">2<sup>5</sup>×7<sup>1</sup></span></span>⁠</span>.</span> 12-ET's other 7-limit commas include: </p> <ul><li><a href="/wiki/Septimal_semicomma" title="Septimal semicomma">Septimal semicomma</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">126</span><span class="sr-only">/</span><span class="den"> 125 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>1</sup> × 3<sup>2</sup> × 7<sup>1</sup> </span><span class="sr-only">/</span><span class="den">5<sup>3</sup></span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">225</span><span class="sr-only">/</span><span class="den"> 224 </span></span>⁠</span>)<sup>−1</sup></li> <li><a href="/wiki/Archytas%27_comma" class="mw-redirect" title="Archytas' comma">Archytas' comma</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">64</span><span class="sr-only">/</span><span class="den"> 63 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<sup>6</sup></span><span class="sr-only">/</span><span class="den"> 3<sup>2</sup> × 7<sup>1</sup> </span></span>⁠</span> = <span class="nowrap">(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>2</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">225</span><span class="sr-only">/</span><span class="den"> 224 </span></span>⁠</span>)<sup>1</sup></span></li> <li><a href="/wiki/Septimal_quarter_tone" title="Septimal quarter tone">Septimal quarter tone</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">36</span><span class="sr-only">/</span><span class="den"> 35 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>2</sup> × 3<sup>2</sup> </span><span class="sr-only">/</span><span class="den">5<sup>1</sup> ×v7<sup>1</sup></span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den">80</span></span>⁠</span>)<sup>3</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">225</span><span class="sr-only">/</span><span class="den"> 224 </span></span>⁠</span>)<sup>1</sup></li> <li><a href="/wiki/Jubilisma" class="mw-redirect" title="Jubilisma">Jubilisma</a>: <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">50</span><span class="sr-only">/</span><span class="den"> 49 </span></span>⁠</span> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"> 2<sup>1</sup> × 5<sup>2</sup> </span><span class="sr-only">/</span><span class="den">7<sup>2</sup></span></span>⁠</span> = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">531441</span><span class="sr-only">/</span><span class="den"> 524288 </span></span>⁠</span>)<sup>−1</sup> × (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">81</span><span class="sr-only">/</span><span class="den"> 80 </span></span>⁠</span>)<sup>2</sup> × <span class="nowrap">(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">225</span><span class="sr-only">/</span><span class="den"> 224 </span></span>⁠</span>)<sup>2</sup></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Similar_tuning_systems">Similar tuning systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=21" title="Edit section: Similar tuning systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Historically, multiple tuning systems have been used that can be seen as slight variations of 12-TEDO, with twelve notes per octave but with some variation among interval sizes so that the notes are not quite equally-spaced. One example of this a three-limit scale where equally-tempered perfect fifths of 700 cents are replaced with justly-intoned perfect fifths of 701.955 cents. Because the two intervals differ by less than 2 cents, or <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>⁄<span class="den">600</span></span> of an octave, the two scales are very similar. In fact, the Chinese developed <a href="/wiki/Sh%C3%AD-%C3%A8r-l%C7%9C" class="mw-redirect" title="Shí-èr-lǜ">3-limit just intonation</a> at least a century before He Chengtian created the sequence of 12-TEDO.<sup id="cite_ref-FOOTNOTENeedhamLingRobinson1962170–171_40-0" class="reference"><a href="#cite_note-FOOTNOTENeedhamLingRobinson1962170–171-40"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup> Likewise, Pythagorean tuning, which was developed by ancient Greeks, was the predominant system in Europe until during the Renaissance, when Europeans realized that dissonant intervals such as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">81</span>⁄<span class="den">64</span></span><sup id="cite_ref-FOOTNOTEBenwardSaker200356_41-0" class="reference"><a href="#cite_note-FOOTNOTEBenwardSaker200356-41"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> could be made more consonant by tempering them to simpler ratios like <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">5</span>⁄<span class="den">4</span></span>, resulting in Europe developing a series of <a href="/wiki/Meantone_temperament" title="Meantone temperament">meantone temperaments</a> that slightly modified the interval sizes but could still be viewed as an approximate of 12-TEDO. Due to meantone temperaments' tendency to concentrate error onto one enharmonic perfect fifth, making it <a href="/wiki/Wolf_fifth" class="mw-redirect" title="Wolf fifth">very dissonant</a>, European music theorists, such as Andreas Werckmeister, Johann Philipp Kirnberger, Francesco Antonio Vallotti, and Thomas Young, created various <a href="/wiki/Well_temperament" title="Well temperament">well temperaments</a> with the goal of dividing up the commas in order to reduce the dissonance of the worst-affected intervals. Werckmeister and Kirnberger were each dissatisfied with his first temperament and therefore created multiple temperaments, the latter temperaments more closely approximating equal temperament than the former temperaments. Likewise, Europe as a whole gradually transitioned from meantone and well temperaments to 12-TEDO, the system that it still uses today. </p> <div class="mw-heading mw-heading2"><h2 id="Subsets">Subsets</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=22" title="Edit section: Subsets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Scale_(music)" title="Scale (music)">Scale (music)</a></div> <p>While some types of music, such as <a href="/wiki/Serialism" title="Serialism">serialism</a>, use all twelve notes of 12-TEDO, most music only uses notes from a particular subset of 12-TEDO known as a scale. Many different types of scales exist. </p><p>The most popular type of scale in 12-TEDO is meantone. Meantone refers to any scale where all of its notes are consecutive on the circle of fifths. Meantone scales of different sizes exist, and some meantone scales used include <a href="/wiki/Pentatonic_scale#Pentatonic_scales_found_by_running_up_the_keys_C,_D,_E,_G_and_A" title="Pentatonic scale">five-note meantone</a>, <a href="/wiki/Diatonic_scale" title="Diatonic scale">seven-note meantone</a>, and <a href="/wiki/Blues_scale#Nonatonic" title="Blues scale">nine-note meantone</a>. Meantone is present in the design of Western instruments. For example, the keys of a piano and its predecessors are structured so that the white keys form a seven-note meantone scale and the black keys form a five-note meantone scale. Another example is that guitars and other string instruments with at least five strings are typically tuned so that their open strings form a five-note meantone