CINXE.COM
Nature Communications
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:prism="http://prismstandard.org/namespaces/basic/2.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns="http://purl.org/rss/1.0/" xmlns:admin="http://webns.net/mvcb/"> <channel rdf:about="http://feeds.nature.com/ncomms/rss/current"> <title>Nature Communications</title> <description><p><em>Nature Communications</em>&nbsp;is an open access, multidisciplinary journal dedicated to publishing high-quality research in all areas of the biological, health, physical, chemical and Earth sciences. Papers published by the journal aim to represent important advances of significance to specialists within each field.</p> <p>We are committed to providing an efficient service for both authors and readers. Our&nbsp;team of independent editors make rapid and fair publication decisions. Prompt dissemination of accepted papers to a&nbsp;wide readership and beyond is achieved through a programme of continuous online publication.&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</p> </description> <link>http://feeds.nature.com/ncomms/rss/current</link> <admin:generatorAgent rdf:resource="https://www.nature.com/"/> <admin:errorReportsTo rdf:resource="mailto:feedback@nature.com"/> <dc:publisher>Nature Publishing Group</dc:publisher> <dc:language>en</dc:language> <dc:rights>© 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</dc:rights> <prism:publicationName>Nature Communications</prism:publicationName> <prism:copyright>© 2025 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.</prism:copyright> <prism:rightsAgent>permissions@nature.com</prism:rightsAgent> <image rdf:resource="https://www.nature.com/uploads/product/ncomms/rss.png"/> <items> <rdf:Seq> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58332-1"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58331-2"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58315-2"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58278-4"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58360-x"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58261-z"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-57896-2"/> <rdf:li rdf:resource="https://www.nature.com/articles/s41467-025-58080-2"/> </rdf:Seq> </items> </channel> <image rdf:about="https://www.nature.com/uploads/product/ncomms/rss.png"> <title>Nature Communications</title> <url>https://www.nature.com/uploads/product/ncomms/rss.png</url> <link>http://feeds.nature.com/ncomms/rss/current</link> </image> <item rdf:about="https://www.nature.com/articles/s41467-025-58332-1"> <title><![CDATA[Author Correction: In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO<sub>2</sub> batteries]]></title> <link>https://www.nature.com/articles/s41467-025-58332-1</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58332-1">doi:10.1038/s41467-025-58332-1</a></p>Author Correction: In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO<sub>2</sub> batteries]]></content:encoded> <dc:title><![CDATA[Author Correction: In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO<sub>2</sub> batteries]]></dc:title> <dc:creator>Guojun Lai</dc:creator><dc:creator>Zequan Zhao</dc:creator><dc:creator>Hao Zhang</dc:creator><dc:creator>Xueting Hu</dc:creator><dc:creator>Bingan Lu</dc:creator><dc:creator>Shuquan Liang</dc:creator><dc:creator>Jiang Zhou</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58332-1</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58332-1</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58332-1</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58332-1</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58331-2"> <title><![CDATA[Author Correction: On-surface synthesis of triangulene trimers via dehydration reaction]]></title> <link>https://www.nature.com/articles/s41467-025-58331-2</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58331-2">doi:10.1038/s41467-025-58331-2</a></p>Author Correction: On-surface synthesis of triangulene trimers via dehydration reaction]]></content:encoded> <dc:title><![CDATA[Author Correction: On-surface synthesis of triangulene trimers via dehydration reaction]]></dc:title> <dc:creator>Suqin Cheng</dc:creator><dc:creator>Zhijie Xue</dc:creator><dc:creator>Can Li</dc:creator><dc:creator>Yufeng Liu</dc:creator><dc:creator>Longjun Xiang</dc:creator><dc:creator>Youqi