CINXE.COM

Search results for: thermomagnetic convection

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermomagnetic convection</title> <meta name="description" content="Search results for: thermomagnetic convection"> <meta name="keywords" content="thermomagnetic convection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermomagnetic convection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermomagnetic convection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 353</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermomagnetic convection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Thermodynamics of the Local Hadley Circulation Over Central Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Landry%20Tchambou%20Tchouongsi">Landry Tchambou Tchouongsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Appolinaire%20Derbetini%20Vondou"> Appolinaire Derbetini Vondou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Circulation" title="Circulation">Circulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reanalysis" title=" reanalysis"> reanalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic" title=" thermodynamic"> thermodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20Hadley." title=" local Hadley."> local Hadley.</a> </p> <a href="https://publications.waset.org/abstracts/158905/thermodynamics-of-the-local-hadley-circulation-over-central-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Direct Contact Ultrasound Assisted Drying of Mango Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Mendez">E. K. Mendez</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Salazar"> N. A. Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20E.%20Orrego"> C. E. Orrego</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is undoubted proof that increasing the intake of fruit lessens the risk of hypertension, coronary heart disease, stroke, and probable evidence that lowers the risk of cancer. Proper fruit drying is an excellent alternative to make their shelf-life longer, commercialization easier, and ready-to-eat healthy products or ingredients. The conventional way of drying is by hot air forced convection. However, this process step often requires a very long residence time; furthermore, it is highly energy consuming and detrimental to the product quality. Nowadays, power ultrasound (US) technic has been considered as an emerging and promising technology for industrial food processing. Most of published works dealing with drying food assisted by US have studied the effect of ultrasonic pre-treatment prior to air-drying on food and the airborne US conditions during dehydration. In this work a new approach was tested taking in to account drying time and two quality parameters of mango slices dehydrated by convection assisted by 20 KHz power US applied directly using a holed plate as product support and sound transmitting surface. During the drying of mango (Mangifera indica L.) slices (ca. 6.5 g, 0.006 m height and 0.040 m diameter), their weight was recorded every hour until final moisture content (10.0±1.0 % wet basis) was reached. After previous tests, optimization of three drying parameters - frequencies (2, 5 and 8 minutes each half-hour), air temperature (50-55-60⁰C) and power (45-70-95W)- was attempted by using a Box–Behnken design under the response surface methodology for the optimal drying time, color parameters and rehydration rate of dried samples. Assays involved 17 experiments, including a quintuplicate of the central point. Dried samples with and without US application were packed in individual high barrier plastic bags under vacuum, and then stored in the dark at 8⁰C until their analysis. All drying assays and sample analysis were performed in triplicate. US drying experimental data were fitted with nine models, among which the Verna model resulted in the best fit with R2 > 0.9999 and reduced χ2 ≤ 0.000001. Significant reductions in drying time were observed for the assays that used lower frequency and high US power. At 55⁰C, 95 watts and 2 min/30 min of sonication, 10% moisture content was reached in 211 min, as compared with 320 min for the same test without the use of US (blank). Rehydration rates (RR), defined as the ratio of rehydrated sample weight to that of dry sample and measured, was also larger than those of blanks and, in general, the higher the US power, the greater the RR. The direct contact and intermittent US treatment of mango slices used in this work improve drying rates and dried fruit rehydration ability. This technique can thus be used to reduce energy processing costs and the greenhouse gas emissions of fruit dehydration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20assisted%20drying" title="ultrasonic assisted drying">ultrasonic assisted drying</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20drying" title=" fruit drying"> fruit drying</a>, <a href="https://publications.waset.org/abstracts/search?q=mango%20slices" title=" mango slices"> mango slices</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20ultrasonic%20drying" title=" contact ultrasonic drying"> contact ultrasonic drying</a> </p> <a href="https://publications.waset.org/abstracts/31654/direct-contact-ultrasound-assisted-drying-of-mango-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alastair%20Hales">Alastair Hales</a>, <a href="https://publications.waset.org/abstracts/search?q=Xi%20Jiang"> Xi Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20fans" title="piezoelectric fans">piezoelectric fans</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20cooling" title=" low energy cooling"> low energy cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/84754/geometric-optimisation-of-piezoelectric-fan-arrays-for-low-energy-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Effect an Axial Magnetic Field in Co-rotating Flow Heated from Below</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mahfoud">B. Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bendjagloli"> A. Bendjagloli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of an axial magnetic field on the flow produced by co-rotation of the top and bottom disks in a vertical cylindrical heated from below is numerically analyzed. The governing Navier-Stokes, energy, and potential equations are solved by using the finite-volume method. It was observed that the Reynolds number is increased, the axisymmetric basic state loses stability to circular patterns of axisymmetric vortices and spiral waves. In mixed convection case the axisymmetric mode disappears giving an asymmetric mode m=1. It was also found that the primary thresholds Recr corresponding to the modes m=1and 2, increase with increasing of the Hartmann number (Ha). Finally, stability diagrams have been established according to the numerical results of this investigation. These diagrams giving the evolution of the primary thresholds as a function of the Hartmann number for various values of the Richardson number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title="bifurcation">bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=co-rotating%20end%20disks" title=" co-rotating end disks"> co-rotating end disks</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20diagrams" title=" stability diagrams"> stability diagrams</a>, <a href="https://publications.waset.org/abstracts/search?q=vortices" title=" vortices"> vortices</a> </p> <a href="https://publications.waset.org/abstracts/37590/effect-an-axial-magnetic-field-in-co-rotating-flow-heated-from-below" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Swirling Flows with Heat Transfer in a Cylindrical under Axial Magnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mahfoud">B. Mahfoud</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Harouz"> R. Harouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work examine numerically the effect of axial magnetic field on mixed convection through a cylindrical cavity, filled with a liquid metal and having a rotating top and bottom disks. Effects of Richardson number (Ri = 0, 0.5, 1, and 2) and Hartman number (Ha = 0, 5, 10, and 20) on temperature and flow fields were analyzed. The basic state of this system is steady and axisymmetric, when the counter-rotation is sufficiently large, producing a free shear layer. This shear layer is unstable and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves and steady states with an azimuthal wavenumber of 2. Mixed modes and azimuthal wavenumber of 3 are also found with increasing Hartmann number. The stability diagram (Recr-Ha) corresponding to the axisymmetric-three-dimensional transition for increasing values of the axial magnetic field is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axisymmetric" title="axisymmetric">axisymmetric</a>, <a href="https://publications.waset.org/abstracts/search?q=counter-rotating" title=" counter-rotating"> counter-rotating</a>, <a href="https://publications.waset.org/abstracts/search?q=instabilities" title=" instabilities"> instabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=wavenumber" title=" wavenumber"> wavenumber</a> </p> <a href="https://publications.waset.org/abstracts/16995/swirling-flows-with-heat-transfer-in-a-cylindrical-under-axial-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theddeus%20T.%20Akano">Theddeus T. Akano</a>, <a href="https://publications.waset.org/abstracts/search?q=Omotayo%20A.%20Fakinlede"> Omotayo A. Fakinlede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modelling of physical phenomena, such as the earth’s free oscillations, the vibration of strings, the interaction of atomic particles, or the steady state flow in a bar give rise to Sturm-Liouville (SL) eigenvalue problems. The boundary applications of some systems like the convection-diffusion equation, electromagnetic and heat transfer problems requires the combination of Dirichlet and Neumann boundary conditions. Hence, the incorporation of Robin boundary condition in the analyses of Sturm-Liouville problem. This paper deals with the computation of the eigenvalues and eigenfunction of generalized Sturm-Liouville problems with Robin boundary condition using the finite element method. Numerical solutions of classical Sturm–Liouville problems are presented. The results show an agreement with the exact solution. High results precision is achieved with higher number of elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sturm-Liouville%20problem" title="Sturm-Liouville problem">Sturm-Liouville problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20boundary%20condition" title=" Robin boundary condition"> Robin boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue%20problems" title=" eigenvalue problems"> eigenvalue problems</a> </p> <a href="https://publications.waset.org/abstracts/37320/numerical-computation-of-sturm-liouville-problem-with-robin-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Sidharta">William