CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–42 of 42 results for author: <span class="mathjax">Escudero, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&query=Escudero%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Escudero, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Escudero%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Escudero, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14960">arXiv:2502.14960</a> <span> [<a href="https://arxiv.org/pdf/2502.14960">pdf</a>, <a href="https://arxiv.org/format/2502.14960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Lepton Flavor Asymmetries: from the early Universe to BBN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Domcke%2C+V">Valerie Domcke</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Navarro%2C+M+F">Mario Fernandez Navarro</a>, <a href="/search/hep-ph?searchtype=author&query=Sandner%2C+S">Stefan Sandner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14960v1-abstract-short" style="display: inline;"> Large primordial lepton flavor asymmetries with almost vanishing total baryon-minus-lepton number can evade the usual BBN and CMB constraints if neutrino oscillations lead to perfect flavor equilibration. Solving the momentum averaged quantum kinetic equations (QKEs) describing neutrino oscillations and interactions, we perform the first systematic investigation of this scenario, uncovering a rich… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14960v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14960v1-abstract-full" style="display: none;"> Large primordial lepton flavor asymmetries with almost vanishing total baryon-minus-lepton number can evade the usual BBN and CMB constraints if neutrino oscillations lead to perfect flavor equilibration. Solving the momentum averaged quantum kinetic equations (QKEs) describing neutrino oscillations and interactions, we perform the first systematic investigation of this scenario, uncovering a rich flavor structure in stark contradiction to the assumption of simple flavor equilibration. We find (i) a particular direction in flavor space, $螖n_e \simeq -2/3 \, (-1) 螖n_渭$ for normal (inverted) neutrino mass hierarchy, in which the flavor equilibration is efficient and primordial asymmetries are essentially unconstrained, (ii) a minimal washout factor, $螖n_e^2|_\mathrm{BBN} \leq 0.03 \, (0.016) \sum_伪螖n_伪^2|_{\mathrm{ini}}$ yielding a conservative estimate for the allowed primordial asymmetries in a generic flavor direction, and (iii) particularly strong or weak washout if one of the initial flavor asymmetries vanishes due to non-adiabatic muon- or electron-driven MSW transitions. These results open up the possibility of a first-order QCD phase transition facilitated by large lepton asymmetries as well as baryogenesis from large and compensated $螖n_e =- 螖n_渭$ asymmetries. Our first-principles approach of deriving momentum averaged QKEs includes collision terms beyond the damping approximation, energy transfer between the neutrino and electron-photon plasma, and provides a fast and reliable way to investigate the impact of primordial lepton asymmetries at the time of BBN. We publicly release the Mathematica code COFLASY-M on GitHub which solves the QKEs numerically. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14960v1-abstract-full').style.display = 'none'; document.getElementById('2502.14960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22+16 pages, 10+4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2025-010, LA-UR-25-20235 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13936">arXiv:2410.13936</a> <span> [<a href="https://arxiv.org/pdf/2410.13936">pdf</a>, <a href="https://arxiv.org/format/2410.13936">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> How large could CP violation in neutral $B$ meson mixing be? Implications for baryogenesis and upcoming searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Mir%C3%B3%2C+C">Carlos Mir贸</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Nebot%2C+M">Miguel Nebot</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13936v1-abstract-short" style="display: inline;"> CP violation in neutral $B$ meson oscillations is an experimental observable that could be directly related to the baryon asymmetry of the Universe through the $B$-Mesogenesis mechanism. As this phenomenon is highly suppressed in the Standard Model, it could also be a sensitive probe for many new physics scenarios that modify neutral meson mixing. Motivated by these facts, and the timely $B$ physi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13936v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13936v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13936v1-abstract-full" style="display: none;"> CP violation in neutral $B$ meson oscillations is an experimental