Ke</dc:creator><dc:creator>Kaking Yan</dc:creator><dc:creator>Shiyong Wang</dc:creator><dc:creator>Ping Yu</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58331-2</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58331-2</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58331-2</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58331-2</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58315-2"> <title><![CDATA[Photoredox cobalt-catalyzed asymmetric desymmetric reductive coupling of cyclobutenes with alkynes]]></title> <link>https://www.nature.com/articles/s41467-025-58315-2</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58315-2">doi:10.1038/s41467-025-58315-2</a></p>The cobalt-catalyzed intermolecular reductive coupling of alkenes and alkynes is attractive due to the unique reactivity and cost-effectiveness of cobalt catalysts. Here, the authors report an asymmetric desymmetric reductive coupling of electronically unbiased succinimide-containing cyclobutenes with internal alkynes via photoredox and cobalt dual catalysis.]]></content:encoded> <dc:title><![CDATA[Photoredox cobalt-catalyzed asymmetric desymmetric reductive coupling of cyclobutenes with alkynes]]></dc:title> <dc:creator>Tianlong Zeng</dc:creator><dc:creator>Yuyang He</dc:creator><dc:creator>Ying Li</dc:creator><dc:creator>Lele Wang</dc:creator><dc:creator>Qiang Hu</dc:creator><dc:creator>Yongyi Li</dc:creator><dc:creator>Zhenwei Wei</dc:creator><dc:creator>Jianfei Chen</dc:creator><dc:creator>Xiaotian Qi</dc:creator><dc:creator>Jun Zhu</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58315-2</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58315-2</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58315-2</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58315-2</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58278-4"> <title><![CDATA[Catechol-based chemistry for hypoglycemia-responsive delivery of zinc-glucagon via hydrogel-based microneedle patch technology]]></title> <link>https://www.nature.com/articles/s41467-025-58278-4</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58278-4">doi:10.1038/s41467-025-58278-4</a></p>Hypoglycemia is a serious and potentially life-threatening condition for people with insulin dependent diabetes, but preventative hypoglycemia therapies are elusive. Here, the authors report the use of catechol and boronic acid chemistry to design a self-crosslinkable hydrogel-based microneedle patch that delivers Zinc-Glucagon at low glucose levels and prevents insulin-induced hypoglycemia.]]></content:encoded> <dc:title><![CDATA[Catechol-based chemistry for hypoglycemia-responsive delivery of zinc-glucagon via hydrogel-based microneedle patch technology]]></dc:title> <dc:creator>Amin GhavamiNejad</dc:creator><dc:creator>Jackie Fule Liu</dc:creator><dc:creator>Sako Mirzaie</dc:creator><dc:creator>Brian Lu</dc:creator><dc:creator>Melisa Samarikhalaj</dc:creator><dc:creator>Adria Giacca</dc:creator><dc:creator>Xiao Yu Wu</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58278-4</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58278-4</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58278-4</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58278-4</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58360-x"> <title><![CDATA[Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis]]></title> <link>https://www.nature.com/articles/s41467-025-58360-x</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58360-x">doi:10.1038/s41467-025-58360-x</a></p>Here, Pessenda et al show that during visceral leishmaniasis, Kupffer cells relocate outside of the liver sinusoids to form granulomas which contain CLEC4F− KCs and monocyte-derived macrophages essential for effective parasite control.]]