Sidharta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Tu%20Lu"> Chin-Tu Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX%20simulation" title="CFX simulation">CFX simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20UV%20lamp" title=" fluorescent UV lamp"> fluorescent UV lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=lamp%20tube%20reflector" title=" lamp tube reflector"> lamp tube reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light "> UV light </a> </p> <a href="https://publications.waset.org/abstracts/25442/reflector-arrangement-effect-on-ultraviolet-lamp-performance-by-cfx-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han-Taw%20Chen">Han-Taw Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hsiang%20Lin"> Tzu-Hsiang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Hou%20Lai"> Chung-Hou Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20method" title="inverse method">inverse method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20characteristics" title=" heat transfer characteristics"> heat transfer characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=plate-fin%20heat%20sink" title=" plate-fin heat sink"> plate-fin heat sink</a> </p> <a href="https://publications.waset.org/abstracts/25245/study-of-natural-convection-heat-transfer-of-plate-fin-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dara%20Singh">Dara Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Keikhosrow%20Firouzbakhsh"> Keikhosrow Firouzbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Taghi%20Ahmadian"> Mohammad Taghi Ahmadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-heat" title="bio-heat">bio-heat</a>, <a href="https://publications.waset.org/abstracts/search?q=boussinesq" title=" boussinesq"> boussinesq</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=eye" title=" eye"> eye</a> </p> <a href="https://publications.waset.org/abstracts/60991/human-intraocular-thermal-field-in-action-with-different-boundary-conditions-considering-aqueous-humor-and-vitreous-humor-fluid-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Numerical and Experimental Study of Heat Transfer Enhancement with Metal Foams and Ultrasounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Slimani">L. Slimani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bousri"> A. Bousri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamadouche"> A. Hamadouche</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Hamed"> H. Ben Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this experimental and numerical study is to analyze the effects of acoustic streaming generated by 40 kHz ultrasonic waves on heat transfer in forced convection, with and without 40 PPI aluminum metal foam. Preliminary dynamic and thermal studies were done with COMSOL Multiphase, to see heat transfer enhancement degree by inserting a 40PPI metal foam (10 &times; 2 &times; 3 cm) on a heat sink, after having determined experimentally its permeability and Forchheimer&#39;s coefficient. The results obtained numerically are in accordance with those obtained experimentally, with an enhancement factor of 205% for a velocity of 0.4 m/s compared to an empty channel. The influence of 40 kHz ultrasound on heat transfer was also tested with and without metallic foam. Results show a remarkable increase in Nusselt number in an empty channel with an enhancement factor of 37,5%, while no influence of ultrasound on heat transfer in metal foam presence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20streaming" title="acoustic streaming">acoustic streaming</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancing%20heat%20transfer" title=" enhancing heat transfer"> enhancing heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=laminar%20flow" title=" laminar flow"> laminar flow</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20foam" title=" metal foam"> metal foam</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/135365/numerical-and-experimental-study-of-heat-transfer-enhancement-with-metal-foams-and-ultrasounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syukri%20Himran">Syukri Himran</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustan%20Taraka"> Rustan Taraka</a>, <a href="https://publications.waset.org/abstracts/search?q=Anto%20Duma"> Anto Duma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent" title="latent">latent</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible" title=" sensible"> sensible</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin-wax" title=" paraffin-wax"> paraffin-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction" title=" conduction"> conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/35962/an-analysis-on-thermal-energy-storage-in-paraffin-wax-using-tube-array-on-a-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Boulemtafes-Boukadoum">Amel Boulemtafes-Boukadoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Benzaoui"> Ahmed Benzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title="solar air heater">solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20roughness" title=" artificial roughness"> artificial roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/29694/heat-and-flow-analysis-of-solar-air-heaters-with-artificial-roughness-on-the-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Disu">A. B. Disu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dada"> M. S. Dada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20transform%20method" title="differential