scale. </p><p>Other scales used in 12-TEDO include the <a href="/wiki/Ascending_melodic_minor_scale" class="mw-redirect" title="Ascending melodic minor scale">ascending melodic minor scale</a>, the <a href="/wiki/Harmonic_minor" class="mw-redirect" title="Harmonic minor">harmonic minor</a>, the <a href="/wiki/Harmonic_major" class="mw-redirect" title="Harmonic major">harmonic major</a>, the <a href="/wiki/Diminished_scale" class="mw-redirect" title="Diminished scale">diminished scale</a>, and the <a href="/wiki/In_scale" title="In scale">in scale</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=23" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Equal_temperament" title="Equal temperament">Equal temperament</a></li> <li><a href="/wiki/Just_intonation" title="Just intonation">Just intonation</a></li> <li><a href="/wiki/Musical_acoustics" title="Musical acoustics">Musical acoustics</a> (the physics of music)</li> <li><a href="/wiki/Music_and_mathematics" title="Music and mathematics">Music and mathematics</a></li> <li><a href="/wiki/Microtonal_music" class="mw-redirect" title="Microtonal music">Microtonal music</a></li> <li><a href="/wiki/List_of_meantone_intervals" title="List of meantone intervals">List of meantone intervals</a></li> <li><a href="/wiki/Diatonic_and_chromatic" title="Diatonic and chromatic">Diatonic and chromatic</a></li> <li><a href="/wiki/Electronic_tuner" title="Electronic tuner">Electronic tuner</a></li> <li><a href="/wiki/Musical_tuning" title="Musical tuning">Musical tuning</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Footnotes">Footnotes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=25" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-12TET-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-12TET_1-0">^</a></b></span> <span class="reference-text">Also known as <b>twelve-tone equal temperament</b> (<b>12-TET</b>), <b>12-tone equal division of the octave</b> (<b>12-TEDO</b>), <b>12 equal division of 2/1</b> (<b>12-ED2</b>), <b>12 equal division of the octave</b> (<b>12-EDO</b>); informally abbreviated to <b>twelve equal</b> or referred to as <b>equal temperament</b> without qualification in <a href="/wiki/Western_world" title="Western world">Western countries</a>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">It is probably not an accident that as tuning in European music became increasingly close to 12ET, the style of the music changed so that the defects of 12ET appeared less evident, though it should be borne in mind that in actual performance these are often reduced by the tuning adaptations of the performers.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Xenharmonic Wiki source removed – sources based on user-generated content are not reliable (May 2023)">citation needed</span></a></i>]</sup></span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Citations">Citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=26" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-FOOTNOTEvon_HelmholtzEllis1885493–511-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEvon_HelmholtzEllis1885493–511_2-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_HelmholtzEllis1885">von Helmholtz & Ellis 1885</a>, pp. 493–511.</span> </li> <li id="cite_note-FOOTNOTEKuttner1975163-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEKuttner1975163_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEKuttner1975163_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKuttner1975">Kuttner 1975</a>, p. 163.</span> </li> <li id="cite_note-FOOTNOTEKuttner1975200-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEKuttner1975200_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEKuttner1975200_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKuttner1975">Kuttner 1975</a>, p. 200.</span> </li> <li id="cite_note-FOOTNOTERobinson1980vii-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTERobinson1980vii_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFRobinson1980">Robinson 1980</a>, p. vii: Chu-Tsaiyu the first formulator of the mathematics of "equal temperament" anywhere in the world</span> </li> <li id="cite_note-FOOTNOTENeedhamLingRobinson1962221-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-FOOTNOTENeedhamLingRobinson1962221_6-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFNeedhamLingRobinson1962">Needham, Ling & Robinson 1962</a>, p. 221.</span> </li> <li id="cite_note-FOOTNOTEKwang-chih_ChangPingfang_XuLiancheng_Lu2005140-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKwang-chih_ChangPingfang_XuLiancheng_Lu2005140_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKwang-chih_ChangPingfang_XuLiancheng_Lu2005">Kwang-chih Chang, Pingfang Xu & Liancheng Lu 2005</a>, p. 140.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGoodmanLien2009" class="citation journal cs1">Goodman, Howard L.; Lien, Y. Edmund (April 2009). "A Third Century AD Chinese System of Di-Flute Temperament: Matching Ancient Pitch-Standards and Confronting Modal Practice". <i><a href="/wiki/The_Galpin_Society_Journal" class="mw-redirect" title="The Galpin Society Journal">The Galpin Society Journal</a></i>. <b>62</b>. Galpin Society: 7. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/20753625">20753625</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Galpin+Society+Journal&rft.atitle=A+Third+Century+AD+Chinese+System+of+Di-Flute+Temperament%3A+Matching+Ancient+Pitch-Standards+and+Confronting+Modal+Practice&rft.volume=62&rft.pages=7&rft.date=2009-04&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F20753625%23id-name%3DJSTOR&rft.aulast=Goodman&rft.aufirst=Howard+L.&rft.au=Lien%2C+Y.+Edmund&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBarbour200455–56-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBarbour200455–56_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBarbour2004">Barbour 2004</a>, pp. 55–56.</span> </li> <li id="cite_note-FOOTNOTEHart1998-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHart1998_10-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHart1998">Hart 1998</a>.</span> </li> <li id="cite_note-FOOTNOTENeedhamRonan1978385-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENeedhamRonan1978385_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNeedhamRonan1978">Needham & Ronan 1978</a>, p. 385.</span> </li> <li id="cite_note-FOOTNOTECho2010-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTECho2010_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTECho2010_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFCho2010">Cho 2010</a>.</span> </li> <li id="cite_note-FOOTNOTELienhard1997-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTELienhard1997_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTELienhard1997_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFLienhard1997">Lienhard 1997</a>.</span> </li> <li id="cite_note-FOOTNOTEChristensen2002205-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEChristensen2002205_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEChristensen2002205_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFChristensen2002">Christensen 2002</a>, p. 205.