observable that could be directly related to the baryon asymmetry of the Universe through the $B$-Mesogenesis mechanism. As this phenomenon is highly suppressed in the Standard Model, it could also be a sensitive probe for many new physics scenarios that modify neutral meson mixing. Motivated by these facts, and the timely $B$ physics program at the LHC and Belle II, we analyze how large CP violation in the mixing of neutral $B_d$ and $B_s$ meson systems could be. We answer this question, in light of current experimental data, within three different scenarios, namely: (i) generic heavy new physics only affecting the mass mixing $M_{12}^q$, (ii) vector-like quark extensions that introduce deviations of 3$\times$3 CKM unitarity, and (iii) light new physics modifying the decay mixing $螕_{12}^q$. We find that enhancements of the semileptonic asymmetries, that measure the amount of CP violation in mixing, at the level of $10^{-3}$ for the $B_d$ system and $10^{-4}$ for the $B_s$ system can be achieved within scenarios (i) and (ii), while they are much more suppressed in realistic UV completions triggering scenario (iii). With respect to cosmology, the difficulty of finding large CP asymmetries in our analysis puts the $B$-Mesogenesis mechanism in tension. Finally, we conclude that upcoming experimental searches for CP violation in $B$ meson mixing at LHCb and Belle II are unlikely to detect a new physics signal for the most generic models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13936v1-abstract-full').style.display = 'none'; document.getElementById('2410.13936v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 8 figures, 5 appendices. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-172 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13831">arXiv:2407.13831</a> <span> [<a href="https://arxiv.org/pdf/2407.13831">pdf</a>, <a href="https://arxiv.org/format/2407.13831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Living at the Edge: A Critical Look at the Cosmological Neutrino Mass Bound </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Naredo-Tuero%2C+D">Daniel Naredo-Tuero</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fern%C3%A1ndez-Mart%C3%ADnez%2C+E">Enrique Fern谩ndez-Mart铆nez</a>, <a href="/search/hep-ph?searchtype=author&query=Marcano%2C+X">Xabier Marcano</a>, <a href="/search/hep-ph?searchtype=author&query=Poulin%2C+V">Vivian Poulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13831v2-abstract-short" style="display: inline;"> Cosmological neutrino mass bounds are becoming increasingly stringent. The latest limit within $螞$CDM from Planck 2018+ACT lensing+DESI is $\sum m_谓< 0.072\,{\rm eV}$ at 95\% CL, very close to the minimum possible sum of neutrino masses ($\sum m_谓> 0.06\,{\rm eV}$), hinting at vanishing or even ``negative'' cosmological neutrino masses. In this context, it is urgent to carefully evaluate the origi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13831v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13831v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13831v2-abstract-full" style="display: none;"> Cosmological neutrino mass bounds are becoming increasingly stringent. The latest limit within $螞$CDM from Planck 2018+ACT lensing+DESI is $\sum m_谓< 0.072\,{\rm eV}$ at 95\% CL, very close to the minimum possible sum of neutrino masses ($\sum m_谓> 0.06\,{\rm eV}$), hinting at vanishing or even ``negative'' cosmological neutrino masses. In this context, it is urgent to carefully evaluate the origin of these cosmological constraints. In this paper, we investigate the robustness of these results in three ways: i) we check the role of potential anomalies in Planck CMB and DESI BAO data; ii) we compare the results for frequentist and Bayesian techniques, as very close to physical boundaries subtleties in the derivation and interpretation of constraints can arise; iii) we investigate how deviations from $螞$CDM, potentially alleviating these anomalies, can alter the constraints. From a profile likelihood analysis, we derive constraints in agreement at the $\sim 10\%$ level with Bayesian posteriors. We find that the weak preference for negative neutrino masses is mostly present for Planck 18 data, affected by the well-known `lensing anomaly'. It disappears when the new Planck 2020 HiLLiPoP is used, leading to significantly weaker constraints. Additionally, the pull towards negative masses in DESI data stems from the $z=0.7$ bin, which contains a BAO measurement in $\sim 3蟽$ tension with Planck expectations. Without this bin, and in combination with HiLLiPoP, the bound relaxes to $\sum m_谓< 0.11\,{\rm eV}$ at 95\% CL. The recent preference for dynamical dark energy alleviates this tension and further weakens the bound. As we are at the dawn of a neutrino mass discovery from cosmology, it will be very exciting