transform method">differential transform method</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20free%20convection" title=" MHD free convection"> MHD free convection</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20dimensional%20radiation" title=" two dimensional radiation"> two dimensional radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20wavy%20walls" title=" two wavy walls"> two wavy walls</a> </p> <a href="https://publications.waset.org/abstracts/27813/effects-of-variable-viscosity-on-radiative-mhd-flow-in-a-porous-medium-between-twovertical-wavy-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuar%20Ishak">Anuar Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20solutions" title="dual solutions">dual solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/17929/stagnation-point-flow-towards-a-stretchingshrinking-sheet-in-a-nanofluid-a-stability-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubham%20Jaiswal">Shubham Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20porous%20media%20equation" title="nonlinear porous media equation">nonlinear porous media equation</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted%20Jacobi%20polynomials" title=" shifted Jacobi polynomials"> shifted Jacobi polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20matrix" title=" operational matrix"> operational matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20collocation%20method" title=" spectral collocation method"> spectral collocation method</a> </p> <a href="https://publications.waset.org/abstracts/80603/numerical-solution-of-porous-media-equation-using-jacobi-operational-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Physicochemical Characteristics and Evaluation of Main Volatile Compounds of Fresh and Dehydrated Mango</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Terezinha%20Santos%20Leite%20Neta">Maria Terezinha Santos Leite Neta</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B4nica%20Silva%20de%20Jesus"> Mônica Silva de Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Caroline%20Santos%20Araujo"> Hannah Caroline Santos Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Donizete%20Dutra%20Sandes"> Rafael Donizete Dutra Sandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Anne%20Ribeiro%20Dos%20Santos"> Raquel Anne Ribeiro Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Narain"> Narendra Narain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mango is one of the most consumed and appreciated fruits in the world, mainly due to its peculiar and characteristic aroma. Since the fruit is perishable, it requires conservation methods to prolong its shelf life. Mango cubes were dehydrated at 40°C, 50°C and 60°C and by lyophilization, and the effect of these processes was investigated on the physicochemical characteristics (color and texture) of the products and monitoring of the main volatile compounds for the mango aroma. Volatile compounds were extracted by the SPME technique and analyzed in GC-MS system. Drying temperature at 60°C and lyophilization showed higher efficiency in retention of main volatile compounds, being 63.93% and 60.32% of the total concentration present in the fresh pulp, respectively. The freeze-drying process also presented features closer to the fresh mango in relation to color and texture, which contributes to greater acceptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mango" title="mango">mango</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze%20drying" title=" freeze drying"> freeze drying</a>, <a href="https://publications.waset.org/abstracts/search?q=convection%20drying" title=" convection drying"> convection drying</a>, <a href="https://publications.waset.org/abstracts/search?q=aroma" title=" aroma"> aroma</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/183064/physicochemical-characteristics-and-evaluation-of-main-volatile-compounds-of-fresh-and-dehydrated-mango" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Karimzadeh%20Fard"> Afshin Karimzadeh Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavity" title="cavity">cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=wavy%20wall" title=" wavy wall"> wavy wall</a> </p> <a href="https://publications.waset.org/abstracts/16580/numerical-investigation-of-the-effect-of-number-of-waves-on-heat-transfer-in-a-wavy-wall-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Numerical Solutions of an Option Pricing Rainfall Derivatives Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clarinda%20Vitorino%20Nhangumbe">Clarinda Vitorino Nhangumbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Erc%C3%ADlia%20Sousa"> Ercília Sousa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather derivatives are financial products used to cover non catastrophic weather events with a weather index as the underlying asset. The rainfall weather derivative pricing model is modeled based in the assumption that the rainfall dynamics follows Ornstein-Uhlenbeck process, and the partial differential equation approach is used to derive the convection-diffusion two dimensional time dependent partial differential equation, where the spatial variables are the rainfall index and rainfall depth. To compute the approximation solutions of the partial