</span> </li> <li id="cite_note-FOOTNOTEBarbour20047-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBarbour20047_15-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBarbour2004">Barbour 2004</a>, p. 7.</span> </li> <li id="cite_note-FOOTNOTEvon_HelmholtzEllis1885258-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEvon_HelmholtzEllis1885258_16-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_HelmholtzEllis1885">von Helmholtz & Ellis 1885</a>, p. 258.</span> </li> <li id="cite_note-FOOTNOTETrue201861–74-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTETrue201861–74_17-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFTrue2018">True 2018</a>, pp. 61–74.</span> </li> <li id="cite_note-FOOTNOTEGalilei158480–89-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGalilei158480–89_18-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGalilei1584">Galilei 1584</a>, pp. 80–89.</span> </li> <li id="cite_note-FOOTNOTEBarbour20048-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBarbour20048_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBarbour2004">Barbour 2004</a>, p. 8.</span> </li> <li id="cite_note-FOOTNOTEde_Gorzanis1981-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEde_Gorzanis1981_20-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFde_Gorzanis1981">de Gorzanis 1981</a>.</span> </li> <li id="cite_note-appstate.edu-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-appstate.edu_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110725182053/http://www.library.appstate.edu/music/lute/16index/tspi07a.html">"Spinacino 1507a: Thematic Index"</a>. Appalachian State University. Archived from <a rel="nofollow" class="external text" href="http://www.library.appstate.edu/music/lute/16index/tspi07a.html">the original</a> on 2011-07-25<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-06-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Spinacino+1507a%3A+Thematic+Index&rft.pub=Appalachian+State+University&rft_id=http%3A%2F%2Fwww.library.appstate.edu%2Fmusic%2Flute%2F16index%2Ftspi07a.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEWilson1997-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEWilson1997_22-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWilson1997">Wilson 1997</a>.</span> </li> <li id="cite_note-FOOTNOTEJorgens1986-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEJorgens1986_23-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFJorgens1986">Jorgens 1986</a>.</span> </li> <li id="cite_note-Scintille-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Scintille_24-0">^</a></b></span> <span class="reference-text">"Scintille de musica", (Brescia, 1533), p. 132</span> </li> <li id="cite_note-FOOTNOTECohen1987471–488-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECohen1987471–488_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCohen1987">Cohen 1987</a>, pp. 471–488.</span> </li> <li id="cite_note-FOOTNOTECho2003223-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECho2003223_26-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCho2003">Cho 2003</a>, p. 223.</span> </li> <li id="cite_note-FOOTNOTECho2003222-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTECho2003222_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFCho2003">Cho 2003</a>, p. 222.</span> </li> <li id="cite_note-FOOTNOTEChristensen2002207-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEChristensen2002207_28-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFChristensen2002">Christensen 2002</a>, p. 207.</span> </li> <li id="cite_note-FOOTNOTEChristensen200278-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEChristensen200278_29-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFChristensen2002">Christensen 2002</a>, p. 78.</span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Lindley, Mark. <i>Lutes, Viols, Temperaments</i>. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-28883-5" title="Special:BookSources/978-0-521-28883-5">978-0-521-28883-5</a></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Vm7 6214</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Andreas Werckmeister (1707), <span title="German-language text"><i lang="de">Musicalische Paradoxal-Discourse</i></span></span> </li> <li id="cite_note-FOOTNOTEDi_Veroli2009140,_142_and_256-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDi_Veroli2009140,_142_and_256_34-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDi_Veroli2009">Di Veroli 2009</a>, pp. 140, 142 and 256.</span> </li> <li id="cite_note-FOOTNOTEMoody2003-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMoody2003_35-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMoody2003">Moody 2003</a>.</span> </li> <li id="cite_note-FOOTNOTEvon_HelmholtzEllis1885548-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEvon_HelmholtzEllis1885548_36-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFvon_HelmholtzEllis1885">von Helmholtz & Ellis 1885</a>, p. 548.</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhite1946" class="citation book cs1">White, William Braid (1946) [1917]. <i>Piano Tuning and Allied Arts</i> (5th enlarged ed.). Boston, Massachusetts: Tuners Supply Co. p. 68.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Piano+Tuning+and+Allied+Arts&rft.place=Boston%2C+Massachusetts&rft.pages=68&rft.edition=5th+enlarged&rft.pub=Tuners+Supply+Co.&rft.date=1946&rft.aulast=White&rft.aufirst=William+Braid&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEBarbour200455–78-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBarbour200455–78_38-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBarbour2004">Barbour 2004</a>, pp. 55–78.</span> </li> <li id="cite_note-FOOTNOTEPartch1979134-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEPartch1979134_39-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFPartch1979">Partch 1979</a>, p. 134.</span> </li> <li id="cite_note-FOOTNOTENeedhamLingRobinson1962170–171-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTENeedhamLingRobinson1962170–171_40-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFNeedhamLingRobinson1962">Needham, Ling & Robinson 1962</a>, pp. 170–171.</span> </li> <li id="cite_note-FOOTNOTEBenwardSaker200356-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEBenwardSaker200356_41-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFBenwardSaker2003">Benward & Saker 2003</a>, p. 56.</span> </li> </ol></div></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=27" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin refbegin-hanging-indents refbegin-columns references-column-width" style="column-width: 30em"> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarbour2004" class="citation book cs1">Barbour, James Murray (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=G-pG77pmlp4C&pg=PA55"><i>Tuning and Temperament: A Historical Survey</i></a>. Courier Corporation. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-43406-3" title="Special:BookSources/978-0-486-43406-3"><bdi>978-0-486-43406-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Tuning+and+Temperament%3A+A+Historical+Survey&rft.pub=Courier+Corporation&rft.date=2004&rft.isbn=978-0-486-43406-3&rft.aulast=Barbour&rft.aufirst=James+Murray&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DG-pG77pmlp4C%26pg%3DPA55&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBenwardSaker2003" class="citation book cs1">Benward, Bruce; Saker, Marilyn (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qkYJAQAAMAAJ&pg=PA56"><i>Music in Theory and Practice</i></a>. Vol. 1. McGraw-Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-07-294261-3" title="Special:BookSources/978-0-07-294261-3"><bdi>978-0-07-294261-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Music+in+Theory+and+Practice&rft.pub=McGraw-Hill&rft.date=2003&rft.isbn=978-0-07-294261-3&rft.aulast=Benward&rft.aufirst=Bruce&rft.au=Saker%2C+Marilyn&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqkYJAQAAMAAJ%26pg%3DPA56&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2003" class="citation book cs1">Cho, Gene J. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lXoYAQAAIAAJ"><i>The Discovery of Musical Equal Temperament in China and Europe in the Sixteenth Century</i></a>. E. Mellen Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7734-6941-9" title="Special:BookSources/978-0-7734-6941-9"><bdi>978-0-7734-6941-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Discovery+of+Musical+Equal+Temperament+in+China+and+Europe+in+the+Sixteenth+Century&rft.pub=E.+Mellen+Press&rft.date=2003&rft.isbn=978-0-7734-6941-9&rft.aulast=Cho&rft.aufirst=Gene+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlXoYAQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCho2010" class="citation journal cs1">Cho, Gene J. (2010). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120315013436/http://en.cnki.com.cn/Article_en/CJFDTOTAL-XHYY201002002.htm">"The Significance of the Discovery of the Musical Equal Temperament in the Cultural History"</a>. <i>Journal of Xinghai Conservatory of Music</i>. Archived from <a rel="nofollow" class="external text" href="http://en.cnki.com.cn/Article_en/CJFDTOTAL-XHYY201002002.htm">the original</a> on 2012-03-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-04-06</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Xinghai+Conservatory+of+Music&rft.atitle=The+Significance+of+the+Discovery+of+the+Musical+Equal+Temperament+in+the+Cultural+History&rft.date=2010&rft.aulast=Cho&rft.aufirst=Gene+J.&rft_id=http%3A%2F%2Fen.cnki.com.cn%2FArticle_en%2FCJFDTOTAL-XHYY201002002.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristensen2002" class="citation book cs1">Christensen, Thomas (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ioa9uW2t7AQC"><i>The Cambridge History of Western Music Theory</i></a>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-62371-1" title="Special:BookSources/978-0-521-62371-1"><bdi>978-0-521-62371-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Cambridge+History+of+Western+Music+Theory&rft.pub=Cambridge+University+Press&rft.date=2002&rft.isbn=978-0-521-62371-1&rft.aulast=Christensen&rft.aufirst=Thomas&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dioa9uW2t7AQC&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen1987" class="citation journal cs1">Cohen, H. Floris (1987). "Simon Stevin's equal division of the octave". <i>Annals of Science</i>. <b>44</b> (5). Informa UK Limited: 471–488. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00033798700200311">10.1080/00033798700200311</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-3790">0003-3790</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+Science&rft.atitle=Simon+Stevin%27s+equal+division+of+the+octave&rft.volume=44&rft.issue=5&rft.pages=471-488&rft.date=1987&rft_id=info%3Adoi%2F10.1080%2F00033798700200311&rft.issn=0003-3790&rft.aulast=Cohen&rft.aufirst=H.+Floris&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFde_Gorzanis1981" class="citation book cs1 cs1-prop-foreign-lang-source">de Gorzanis, G. (1981). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=W7w5AQAAIAAJ"><i>Intabolatura di liuto: I-III</i></a>. Intabolatura di liuto: I-III (in Italian). Minkoff. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-2-8266-0721-2" title="Special:BookSources/978-2-8266-0721-2"><bdi>978-2-8266-0721-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Intabolatura+di+liuto%3A+I-III&rft.series=Intabolatura+di+liuto%3A+I-III&rft.pub=Minkoff&rft.date=1981&rft.isbn=978-2-8266-0721-2&rft.aulast=de+Gorzanis&rft.aufirst=G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DW7w5AQAAIAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDi_Veroli2009" class="citation book cs1">Di Veroli, Claudio (2009). <i>Unequal Temperaments: Theory, History and Practice</i> (2nd ed.). Bray, Ireland: Bray Baroque.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Unequal+Temperaments%3A+Theory%2C+History+and+Practice&rft.place=Bray%2C+Ireland&rft.edition=2nd&rft.pub=Bray+Baroque&rft.date=2009&rft.aulast=Di+Veroli&rft.aufirst=Claudio&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGalilei1584" class="citation book cs1"><a href="/wiki/Vincenzo_Galilei" title="Vincenzo Galilei">Galilei, Vincenzo</a> (1584). <a rel="nofollow" class="external text" href="https://www.scribd.com/document/44080020/Fronimo-Dialogo-di-Vincentio-Galilei"><i>Il Fronimo</i></a>. Venice: <a href="/wiki/Girolamo_Scotto" title="Girolamo Scotto">Girolamo Scotto</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Il+Fronimo&rft.place=Venice&rft.pub=Girolamo+Scotto&rft.date=1584&rft.aulast=Galilei&rft.aufirst=Vincenzo&rft_id=https%3A%2F%2Fwww.scribd.com%2Fdocument%2F44080020%2FFronimo-Dialogo-di-Vincentio-Galilei&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHart1998" class="citation cs2">Hart, Roger (1998), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120305174554/http://uts.cc.utexas.edu/~rhart/papers/quantifying.html"><i>Quantifying Ritual: Political Cosmology, Courtly Music, and Precision Mathematics in Seventeenth-Century China</i></a>, Departments of History and Asian Studies, University of Texas, Austin, archived from <a rel="nofollow" class="external text" href="http://uts.cc.utexas.edu/~rhart/papers/quantifying.html">the original</a> on 2012-03-05<span class="reference-accessdate">, retrieved <span class="nowrap">2012-03-20</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Quantifying+Ritual%3A+Political+Cosmology%2C+Courtly+Music%2C+and+Precision+Mathematics+in+Seventeenth-Century+China&rft.pub=Departments+of+History+and+Asian+Studies%2C+University+of+Texas%2C+Austin&rft.date=1998&rft.aulast=Hart&rft.aufirst=Roger&rft_id=http%3A%2F%2Futs.cc.utexas.edu%2F~rhart%2Fpapers%2Fquantifying.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJorgens1986" class="citation book cs1">Jorgens, Elise Bickford (1986). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=yTh5zQEACAAJ"><i>English Song, 1600-1675: Facsimiles of Twenty-six Manuscripts and an Edition of the Texts</i></a>. Garland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780824082314" title="Special:BookSources/9780824082314"><bdi>9780824082314</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=English+Song%2C+1600-1675%3A+Facsimiles+of+Twenty-six+Manuscripts+and+an+Edition+of+the+Texts&rft.pub=Garland&rft.date=1986&rft.isbn=9780824082314&rft.aulast=Jorgens&rft.aufirst=Elise+Bickford&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DyTh5zQEACAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKuttner1975" class="citation journal cs1">Kuttner, Fritz A. (May 1975). <a rel="nofollow" class="external text" href="https://sites.evergreen.edu/thewordintheear-fall/wp-content/uploads/sites/316/2014/09/ChineseEqualTemperament.pdf">"Prince Chu Tsai-Yü's Life and Work: A Re-Evaluation of His Contribution to Equal Temperament Theory"</a> <span class="cs1-format">(PDF)</span>. <i>Ethnomusicology</i>. <b>19</b> (2): 163–206. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F850355">10.2307/850355</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/850355">850355</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ethnomusicology&rft.atitle=Prince+Chu+Tsai-Y%C3%BC%27s+Life+and+Work%3A+A+Re-Evaluation+of+His+Contribution+to+Equal+Temperament+Theory&rft.volume=19&rft.issue=2&rft.pages=163-206&rft.date=1975-05&rft_id=info%3Adoi%2F10.2307%2F850355&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F850355%23id-name%3DJSTOR&rft.aulast=Kuttner&rft.aufirst=Fritz+A.&rft_id=https%3A%2F%2Fsites.evergreen.edu%2Fthewordintheear-fall%2Fwp-content%2Fuploads%2Fsites%2F316%2F2014%2F09%2FChineseEqualTemperament.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKwang-chih_ChangPingfang_XuLiancheng_Lu2005" class="citation book cs1">Kwang-chih Chang; Pingfang Xu; Liancheng Lu (2005). "The eastern Zhou and the growth of regionalism". <a rel="nofollow" class="external text" href="https://books.google.com/books?id=sP-PN2StH2cC"><i>The Formation of Chinese Civilization: An Archaeological Perspective</i></a>. Xu Pingfang, Shao Wangping, Zhang Zhongpei, Wang Renxiang. Yale University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-300-09382-7" title="Special:BookSources/978-0-300-09382-7"><bdi>978-0-300-09382-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+eastern+Zhou+and+the+growth+of+regionalism&rft.btitle=The+Formation+of+Chinese+Civilization%3A+An+Archaeological+Perspective&rft.pub=Yale+University+Press&rft.date=2005&rft.isbn=978-0-300-09382-7&rft.au=Kwang-chih+Chang&rft.au=Pingfang+Xu&rft.au=Liancheng+Lu&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DsP-PN2StH2cC&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLienhard1997" class="citation web cs1">Lienhard, John H. (1997). <a rel="nofollow" class="external text" href="http://www.uh.edu/engines/epi380.htm">"Equal Temperament"</a>. <i>The Engines of Our Ingenuity</i>. University of Houston<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-10-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Engines+of+Our+Ingenuity&rft.atitle=Equal+Temperament&rft.date=1997&rft.aulast=Lienhard&rft.aufirst=John+H.&rft_id=http%3A%2F%2Fwww.uh.edu%2Fengines%2Fepi380.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoody2003" class="citation journal cs1">Moody, Richard (February 2003). "Early Equal Temperament, An Aural Perspective: Claude Montal 1836". <i>Piano Technicians Journal</i>. Kansas City.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Piano+Technicians+Journal&rft.atitle=Early+Equal+Temperament%2C+An+Aural+Perspective%3A+Claude+Montal+1836&rft.date=2003-02&rft.aulast=Moody&rft.aufirst=Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeedhamLingRobinson1962" class="citation book cs1"><a href="/wiki/Joseph_Needham" title="Joseph Needham">Needham, Joseph</a>; Ling, Wang; Robinson, Kenneth G. (1962). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=oJ9nayZZ2oEC&pg=PA221"><i>Science and Civilisation in China</i></a>. Volume 4 - Part 1. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-05802-5" title="Special:BookSources/978-0-521-05802-5"><bdi>978-0-521-05802-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Science+and+Civilisation+in+China&rft.series=Volume+4+-+Part+1&rft.pub=Cambridge+University+Press&rft.date=1962&rft.isbn=978-0-521-05802-5&rft.aulast=Needham&rft.aufirst=Joseph&rft.au=Ling%2C+Wang&rft.au=Robinson%2C+Kenneth+G.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DoJ9nayZZ2oEC%26pg%3DPA221&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeedhamRonan1978" class="citation book cs1">Needham, Joseph; Ronan, Colin A. (1978). <i>The Shorter Science and Civilisation in China</i>. Volume 4 - Part 1. Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Shorter+Science+and+Civilisation+in+China&rft.series=Volume+4+-+Part+1&rft.pub=Cambridge+University+Press&rft.date=1978&rft.aulast=Needham&rft.aufirst=Joseph&rft.au=Ronan%2C+Colin+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPartch1979" class="citation book cs1">Partch, Harry (1979). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/genesismusicacco00part"><i>Genesis of a Music</i></a></span> (2nd ed.). Da Capo Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-306-80106-X" title="Special:BookSources/0-306-80106-X"><bdi>0-306-80106-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Genesis+of+a+Music&rft.edition=2nd&rft.pub=Da+Capo+Press&rft.date=1979&rft.isbn=0-306-80106-X&rft.aulast=Partch&rft.aufirst=Harry&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgenesismusicacco00part&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobinson1980" class="citation book cs1">Robinson, Kenneth (1980). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=lYyfAAAAMAAJ"><i>A Critical Study of Chu Tsai-yü's Contribution to the Theory of Equal Temperament in Chinese Music</i></a>. Volume 9 of Sinologica Coloniensia. Wiesbaden: Steiner. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-515-02732-8" title="Special:BookSources/978-3-515-02732-8"><bdi>978-3-515-02732-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Critical+Study+of+Chu+Tsai-y%C3%BC%27s+Contribution+to+the+Theory+of+Equal+Temperament+in+Chinese+Music&rft.place=Wiesbaden&rft.series=Volume+9+of+Sinologica+Coloniensia&rft.pub=Steiner&rft.date=1980&rft.isbn=978-3-515-02732-8&rft.aulast=Robinson&rft.aufirst=Kenneth&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DlYyfAAAAMAAJ&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSethares2005" class="citation book cs1">Sethares, William A. (2005). <i>Tuning, Timbre, Spectrum, Scale</i> (2nd ed.). London: Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-85233-797-4" title="Special:BookSources/1-85233-797-4"><bdi>1-85233-797-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Tuning%2C+Timbre%2C+Spectrum%2C+Scale&rft.place=London&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=2005&rft.isbn=1-85233-797-4&rft.aulast=Sethares&rft.aufirst=William+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrue2018" class="citation journal cs1">True, Timothy (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.15385%2Fjmo.2018.9.2.2">"The Battle Between Impeccable Intonation and Maximized Modulation"</a>. <i>Musical Offerings</i>. <b>9</b> (2): 61–74. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.15385%2Fjmo.2018.9.2.2">10.15385/jmo.2018.9.2.2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Musical+Offerings&rft.atitle=The+Battle+Between+Impeccable+Intonation+and+Maximized+Modulation&rft.volume=9&rft.issue=2&rft.pages=61-74&rft.date=2018&rft_id=info%3Adoi%2F10.15385%2Fjmo.2018.9.2.2&rft.aulast=True&rft.aufirst=Timothy&rft_id=https%3A%2F%2Fdoi.org%2F10.15385%252Fjmo.2018.9.2.2&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_HelmholtzEllis1885" class="citation book cs1"><a href="/wiki/Hermann_von_Helmholtz" title="Hermann von Helmholtz">von Helmholtz, Hermann</a>; <a href="/wiki/Alexander_J._Ellis" class="mw-redirect" title="Alexander J. Ellis">Ellis, Alexander J.