to see if this trend is confirmed by future data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13831v2-abstract-full').style.display = 'none'; document.getElementById('2407.13831v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages + Appendices. Matches version accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-115, IFT-UAM/CSIC-24-106 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06547">arXiv:2402.06547</a> <span> [<a href="https://arxiv.org/pdf/2402.06547">pdf</a>, <a href="https://arxiv.org/format/2402.06547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Axion Star Explosions and the Reionization History of the Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06547v1-abstract-short" style="display: inline;"> Cosmological structure formation simulations of ultralight axion-like dark matter have shown that an axion star forms at the center of every dark matter halo in the Universe. These axion stars would then form in large numbers during the dark ages, $z \lesssim 70$. Axion stars would represent the densest axion environments in the Universe, and as such they can trigger collective processes that cann… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06547v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06547v1-abstract-full" style="display: none;"> Cosmological structure formation simulations of ultralight axion-like dark matter have shown that an axion star forms at the center of every dark matter halo in the Universe. These axion stars would then form in large numbers during the dark ages, $z \lesssim 70$. Axion stars would represent the densest axion environments in the Universe, and as such they can trigger collective processes that cannot otherwise occur for axions in vacuum. In particular, even though the lifetime of individual sub-eV axions decaying into a pair of photons is much larger than the age of the Universe, axion stars can decay into photons on very short time scales due to parametric resonance. In this talk, based on arXiv:2302.10206 and arXiv:2301.09769, I will discuss the cosmological implications of such decays. We show that massive enough axion stars will decay into a large number of radio photons which will in turn lead to heating and ionization during the dark ages which is strongly constrained by Planck. As a result, we find that couplings $10^{-14}\,{\rm GeV}^{-1} \lesssim g_{a纬纬} \lesssim 10^{-10}\,{\rm GeV}^{-1}$ are excluded by Planck for $10^{-14}\,{\rm eV}\lesssim m_a\lesssim 10^{-8}\,{\rm eV}$ within our benchmark model of axion star abundance. We also highlight that future measurements of the 21 cm line can have sensitivity to couplings at least one order of magnitude smaller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06547v1-abstract-full').style.display = 'none'; document.getElementById('2402.06547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures. Contribution to the 1st COSMIC WISPers Workshop, Bari, September 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2024-023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13043">arXiv:2310.13043</a> <span> [<a href="https://arxiv.org/pdf/2310.13043">pdf</a>, <a href="https://arxiv.org/format/2310.13043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12936-x">10.1140/epjc/s10052-024-12936-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first limit on invisible decays of $B_s$ mesons comes from LEP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alonso-%C3%81lvarez%2C+G">Gonzalo Alonso-脕lvarez</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13043v3-abstract-short" style="display: inline;"> Motivated by the recent evidence for $B^+\to K^+\bar谓 谓$ decays at Belle II, we point out that fully invisible $B_d$ and $B_s$ meson decays are strongly constrained by LEP. A reinterpretation of an old inclusive ALEPH search for $b$-hadron decays with large missing energy allows us to place the limits $\mathrm{Br}(B_d \rightarrow \mathrm{invisible}) < 1.4\times10^{-4}$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13043v3-abstract-full').style.display = 'inline'; document.getElementById('2310.13043v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13043v3-abstract-full" style="display: none;"> Motivated by the recent evidence for $B^+\to K^+\bar谓 谓$ decays at Belle II, we point out that fully invisible $B_d$ and $B_s$ meson decays are strongly constrained by LEP. A reinterpretation of an old inclusive ALEPH search for $b$-hadron decays with large missing energy allows us to place the limits $\mathrm{Br}(B_d \rightarrow \mathrm{invisible}) < 1.4\times10^{-4}$ and $\mathrm{Br}(B_s \rightarrow \mathrm{invisible}) < 5.6\times10^{-4}$, both at $90\%$ CL. The $B_d$ limit is only a factor of 6 looser than the world-leading one provided by the BaBar collaboration, while the $B_s$ one is the first limit in the literature