></content:encoded> <dc:title><![CDATA[Kupffer cell and recruited macrophage heterogeneity orchestrate granuloma maturation and hepatic immunity in visceral leishmaniasis]]></dc:title> <dc:creator>Gabriela Pessenda</dc:creator><dc:creator>Tiago R. Ferreira</dc:creator><dc:creator>Andrea Paun</dc:creator><dc:creator>Juraj Kabat</dc:creator><dc:creator>Eduardo P. Amaral</dc:creator><dc:creator>Olena Kamenyeva</dc:creator><dc:creator>Pedro Henrique Gazzinelli-Guimaraes</dc:creator><dc:creator>Shehan R. Perera</dc:creator><dc:creator>Sundar Ganesan</dc:creator><dc:creator>Sang Hun Lee</dc:creator><dc:creator>David L. Sacks</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58360-x</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58360-x</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58360-x</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58360-x</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58261-z"> <title><![CDATA[Structural insights into the dual Ca<sup>2+</sup>-sensor-mediated activation of the PPEF phosphatase family]]></title> <link>https://www.nature.com/articles/s41467-025-58261-z</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58261-z">doi:10.1038/s41467-025-58261-z</a></p>PPEFs are highly conserved phosphatases. Here, authors use cryo-EM to solve the holoenzyme structures of the initially characterized PPEF family member, Drosophila RDGC, with/without Ca2+, uncovering a dual Ca2+-sensor-mediated activation mechanism.]]></content:encoded> <dc:title><![CDATA[Structural insights into the dual Ca<sup>2+</sup>-sensor-mediated activation of the PPEF phosphatase family]]></dc:title> <dc:creator>Jia Liu</dc:creator><dc:creator>Cang Wu</dc:creator><dc:creator>Yuyang Liu</dc:creator><dc:creator>Qiangou Chen</dc:creator><dc:creator>Yuzhen Ding</dc:creator><dc:creator>Zhiqiao Lin</dc:creator><dc:creator>Lifeng Pan</dc:creator><dc:creator>Kang Xiao</dc:creator><dc:creator>Jianchao Li</dc:creator><dc:creator>Zhongmin Liu</dc:creator><dc:creator>Wei Liu</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58261-z</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58261-z</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58261-z</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58261-z</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-57896-2"> <title><![CDATA[Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors]]></title> <link>https://www.nature.com/articles/s41467-025-57896-2</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-57896-2">doi:10.1038/s41467-025-57896-2</a></p>Here, authors show the behavioral function of two transcriptomic GABAergic neuron subtypes in the zona incerta by integrating single-nucleus sequencing, circuit mapping, and optogenetics, advancing our understanding of functional brain organization.]]></content:encoded> <dc:title><![CDATA[Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors]]></dc:title> <dc:creator>Mengyue Zhu</dc:creator><dc:creator>Jieqiao Peng</dc:creator><dc:creator>Mi Wang</dc:creator><dc:creator>Shan Lin</dc:creator><dc:creator>Huiying Zhang</dc:creator><dc:creator>Yu Zhou</dc:creator><dc:creator>Xinyue Dai</dc:creator><dc:creator>Huiying Zhao</dc:creator><dc:creator>Yan-qin Yu</dc:creator><dc:creator>Li Shen</dc:creator><dc:creator>Xiao-Ming Li</dc:creator><dc:creator>Jiadong Chen</dc:creator> <dc:identifier>doi:10.1038/s41467-025-57896-2</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-57896-2</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-57896-2</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-57896-2</prism:url> </item> <item rdf:about="https://www.nature.com/articles/s41467-025-58080-2"> <title><![CDATA[Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands]]></title> <link>https://www.nature.com/articles/s41467-025-58080-2</link> <content:encoded> <![CDATA[<p>Nature Communications, Published online: 01 April 2025; <a href="https://www.nature.com/articles/s41467-025-58080-2">doi:10.1038/s41467-025-58080-2</a></p>The impacts of alpine grassland restoration on microbial community stability and its relationship with the plant-soil system are unclear. Here, using co-occurrence network analysis, the authors find that core microbes contribute to plant-soil resilience.]]></content:encoded> <dc:title><![CDATA[Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands]]></dc:title> <dc:creator>Yao Du</dc:creator><dc:creator>Yan Yang</dc:creator><dc:creator>Shengnan Wu</dc:creator><dc:creator>Xiaoxia Gao</dc:creator><dc:creator>Xiaoqing He</dc:creator><dc:creator>Shikui Dong</dc:creator> <dc:identifier>doi:10.1038/s41467-025-58080-2</dc:identifier> <dc:source>Nature Communications, Published online: 2025-04-01; | doi:10.1038/s41467-025-58080-2</dc:source> <dc:date>2025-04-01</dc:date> <prism:publicationName>Nature Communications</prism:publicationName> <prism:doi>10.1038/s41467-025-58080-2</prism:doi> <prism:url>https://www.nature.com/articles/s41467-025-58080-2</prism:url> </item> </rdf:RDF>