</a> (1885). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=GwE6AAAAIAAJ&pg=PA493"><i>On the Sensations of Tone as a Physiological Basis for the Theory of Music</i></a> (2nd ed.). London: Longmans, Green.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=On+the+Sensations+of+Tone+as+a+Physiological+Basis+for+the+Theory+of+Music&rft.place=London&rft.edition=2nd&rft.pub=Longmans%2C+Green&rft.date=1885&rft.aulast=von+Helmholtz&rft.aufirst=Hermann&rft.au=Ellis%2C+Alexander+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DGwE6AAAAIAAJ%26pg%3DPA493&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilson1997" class="citation web cs1">Wilson, John (1997). <a rel="nofollow" class="external text" href="https://diapason.xentonic.org/dp/dp049.html">"Thirty preludes in all (24) keys for lute [DP 49]"</a>. The Diapason Press<span class="reference-accessdate">. Retrieved <span class="nowrap">27 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Thirty+preludes+in+all+%2824%29+keys+for+lute+%5BDP+49%5D&rft.pub=The+Diapason+Press&rft.date=1997&rft.aulast=Wilson&rft.aufirst=John&rft_id=https%3A%2F%2Fdiapason.xentonic.org%2Fdp%2Fdp049.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3A12+equal+temperament" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading3"><h3 id="Further_reading">Further reading</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=28" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239549316"><div class="refbegin" style=""> <ul><li>Duffin, Ross W. <i>How Equal Temperament Ruined Harmony (and Why You Should Care)</i>. W.W. Norton & Company, 2007.</li> <li>Jorgensen, Owen. <i>Tuning</i>. Michigan State University Press, 1991. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-87013-290-3" title="Special:BookSources/0-87013-290-3">0-87013-290-3</a></li> <li>Khramov, Mykhaylo. "Approximation of 5-limit just intonation. Computer MIDI Modeling in Negative Systems of Equal Divisions of the Octave", <a rel="nofollow" class="external text" href="http://www.sigmap.org/Abstracts/2008/abstracts.htm"><i>Proceedings of the International Conference SIGMAP-2008</i></a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">[<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title=" Dead link tagged August 2019">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">‍</span>]</span></sup>, 26–29 July 2008, <a href="/wiki/Porto" title="Porto">Porto</a>, pp. 181–184, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-989-8111-60-9" title="Special:BookSources/978-989-8111-60-9">978-989-8111-60-9</a></li> <li>Surjodiningrat, W., Sudarjana, P.J., and Susanto, A. (1972) <i>Tone measurements of outstanding Javanese gamelans in Jogjakarta and Surakarta</i>, Gadjah Mada University Press, Jogjakarta 1972. Cited on <a rel="nofollow" class="external text" href="https://web.archive.org/web/20050127000731/http://web.telia.com/~u57011259/pelog_main.htm">https://web.archive.org/web/20050127000731/http://web.telia.com/~u57011259/pelog_main.htm</a>. Retrieved May 19, 2006.</li> <li>Stewart, P. J. (2006) "From Galaxy to Galaxy: Music of the Spheres" <a rel="nofollow" class="external autonumber" href="https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxncmFucGhpNjE4fGd4OjRhN2VjNTNhOGY1ZmRkNDA">[1]</a></li> <li><a rel="nofollow" class="external text" href="https://archive.org/stream/onsensationston01helmgoog#page/n0/mode/2up">Sensations of Tone</a> a foundational work on acoustics and the perception of sound by Hermann von Helmholtz. Especially Appendix XX: Additions by the Translator, pages 430–556, (pdf pages 451–577)]</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=12_equal_temperament&action=edit&section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="https://en.xen.wiki/w/EDO_vs_ET">Xenharmonic wiki on EDOs vs. Equal Temperaments</a></li> <li><a rel="nofollow" class="external text" href="http://www.huygens-fokker.org/index_en.html">Huygens-Fokker Foundation Centre for Microtonal Music</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20041011224640/http://www.fortunecity.com/tinpan/lennon/362/english/acoustics.htm">A.Orlandini: Music Acoustics</a></li> <li><a rel="nofollow" class="external text" href="http://digicoll.library.wisc.edu/cgi-bin/HistSciTech/HistSciTech-idx?type=turn&entity=HistSciTech001000270617&isize=M&q1=temperament">"Temperament" from <i>A supplement to Mr. Chambers's cyclopædia</i> (1753)</a></li> <li>Barbieri, Patrizio. <a rel="nofollow" class="external text" href="http://www.patriziobarbieri.it/1.htm">Enharmonic instruments and music, 1470–1900</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090215045859/http://www.patriziobarbieri.it/1.htm">Archived</a> 2009-02-15 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. (2008) Latina, Il Levante Libreria Editrice</li> <li><a rel="nofollow" class="external text" href="http://www.interdependentscience.com/music/calliopist.html">Fractal Microtonal Music</a>, <i>Jim Kukula</i>.</li> <li><a rel="nofollow" class="external text" href="https://www.academia.edu/5210832/18th_Century_Quotes_on_J.S._Bachs_Temperament">All existing 18th century quotes on J.S. Bach and temperament</a></li> <li>Dominic Eckersley: "<a rel="nofollow" class="external text" href="https://www.academia.edu/3368760/Rosetta_Revisited_Bachs_Very_Ordinary_Temperament">Rosetta Revisited: Bach's Very Ordinary Temperament</a>"</li> <li><a rel="nofollow" class="external text" href="http://home.deds.nl/~broekaert/Well%20Tempering.html">Well Temperaments, based on the Werckmeister Definition</a></li> <li><a rel="nofollow" class="external text" href="https://en.xen.wiki/images/b/b3/Zetamusic5.pdf">F<small>AVORED</small> C<small>ARDINALITIES</small> O<small>F</small> S<small>CALES</small></a> by P<small>ETER</small> B<small>UCH</small></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Musical_tunings" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Musical_tuning" title="Template:Musical tuning"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Musical_tuning" title="Template talk:Musical tuning"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Musical_tuning" title="Special:EditPage/Template:Musical tuning"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Musical_tunings" style="font-size:114%;margin:0 4em"><a href="/wiki/Musical_tuning" title="Musical tuning">Musical tunings</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Measurement</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pitch_(music)" title="Pitch (music)">Pitch</a></li> <li><a href="/wiki/Cent_(music)" title="Cent (music)">Cent</a></li> <li><a href="/wiki/Millioctave" title="Millioctave">Millioctave</a></li> <li><a href="/wiki/Savart" title="Savart">Savart</a></li> <li><a href="/wiki/Interval_(music)" title="Interval (music)">Interval</a></li> <li><a href="/wiki/Interval_ratio" title="Interval ratio">Interval ratio</a></li> <li><a href="/wiki/Pitch_class" title="Pitch