on this decay mode. These results are relevant in the context of new light states coupled to quarks and exemplify the power of a future Tera-$Z$ factory at FCC-ee to look for $B$ meson decays containing missing energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13043v3-abstract-full').style.display = 'none'; document.getElementById('2310.13043v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3.5 pages + references. v2: minor improvement on the analysis by using mean PDG value of B fragmentation ratios. Added appendix with recasted ALEPH bounds on partially invisible flavor-violating B decays such as B -> tau a and B -> rho a, with a being an axion-like particle. v3: matches published version. Added clarifications about the analysis. We now use the CLs method to derive the bounds</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2023-193 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 84 (2024) 5, 553 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05460">arXiv:2306.05460</a> <span> [<a href="https://arxiv.org/pdf/2306.05460">pdf</a>, <a href="https://arxiv.org/format/2306.05460">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Neff in the Standard Model at NLO is 3.043 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Cielo%2C+M">Mattia Cielo</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Mangano%2C+G">Gianpiero Mangano</a>, <a href="/search/hep-ph?searchtype=author&query=Pisanti%2C+O">Ofelia Pisanti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05460v3-abstract-short" style="display: inline;"> The effective number of relativistic neutrino species is a fundamental probe of the early Universe and its measurement represents a key constraint on many scenarios beyond the Standard Model of Particle Physics. In light of this, an accurate prediction of $N_{\rm eff}$ in the Standard Model is of pivotal importance. In this work, we consider the last ingredient needed to accurately calculate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05460v3-abstract-full').style.display = 'inline'; document.getElementById('2306.05460v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05460v3-abstract-full" style="display: none;"> The effective number of relativistic neutrino species is a fundamental probe of the early Universe and its measurement represents a key constraint on many scenarios beyond the Standard Model of Particle Physics. In light of this, an accurate prediction of $N_{\rm eff}$ in the Standard Model is of pivotal importance. In this work, we consider the last ingredient needed to accurately calculate $N_{\rm eff}^{\rm SM}$: standard zero and finite temperature QED corrections to $e^+e^- \leftrightarrow 谓\bar谓$ interaction rates during neutrino decoupling at temperatures around $T\sim {\rm MeV}$. We find that this effect leads to a reduction of $-0.0007$ in $N_{\rm eff}^{\rm SM}$. This NLO QED correction to the interaction rates, together with finite temperature QED corrections to the electromagnetic density of the plasma, and the effect of neutrino oscillations, implies that $N_{\rm eff}^{\rm SM} = 3.043$ with a theoretical uncertainty that is much smaller than any projected observational sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05460v3-abstract-full').style.display = 'none'; document.getElementById('2306.05460v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. v2: Added a paragraph discussing electroweak corrections and other processes at O(alpha). v3: matches published version. References added, typos fixed</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2023-103 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01692">arXiv:2305.01692</a> <span> [<a href="https://arxiv.org/pdf/2305.01692">pdf</a>, <a href="https://arxiv.org/format/2305.01692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11864-6">10.1140/epjc/s10052-023-11864-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision CMB constraints on eV-scale bosons coupled to neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Sandner%2C+S">Stefan Sandner</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01692v2-abstract-short" style="display: inline;"> The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01692v2-abstract-full').style.display = 'inline'; document.getElementById('2305.01692v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01692v2-abstract-full" style="display: none;"> The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutrinos via the inverse decay process, $谓\bar谓 \rightarrow X$, and suppress neutrino free streaming near recombination -- even for couplings as small as $位_谓\sim \mathcal{O}(10^{-13})$. Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-$0$ or spin-$1$, the number of interacting neutrinos is either $N_{\rm int} = 1,2 $ or $3$, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivated models, such as the singlet majoron model or a light $U(1)_{L_渭-L_蟿}$ gauge boson, and find that they represent the leading constraints for masses $m_X\sim 1\, {\rm eV}$. Finally, we revisit the extent to which neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01692v2-abstract-full').style.display = 'none'; document.getElementById('2305.01692v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 + 8 pages, 14 figures, added minor comment on Hubble tension, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/23-13, FTUV-23-0413.0599, CERN-TH-2023-073 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 83 (2023) 8, 709 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.10206">arXiv:2302.10206</a> <span> [<a href="https://arxiv.org/pdf/2302.10206">pdf</a>, <a href="https://arxiv.org/format/2302.10206">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.043018">10.1103/PhysRevD.109.043018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Axion Star Explosions: A New Source for Axion Indirect Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Pooni%2C+C+K">Charis Kaur Pooni</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a>, <a href="/search/hep-ph?searchtype=author&query=Blas%2C+D">Diego Blas</a>, <a href="/search/hep-ph?searchtype=author&query=Du%2C+X">Xiaolong Du</a>, <a href="/search/hep-ph?searchtype=author&query=Marsh%2C+D+J+E">David J. E. Marsh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.10206v2-abstract-short" style="display: inline;"> If dark matter is composed of axions, then axion stars form in the cores of dark matter halos. These stars are unstable above a critical mass, decaying to radio photons that heat the intergalactic medium, offering a new channel for axion indirect detection. We recently provided the first accurate calculation of the axion decay rate due to axion star mergers. In this work we show how existing data… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10206v2-abstract-full').style.display = 'inline'; document.getElementById('2302.10206v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.10206v2-abstract-full" style="display: none;"> If dark matter is composed of axions, then axion stars form in the cores of dark matter halos. These stars are unstable above a critical mass, decaying to radio photons that heat the intergalactic medium, offering a new channel for axion indirect detection. We recently provided the first accurate calculation of the axion decay rate due to axion star mergers. In this work we show how existing data concerning the CMB optical depth leads to strong constraints on the axion photon coupling in the mass range $10^{-14}\,{\rm eV}\lesssim m_a\lesssim 10^{-8}\,{\rm eV}$. Axion star decays lead to efficient reionization of the intergalactic medium during the dark ages. By comparing this non-standard reionization with Planck legacy measurements of the Thompson optical width, we show that couplings in the range $10^{-14}\,{\rm GeV}^{-1} \lesssim g_{a纬纬} \lesssim 10^{-10}\,{\rm GeV}^{-1}$ are excluded for our benchmark model of axion star abundance. Future measurements of the 21cm emission of neutral hydrogen at high redshift could improve this limit by an order of magnitude or more, providing complementary indirect constraints on axion dark matter in parameter space also targeted by direct detection haloscopes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.10206v2-abstract-full').style.display = 'none'; document.getElementById('2302.10206v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures + 8 pages of appendix. v2: matches published version. Added collisional excitations as a cooling channel, bounds are relaxed by a factor of ~ 2 wrt v1. Clarified assumptions upon which the bounds rest on. Improved discussion about the application of Planck bounds on tau. Conclusions remain unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-PH-TH-2023-16, CERN-TH-2023-029 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 043018 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09769">arXiv:2301.09769</a> <span> [<a href="https://arxiv.org/pdf/2301.09769">pdf</a>, <a href="https://arxiv.org/format/2301.09769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.043019">10.1103/PhysRevD.109.043019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Soliton Merger Rates and Enhanced Axion Dark Matter Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Du%2C+X">Xiaolong Du</a>, <a href="/search/hep-ph?searchtype=author&query=Marsh%2C+D+J+E">David J. E. Marsh</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Benson%2C+A">Andrew Benson</a>, <a href="/search/hep-ph?searchtype=author&query=Blas%2C+D">Diego Blas</a>, <a href="/search/hep-ph?searchtype=author&query=Pooni%2C+C+K">Charis Kaur Pooni</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09769v2-abstract-short" style="display: inline;"> Solitons are observed to form in simulations of dark matter (DM) halos consisting of bosonic fields. We use the extended Press-Schechter formalism to compute the mass function of solitons, assuming various forms for the relationship between halo mass and soliton mass. We further provide a new calculation of the rate of soliton major mergers. Solitons composed of axion DM are unstable above a criti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09769v2-abstract-full').style.display = 'inline'; document.getElementById('2301.09769v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09769v2-abstract-full" style="display: none;"> Solitons are observed to form in simulations of dark matter (DM) halos consisting of bosonic fields. We use the extended Press-Schechter formalism to compute the mass function of solitons, assuming various forms for the relationship between halo mass and soliton mass. We further provide a new calculation of the rate of soliton major mergers. Solitons composed of axion DM are unstable above a critical mass, and decay to either relativistic axions or photons, depending on the values of the coupling constants. We use the computed soliton major merger rate to predict the enhanced DM decay rate due to soliton instability. For certain values of currently allowed axion parameters, the energy injection into the intergalactic medium from soliton decays to photons is comparable to or larger than the energy injection due to core collapse supernovae at $z>10$. A companion paper explores the phenomenology of such an energy injection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09769v2-abstract-full').style.display = 'none'; document.getElementById('2301.09769v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 18 figures. Version 2: matches published version. Add an appendix discussing the timescale of axion star merging process due to dynamical friction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-PH-TH-2023-03, CERN-TH-2023-009 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109, 043019 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01729">arXiv:2211.01729</a> <span> [<a href="https://arxiv.org/pdf/2211.01729">pdf</a>, <a href="https://arxiv.org/format/2211.01729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2023)142,">10.1007/JHEP02(2023)142, <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2024)119">10.1007/JHEP06(2024)119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A seesaw model for large neutrino masses in concordance with cosmology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Schwetz%2C+T">Thomas Schwetz</a>, <a href="/search/hep-ph?searchtype=author&query=Terol-Calvo%2C+J">Jorge Terol-Calvo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01729v4-abstract-short" style="display: inline;"> Cosmological constraints on the sum of the neutrino masses can be relaxed if the number density of active neutrinos is reduced compared to the standard scenario, while at the same time keeping the effective number of neutrino species $N_{\rm eff}\approx 3$ by introducing a new component of dark radiation. We discuss a UV complete model to realise this idea, which simultaneously provides neutrino m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01729v4-abstract-full').style.display = 'inline'; document.getElementById('2211.01729v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01729v4-abstract-full" style="display: none;"> Cosmological constraints on the sum of the neutrino masses can be relaxed if the number density of active neutrinos is reduced compared to the standard scenario, while at the same time keeping the effective number of neutrino species $N_{\rm eff}\approx 3$ by introducing a new component of dark radiation. We discuss a UV complete model to realise this idea, which simultaneously provides neutrino masses via the seesaw mechanism. It is based on a $U(1)$ symmetry in the dark sector, which can be either gauged or global. In addition to heavy seesaw neutrinos, we need to introduce $\mathcal{O}(10)$ generations of massless sterile neutrinos providing the dark radiation. Then we can accommodate active neutrino masses with $\sum m_谓\sim 1$ eV, in the sensitivity range of the KATRIN experiment. We discuss the phenomenology of the model and identify the allowed parameter space. We argue that the gauged version of the model is preferred, and in this case the typical energy scale of the model is in the 10 MeV to few GeV range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01729v4-abstract-full').style.display = 'none'; document.getElementById('2211.01729v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures v4: Inclusion of the Addendum published in 10.1007/JHEP06(2024)119 as the last two appendices. In the Addendum we calculate a dark MSW effect on the chi-nu oscillations