differential equation, the appropriate boundary conditions are suggested, and an explicit numerical method is proposed in order to deal efficiently with the different choices of the coefficients involved in the equation. Being an explicit numerical method, it will be conditionally stable, then the stability region of the numerical method and the order of convergence are discussed. The model is tested for real precipitation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20differences%20method" title="finite differences method">finite differences method</a>, <a href="https://publications.waset.org/abstracts/search?q=ornstein-uhlenbeck%20process" title=" ornstein-uhlenbeck process"> ornstein-uhlenbeck process</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equations%20approach" title=" partial differential equations approach"> partial differential equations approach</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20derivatives" title=" rainfall derivatives"> rainfall derivatives</a> </p> <a href="https://publications.waset.org/abstracts/169674/numerical-solutions-of-an-option-pricing-rainfall-derivatives-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Thiers">Nicolas Thiers</a>, <a href="https://publications.waset.org/abstracts/search?q=Romain%20Gers"> Romain Gers</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Skurtys"> Olivier Skurtys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20numerical%20simulation" title="direct numerical simulation">direct numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20thermal%20perturbations" title=" localized thermal perturbations"> localized thermal perturbations</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20differentially-heated%20cavity" title=" rectangular differentially-heated cavity"> rectangular differentially-heated cavity</a> </p> <a href="https://publications.waset.org/abstracts/109171/heat-transfer-enhancement-by-localized-time-varying-thermal-perturbations-at-hot-and-cold-walls-in-a-rectangular-differentially-heated-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20Eda%20Akyurek">Feyza Eda Akyurek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin"> Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Gelis"> Kadir Gelis</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyuphan%20Manay"> Eyuphan Manay</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbulent forced convection heat transfer and pressure drop characteristics of Al<sub>2</sub>O<sub>3</sub>&ndash;water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulators" title="turbulators">turbulators</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title=" nanofluids"> nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a> </p> <a href="https://publications.waset.org/abstracts/53841/thermal-performance-analysis-of-nanofluids-in-a-concetric-heat-exchanger-equipped-with-turbulators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Uddin">M. J. Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rahman"> M. M. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=semicircular-annulus" title=" semicircular-annulus"> semicircular-annulus</a>, <a href="https://publications.waset.org/abstracts/search?q=nonhomogeneous%20dynamic%20model" title=" nonhomogeneous dynamic model"> nonhomogeneous dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73335/numerical-simulation-of-convective-flow-of-nanofluids-with-an-oriented-magnetic-field-in-a-half-circular-annulus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%20Bhargavi">D Bhargavi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharath%20Kumar%20Reddy"> J. Sharath Kumar Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, <em>Da</em>, Peclet number, <em>Pe</em>, Brinkman number, <em>Br</em> and a porous fraction <em>&gamma;<sub>p</sub></em> on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title="porous material">porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20partially%20filled%20with%20a%20porous%20material" title=" channel partially filled with a porous material"> channel partially filled with a porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20conduction" title=" axial conduction"> axial conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dissipation" title=" viscous dissipation"> viscous dissipation</a> </p> <a href="https://publications.waset.org/abstracts/114671/effect-of-viscous-dissipation-and-axial-conduction-in-thermally-developing-region-of-the-channel-partially-filled-with-a-porous-material-subjected-to-constant-wall-heat-flux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Fouling Mitigation Using Helical Baffle Heat Exchangers and Comparative Analysis Using HTRI Xchanger Suite® Educational Software </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20P.