class">Pitch class</a></li> <li><a href="/wiki/Consonance_and_dissonance" title="Consonance and dissonance">Consonance and dissonance</a></li> <li><a href="/wiki/List_of_pitch_intervals" title="List of pitch intervals">List of musical intervals</a></li> <li><a href="/wiki/List_of_intervals_in_5-limit_just_intonation" title="List of intervals in 5-limit just intonation">List of intervals in 5-limit just intonation</a></li> <li><a href="/wiki/List_of_meantone_intervals" title="List of meantone intervals">List of meantone intervals</a></li> <li><a href="/wiki/Microtonal_music" class="mw-redirect" title="Microtonal music">Microtone</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Just_intonation" title="Just intonation">Just intonation</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euler%E2%80%93Fokker_genus" title="Euler–Fokker genus">Euler–Fokker genus</a></li> <li><a href="/wiki/Harmonic_scale" title="Harmonic scale">Harmonic scale</a></li> <li><a href="/wiki/Harry_Partch%27s_43-tone_scale" title="Harry Partch's 43-tone scale">Harry Partch's 43-tone scale</a></li> <li><a href="/wiki/Hexany" title="Hexany">Hexany</a></li> <li><a href="/wiki/Limit_(music)" title="Limit (music)">Limit</a> <ul><li><a href="/wiki/Five-limit_tuning" title="Five-limit tuning">5-limit</a></li> <li><a href="/wiki/7-limit_tuning" title="7-limit tuning">7-limit</a></li></ul></li> <li><a href="/wiki/List_of_compositions_in_just_intonation" title="List of compositions in just intonation">List of compositions</a></li> <li><a href="/wiki/Otonality_and_Utonality" class="mw-redirect" title="Otonality and Utonality">Otonality</a></li> <li><a href="/wiki/Ptolemy%27s_intense_diatonic_scale" title="Ptolemy's intense diatonic scale">Ptolemy's intense diatonic scale</a></li> <li><a href="/wiki/Pythagorean_tuning" title="Pythagorean tuning">Pythagorean tuning</a></li> <li><a href="/wiki/Scale_of_harmonics" title="Scale of harmonics">Scale of harmonics</a></li> <li><a href="/wiki/Tonality_diamond" title="Tonality diamond">Tonality diamond</a></li> <li><a href="/wiki/Tonality_flux" title="Tonality flux">Tonality flux</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Musical_temperament" title="Musical temperament">Temperaments</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Equal_temperament" title="Equal temperament">Equal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Whole-tone_scale" title="Whole-tone scale">6-tone</a></li> <li><a class="mw-selflink selflink">12-tone</a></li> <li><a href="/wiki/15_equal_temperament" title="15 equal temperament">15-tone</a></li> <li><a href="/wiki/17_equal_temperament" title="17 equal temperament">17-tone</a></li> <li><a href="/wiki/19_equal_temperament" title="19 equal temperament">19-tone</a></li> <li><a href="/wiki/22_equal_temperament" title="22 equal temperament">22-tone</a></li> <li><a href="/wiki/23_equal_temperament" title="23 equal temperament">23-tone</a></li> <li><a href="/wiki/Quarter_tone" title="Quarter tone">24-tone</a> (<a href="/wiki/List_of_quarter_tone_pieces" title="List of quarter tone pieces">pieces</a>)</li> <li><a href="/wiki/31_equal_temperament" title="31 equal temperament">31-tone</a></li> <li><a href="/wiki/34_equal_temperament" title="34 equal temperament">34-tone</a></li> <li><a href="/wiki/41_equal_temperament" title="41 equal temperament">41-tone</a></li> <li><a href="/wiki/53_equal_temperament" title="53 equal temperament">53-tone</a></li> <li><a href="/wiki/58_equal_temperament" title="58 equal temperament">58-tone</a></li> <li><a href="/wiki/72_equal_temperament" title="72 equal temperament">72-tone</a></li> <li><a href="/wiki/96_equal_temperament" title="96 equal temperament">96-tone</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Regular_temperament" title="Regular temperament">Linear</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Meantone_temperament" title="Meantone temperament">Meantone</a> (<a href="/wiki/Quarter-comma_meantone" title="Quarter-comma meantone">quarter-comma</a>, <a href="/wiki/Septimal_meantone_temperament" title="Septimal meantone temperament">septimal</a>)</li> <li><a href="/wiki/Schismatic_temperament" title="Schismatic temperament">Schismatic</a></li> <li><a href="/wiki/Miracle_temperament" class="mw-redirect" title="Miracle temperament">Miracle</a></li> <li><a href="/wiki/Magic_temperament" title="Magic temperament">Magic</a></li> <li><a href="/wiki/Regular_diatonic_tuning" title="Regular diatonic tuning">Regular diatonic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Irregular</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><a href="/wiki/Well_temperament" title="Well temperament">Well temperament</a>/<a href="/wiki/Temperament_ordinaire" title="Temperament ordinaire">Temperament ordinaire</a> (<a href="/wiki/Kirnberger_temperament" title="Kirnberger temperament">Kirnberger</a>, <a href="/wiki/Vallotti_temperament" title="Vallotti temperament">Vallotti</a>, <a href="/wiki/Werckmeister_temperament" title="Werckmeister temperament">Werckmeister</a>, <a href="/wiki/Young_temperament" title="Young temperament">Young</a>)</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Traditional<br /> non-Western</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chinese_musicology" title="Chinese musicology">Chinese musicology</a></li> <li><a href="/wiki/Sh%C3%AD-%C3%A8r-l%C7%9C" class="mw-redirect" title="Shí-èr-lǜ">Shí-èr-lǜ</a></li> <li><a href="/wiki/Dastgah" class="mw-redirect" title="Dastgah">Dastgah</a></li> <li>Maqam <ul><li><a href="/wiki/Arabic_maqam" title="Arabic maqam">Arabic maqam</a></li> <li><a href="/wiki/Turkish_makam" title="Turkish makam">Turkish makam</a></li> <li><a href="/wiki/Mugham" title="Mugham">Mugham</a></li> <li><a href="/wiki/Muqam" title="Muqam">Muqam</a></li></ul></li> <li><a href="/wiki/Octoechos" title="Octoechos">Octoechos</a></li> <li><a href="/wiki/Pelog" title="Pelog">Pelog</a></li> <li><a href="/wiki/Raga" title="Raga">Raga</a> (<a href="/wiki/Carnatic_raga" title="Carnatic raga">Carnatic raga</a>)</li> <li><a href="/wiki/Slendro" title="Slendro">Slendro</a></li> <li><a href="/wiki/Tetrachord" title="Tetrachord">Tetrachord</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Non-octave</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/833_cents_scale" title="833 cents scale">833 cents scale</a></li> <li><a href="/wiki/A12_scale" title="A12 scale">A12 scale</a></li> <li><a href="/wiki/Alpha_scale" title="Alpha scale">Alpha scale</a></li> <li><a href="/wiki/Beta_scale" title="Beta scale">Beta scale</a></li> <li><a href="/wiki/Gamma_scale" title="Gamma scale">Gamma scale</a></li> <li><a href="/wiki/Delta_scale" title="Delta scale">Delta scale</a></li> <li><a href="/wiki/Bohlen%E2%80%93Pierce_scale" title="Bohlen–Pierce scale">Lambda scale</a> (Bohlen–Pierce)</li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐f4sdx Cached time: 20241122145039 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.422 seconds Real time usage: 4.769 seconds Preprocessor visited node count: 13991/1000000 Post‐expand include size: 190972/2097152 bytes Template argument size: 29753/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 93/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 287315/5000000 bytes Lua time usage: 0.699/10.000 seconds Lua memory usage: 15979505/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 4405.743 1 -total 70.10% 3088.535 78 Template:Audio 3.80% 167.320 11 Template:Lang 3.78% 166.563 39 Template:Sfn 3.38% 148.769 2 Template:Reflist 3.36% 147.817 1 Template:Musical_tuning 3.34% 147.258 2 Template:Navbox 3.13% 137.744 15 Template:Fix 3.11% 137.143 12 Template:Citation_needed 2.89% 127.458 6 Template:Cite_journal --> <!