that opens the parameter space for larger mixings between them</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-TH-2022-180 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.03201">arXiv:2208.03201</a> <span> [<a href="https://arxiv.org/pdf/2208.03201">pdf</a>, <a href="https://arxiv.org/format/2208.03201">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.035024">10.1103/PhysRevD.107.035024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Primordial lepton asymmetries in the precision cosmology era: Current status and future sensitivities from BBN and the CMB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Ibarra%2C+A">Alejandro Ibarra</a>, <a href="/search/hep-ph?searchtype=author&query=Maura%2C+V">Victor Maura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.03201v2-abstract-short" style="display: inline;"> Using a new sample of extremely metal poor systems, the EMPRESS survey has recently reported a primordial helium abundance that is $3蟽$ smaller than the prediction from the standard big bang nucleosynthesis (BBN) scenario. This measurement could be interpreted as a hint for a primordial lepton asymmetry in the electron neutrino flavor. Motivated by the EMPRESS results, we present a comprehensive a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03201v2-abstract-full').style.display = 'inline'; document.getElementById('2208.03201v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.03201v2-abstract-full" style="display: none;"> Using a new sample of extremely metal poor systems, the EMPRESS survey has recently reported a primordial helium abundance that is $3蟽$ smaller than the prediction from the standard big bang nucleosynthesis (BBN) scenario. This measurement could be interpreted as a hint for a primordial lepton asymmetry in the electron neutrino flavor. Motivated by the EMPRESS results, we present a comprehensive analysis of the lepton asymmetry using measurements of the abundances of primordial elements, along with cosmic microwave background (CMB) data from Planck. Assuming that there is no dark radiation in our Universe, we find an electron neutrino chemical potential $尉_{谓_e} = 0.043 \pm 0.015$, which deviates from zero by $2.9蟽$. If no assumption is made on the abundance of dark radiation in the Universe, the chemical potential is $尉_{谓_e} = 0.046 \pm 0.021$, which deviates from zero by $2.2蟽$. We also find that this result is rather insensitive to the choice of nuclear reaction rates. If the true helium abundance corresponds to the EMPRESS central value, future CMB observations from the Simons Observatory and CMB-S4 will increase the significance for a nonzero lepton asymmetry to $4蟽$ and $5蟽$ respectively, assuming no dark radiation, or to $3蟽$ when no assumption is made on the abundance of dark radiation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.03201v2-abstract-full').style.display = 'none'; document.getElementById('2208.03201v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, 1 table. Matches published version in PRD. Minor modifications. Updated with the latest EMPRESS results. Conclusions remain unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1413/22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04062">arXiv:2207.04062</a> <span> [<a href="https://arxiv.org/pdf/2207.04062">pdf</a>, <a href="https://arxiv.org/format/2207.04062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.063539">10.1103/PhysRevD.106.063539 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global view of neutrino interactions in cosmology: The freestreaming window as seen by Planck </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Taule%2C+P">Petter Taule</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Garny%2C+M">Mathias Garny</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04062v1-abstract-short" style="display: inline;"> Neutrinos are expected to freestream (i.e. not interact with anything) since they decouple in the early Universe at a temperature $T\sim 2~{\rm MeV}$. However, there are many relevant particle physics scenarios that can make neutrinos interact at $T< 2~{\rm MeV}$. In this work, we take a global perspective and aim to identify the temperature range in which neutrinos can interact given current cosm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04062v1-abstract-full').style.display = 'inline'; document.getElementById('2207.04062v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04062v1-abstract-full" style="display: none;"> Neutrinos are expected to freestream (i.e. not interact with anything) since they decouple in the early Universe at a temperature $T\sim 2~{\rm MeV}$. However, there are many relevant particle physics scenarios that can make neutrinos interact at $T< 2~{\rm MeV}$. In this work, we take a global perspective and aim to identify the temperature