%20Chadayamuri">Kiran P. Chadayamuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Saransh%20Bagdi"> Saransh Bagdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat exchangers are devices used to transfer heat from one fluid to another via convection and conduction. The need for effective heat transfer has made their presence vital in hundreds of industries including petroleum refineries, petrochemical plants, fertiliser plants and pharmaceutical companies. Fouling has been one of the major problems hindering efficient transfer of thermal energy in heat exchangers. Several design changes have been coined for fighting fouling. A recent development involves using helical baffles in place of conventional segmented baffles in shell and tube heat exchangers. The aim of this paper is to understand the advantages of helical baffle exchangers, how they aid in fouling mitigation and its corresponding limitations. A comparative analysis was conducted between a helical baffle heat exchanger and a conventional segmented baffle heat exchanger using HTRI Xchanger Suite® Educational software and conclusions were drawn to study how the heat transfer process differs in the two cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchangers" title=" heat exchangers"> heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20mitigation" title=" fouling mitigation"> fouling mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20baffles" title=" helical baffles"> helical baffles</a> </p> <a href="https://publications.waset.org/abstracts/49858/fouling-mitigation-using-helical-baffle-heat-exchangers-and-comparative-analysis-using-htri-xchanger-suite-educational-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Transient/Steady Natural Convective Flow of Reactive Viscous Fluid in Vertical Porous Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20K.%20Samaila">Ahmad K. Samaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20K.%20Jha"> Basant K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effects of suction/injection of transient/steady natural convection flow of reactive viscous fluid in a vertical porous pipe. The mathematical model capturing the time dependent flow of viscous reactive fluid is solved using implicit finite difference method while the corresponding steady state model is solved using regular perturbation technique. Results of analytical and numerical solutions are reported for various parametric conditions to illustrate special features of the solutions. The coefficient of skin friction and rate of heat transfer are obtained and illustrated graphically. The numerical solution is shown to be in excellent agreement with the closed form analytical solution. It is interesting to note that time required to reach steady state is higher in case of injection in comparison to suction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20pipe" title="porous pipe">porous pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20viscous%20fluid" title=" reactive viscous fluid"> reactive viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20natural-convective%20flow" title=" transient natural-convective flow"> transient natural-convective flow</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a> </p> <a href="https://publications.waset.org/abstracts/14191/transientsteady-natural-convective-flow-of-reactive-viscous-fluid-in-vertical-porous-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Optimization of Floor Heating System in the Incompressible Turbulent Flow Using Constructal Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Farahmandfar">Karim Farahmandfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidolah%20Izadi"> Hamidolah Izadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Rezaei"> Mohammadreza Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ardali"> Amin Ardali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Goshtasbi%20Rad"> Ebrahim Goshtasbi Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Khosro%20Jafarpoor"> Khosro Jafarpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistics illustrates that the higher amount of annual energy consumption is related to surmounting the demand in buildings. Therefore, it is vital to economize the energy consumption and also find the solution with regard to this issue. One of the systems for the sake of heating the building is floor heating. As a matter of fact, floor heating performance is based on convection and radiation. Actually, in addition to creating a favorable heating condition, this method leads to energy saving. It is the goal of this article to outline the constructal theory and introduce the optimization method in branch networks for floor heating. There are several steps in order to gain this purpose. First of all, the pressure drop through the two points of the network is calculated. This pressure drop is as a function of pipes diameter and other parameters. After that, the amount of heat transfer is determined. Consequently, as a result of the combination of these two functions, the final function will be determined. It is necessary to mention that flow is laminar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constructal%20theory" title="constructal theory">constructal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20heating%20system" title=" floor heating system"> floor heating system</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a> </p> <a href="https://publications.waset.org/abstracts/54375/optimization-of-floor-heating-system-in-the-incompressible-turbulent-flow-using-constructal-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisam%20K.%20Hussam">Wisam K. Hussam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alfeeli"> Ali Alfeeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gergory%20J.