-- Saved in parser cache with key enwiki:pcache:idhash:3350774-0!canonical and timestamp 20241122145039 and revision id 1258631704. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=12_equal_temperament&oldid=1258631704">https://en.wikipedia.org/w/index.php?title=12_equal_temperament&oldid=1258631704</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Equal_temperaments" title="Category:Equal temperaments">Equal temperaments</a></li><li><a href="/wiki/Category:Chinese_discoveries" title="Category:Chinese discoveries">Chinese discoveries</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Pages_using_the_Phonos_extension" title="Category:Pages using the Phonos extension">Pages using the Phonos extension</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2023" title="Category:Articles with unsourced statements from May 2023">Articles with unsourced statements from May 2023</a></li><li><a href="/wiki/Category:Articles_containing_German-language_text" title="Category:Articles containing German-language text">Articles containing German-language text</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_November_2021" title="Category:Articles with unsourced statements from November 2021">Articles with unsourced statements from November 2021</a></li><li><a href="/wiki/Category:Articles_containing_Chinese-language_text" title="Category:Articles containing Chinese-language text">Articles containing Chinese-language text</a></li><li><a href="/wiki/Category:All_articles_with_specifically_marked_weasel-worded_phrases" title="Category:All articles with specifically marked weasel-worded phrases">All articles with specifically marked weasel-worded phrases</a></li><li><a href="/wiki/Category:Articles_with_specifically_marked_weasel-worded_phrases_from_May_2019" title="Category:Articles with specifically marked weasel-worded phrases from May 2019">Articles with specifically marked weasel-worded phrases from May 2019</a></li><li><a href="/wiki/Category:Articles_containing_Dutch-language_text" title="Category:Articles containing Dutch-language text">Articles containing Dutch-language text</a></li><li><a href="/wiki/Category:Articles_containing_Italian-language_text" title="Category:Articles containing Italian-language text">Articles containing Italian-language text</a></li><li><a href="/wiki/Category:Articles_containing_French-language_text" title="Category:Articles containing French-language text">Articles containing French-language text</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_May_2023" title="Category:Wikipedia articles needing clarification from May 2023">Wikipedia articles needing clarification from May 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2013" title="Category:Articles with unsourced statements from October 2013">Articles with unsourced statements from October 2013</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2011" title="Category:Articles with unsourced statements from June 2011">Articles with unsourced statements from June 2011</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2021" title="Category:Articles with unsourced statements from June 2021">Articles with unsourced statements from June 2021</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_August_2019" title="Category:Articles with dead external links from August 2019">Articles with dead external links from August 2019</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 20 November 2024, at 19:36<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=12_equal_temperament&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-jvw68","wgBackendResponseTime":122,"wgPageParseReport":{"limitreport":{"cputime":"2.422","walltime":"4.769","ppvisitednodes":{"value":13991,"limit":1000000},"postexpandincludesize":{"value":190972,"limit":2097152},"templateargumentsize":{"value":29753,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":93,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":287315,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 4405.743 1 -total"," 70.10% 3088.535 78 Template:Audio"," 3.80% 167.320 11 Template:Lang"," 3.78% 166.563 39 Template:Sfn"," 3.38% 148.769 2 Template:Reflist"," 3.36% 147.817 1 Template:Musical_tuning"," 3.34% 147.258 2 Template:Navbox"," 3.13% 137.744 15 Template:Fix"," 3.11% 137.143 12 Template:Citation_needed"," 2.89% 127.458 6 Template:Cite_journal"]},"scribunto":{"limitreport-timeusage":{"value":"0.699","limit":"10.000"},"limitreport-memusage":{"value":15979505,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBarbour2004\"] = 1,\n [\"CITEREFBenwardSaker2003\"] = 1,\n [\"CITEREFCho2003\"] = 1,\n [\"CITEREFCho2010\"] = 1,\n [\"CITEREFChristensen2002\"] = 1,\n [\"CITEREFCohen1987\"] = 1,\n [\"CITEREFDi_Veroli2009\"] = 1,\n [\"CITEREFGalilei1584\"] = 1,\n [\"CITEREFGoodmanLien2009\"] = 1,\n [\"CITEREFHart1998\"] = 1,\n [\"CITEREFJorgens1986\"] = 1,\n [\"CITEREFKuttner1975\"] = 1,\n [\"CITEREFKwang-chih_ChangPingfang_XuLiancheng_Lu2005\"] = 1,\n [\"CITEREFLienhard1997\"] = 1,\n [\"CITEREFMoody2003\"] = 1,\n [\"CITEREFNeedhamLingRobinson1962\"] = 1,\n [\"CITEREFNeedhamRonan1978\"] = 1,\n [\"CITEREFPartch1979\"] = 1,\n [\"CITEREFRobinson1980\"] = 1,\n [\"CITEREFSethares2005\"] = 1,\n [\"CITEREFTrue2018\"] = 1,\n [\"CITEREFWhite1946\"] = 1,\n [\"CITEREFWilson1997\"] = 1,\n [\"CITEREFde_Gorzanis1981\"] = 1,\n [\"CITEREFvon_HelmholtzEllis1885\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Audio\"] = 78,\n [\"Circa\"] = 2,\n [\"Citation\"] = 1,\n [\"Citation needed\"] = 12,\n [\"Cite book\"] = 16,\n [\"Cite journal\"] = 6,\n [\"Cite web\"] = 3,\n [\"Cn\"] = 1,\n [\"Dead link\"] = 1,\n [\"Efn\"] = 3,\n [\"Frac\"] = 81,\n [\"Huh?\"] = 1,\n [\"ISBN\"] = 3,\n [\"Ill\"] = 1,\n [\"Lang\"] = 11,\n [\"Math\"] = 3,\n [\"Music\"] = 10,\n [\"Musical tuning\"] = 1,\n [\"Mvar\"] = 2,\n [\"Nobr\"] = 4,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 3,\n [\"Radic\"] = 2,\n [\"Refbegin\"] = 2,\n [\"Refend\"] = 2,\n [\"Reflist\"] = 1,\n [\"See also\"] = 5,\n [\"Sfn\"] = 39,\n [\"Sfrac\"] = 70,\n [\"Short description\"] = 1,\n [\"Sub\"] = 3,\n [\"Sup\"] = 13,\n [\"Var\"] = 6,\n [\"Webarchive\"] = 1,\n [\"Who\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-f4sdx","timestamp":"20241122145039","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"12 equal temperament","url":"https:\/\/en.wikipedia.org\/wiki\/12_equal_temperament","sameAs":"http:\/\/www.wikidata.org\/entity\/Q21087560","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q21087560","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-12-07T19:40:04Z","dateModified":"2024-11-20T19:36:54Z","headline":"musical tuning system that divides an octave into 12 evenly-spaced frequencies on a logarithmic scale"}</script> </body> </html>