%20Sheard"> Gergory J. Sheard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title="photovoltaic cell">photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title=" heat sink"> heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/114166/efficiency-enhancement-of-photovoltaic-panels-using-an-optimised-air-cooled-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Theoretical Study of Flexible Edge Seals for Vacuum Glazing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farid%20Arya">Farid Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Trevor%20Hyde"> Trevor Hyde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20edge%20seal" title="flexible edge seal">flexible edge seal</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20pillar" title=" support pillar"> support pillar</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20glazing" title=" vacuum glazing"> vacuum glazing</a> </p> <a href="https://publications.waset.org/abstracts/72593/theoretical-study-of-flexible-edge-seals-for-vacuum-glazing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Investigation of Flow Behavior inside the Single Channel Catalytic Combustor for Lean Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumaresh%20Selvakumar">Kumaresh Selvakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Catalytic combustor substantially reduces emission entailing fuel-air premixing at very low equivalence ratios. The catalytic combustion of natural gas has the potential to become sufficiently active at light off temperature by the convection of heat from the catalyst surface. Only one channel is selected to investigate both the gas and surface reactions in the catalyst bed because of the honeycomb structure of the catalytic combustor. The objective of the present study is to find the methane catalytic combustion behavior inside the catalytic combustor, where the gas phase kinetics is employed by homogeneous methane combustion and surface chemistry is described with the heterogeneous catalysis of the oxidation of methane on a platinum catalyst. The reaction of the premixed mixture in the catalytic regime improves flame stability with complete combustion for lower operating flame temperature. An overview of the flow behavior is presented inside the single channel catalytic combustor including the operation of catalytic combustion with various F/A ratios and premixed inlet temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20combustor" title="catalytic combustor">catalytic combustor</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratios" title=" equivalence ratios"> equivalence ratios</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20temperature" title=" flame temperature"> flame temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20combustion" title=" homogeneous combustion"> homogeneous combustion</a> </p> <a href="https://publications.waset.org/abstracts/69332/investigation-of-flow-behavior-inside-the-single-channel-catalytic-combustor-for-lean-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Niranchana">R. Niranchana</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Meena%20Alias%20Jeyanthi"> K. Meena Alias Jeyanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20assessment" title=" climate assessment"> climate assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-regression" title=" multi-regression"> multi-regression</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20estimation%20algorithm" title=" carbon estimation algorithm"> carbon estimation algorithm</a> </p> <a href="https://publications.waset.org/abstracts/163731/biomass-carbon-credit-estimation-for-sustainable-urban-planning-and-micro-climate-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Numerical and Experimental Investigation of Pulse Combustion for Fabric Drying </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zhao">Dan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20W.%20Sheng"> Y. W. Sheng </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work considers a convection-driven T-shaped pulse combustion system. Both experimental and numerical investigations are conducted to study the mechanism of pulse combustion and its potential application in fabric drying. To gain insight on flame-acoustic dynamic interaction and pulsating flow characteristics, 3D numerical simulation of the pulse combustion process of a premixed turbulent flame in a Rijke-type combustor is performed. Two parameters are examined: (1) fuel-air ratio, (2) inlet flow velocity. Their effects on triggering pulsating flow and Nusselt number are studied. As each of the parameters is varied, Nusselt number characterizing the heat transfer rate and the heat-driven pulsating flow signature is found to change. The main nonlinearity is identified in the heat fluxes. To validate our numerical findings, a cylindrical T-shaped Rijke-type combustor made of quartz-glass with a Bunsen burner is designed and tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20combustion" title="pulse combustion">pulse combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20drying" title=" fabric drying"> fabric drying</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20oscillations" title=" combustion oscillations"> combustion oscillations</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20oscillations" title=" pressure oscillations"> pressure oscillations</a> </p> <a href="https://publications.waset.org/abstracts/43423/numerical-and-experimental-investigation-of-pulse-combustion-for-fabric-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=7" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermomagnetic%20convection&amp;page=9" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10