range in which neutrinos can interact given current cosmological observations. We consider a generic set of rates parametrizing neutrino interactions and by performing a full Planck cosmic microwave background (CMB) analysis we find that neutrinos cannot interact significantly for redshifts $2000 \lesssim z \lesssim 10^5$, which we refer to as the freestreaming window. We also derive a redshift dependent upper bound on a suitably defined interaction rate $螕_\text{nfs}(z)$, finding $螕_\text{nfs}(z)/H(z)\lesssim 1-10$ within the freestreaming window. We show that these results are largely model independent under some broad assumptions, and contextualize them in terms of neutrino decays, neutrino self-interactions, neutrino annihilations, and majoron models. We provide examples of how to use our model independent approach to obtain bounds in specific scenarios, and demonstrate agreement with existing results. We also investigate the reach of upcoming cosmological data finding that CMB Stage-IV experiments can improve the bound on $螕_\text{nfs}(z)/H(z)$ by up to a factor $10$. Moreover, we comment on large-scale structure observations, finding that the ongoing DESI survey has the potential to probe uncharted regions of parameter space of interacting neutrinos. Finally, we point out a peculiar scenario that has so far not been considered, and for which relatively large interactions around recombination are still allowed by Planck data due to some degeneracy with $n_s$, $A_s$ and $H_0$. This scenario can be fully tested with CMB-S4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04062v1-abstract-full').style.display = 'none'; document.getElementById('2207.04062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages plus appendices, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1406/22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07377">arXiv:2203.07377</a> <span> [<a href="https://arxiv.org/pdf/2203.07377">pdf</a>, <a href="https://arxiv.org/format/2203.07377">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Synergy between cosmological and laboratory searches in neutrino physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Gerbino%2C+M">Martina Gerbino</a>, <a href="/search/hep-ph?searchtype=author&query=Grohs%2C+E">Evan Grohs</a>, <a href="/search/hep-ph?searchtype=author&query=Lattanzi%2C+M">Massimiliano Lattanzi</a>, <a href="/search/hep-ph?searchtype=author&query=Abazajian%2C+K+N">Kevork N. Abazajian</a>, <a href="/search/hep-ph?searchtype=author&query=Blinov%2C+N">Nikita Blinov</a>, <a href="/search/hep-ph?searchtype=author&query=Brinckmann%2C+T">Thejs Brinckmann</a>, <a href="/search/hep-ph?searchtype=author&query=Chen%2C+M">Mu-Chun Chen</a>, <a href="/search/hep-ph?searchtype=author&query=Djurcic%2C+Z">Zelimir Djurcic</a>, <a href="/search/hep-ph?searchtype=author&query=Du%2C+P">Peizhi Du</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Hagstotz%2C+S">Steffen Hagstotz</a>, <a href="/search/hep-ph?searchtype=author&query=Kelly%2C+K+J">Kevin J. Kelly</a>, <a href="/search/hep-ph?searchtype=author&query=Lorenz%2C+C+S">Christiane S. Lorenz</a>, <a href="/search/hep-ph?searchtype=author&query=Loverde%2C+M">Marilena Loverde</a>, <a href="/search/hep-ph?searchtype=author&query=Mart%C3%ADnez-Mirav%C3%A9%2C+P">Pablo Mart铆nez-Mirav茅</a>, <a href="/search/hep-ph?searchtype=author&query=Mena%2C+O">Olga Mena</a>, <a href="/search/hep-ph?searchtype=author&query=Meyers%2C+J">Joel Meyers</a>, <a href="/search/hep-ph?searchtype=author&query=Pettus%2C+W">Walter Pettus</a>, <a href="/search/hep-ph?searchtype=author&query=Saviano%2C+N">Ninetta Saviano</a>, <a href="/search/hep-ph?searchtype=author&query=Suliga%2C+A+M">Anna M. Suliga</a>, <a href="/search/hep-ph?searchtype=author&query=Takhistov%2C+V">Volodymyr Takhistov</a>, <a href="/search/hep-ph?searchtype=author&query=T%C3%B3rtola%2C+M">Mariam T贸rtola</a>, <a href="/search/hep-ph?searchtype=author&query=Valle%2C+J+W+F">Jos茅 W. F. Valle</a>, <a href="/search/hep-ph?searchtype=author&query=Wallisch%2C+B">Benjamin Wallisch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07377v3-abstract-short" style="display: inline;"> The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Up… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07377v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07377v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07377v3-abstract-full" style="display: none;"> The intersection of the cosmic and neutrino frontiers is a rich field where much discovery space still remains. Neutrinos play a pivotal role in the hot big bang cosmology, influencing the dynamics of the universe over numerous decades in cosmological history. Recent studies have made tremendous progress in understanding some properties of cosmological neutrinos, primarily their energy density. Upcoming cosmological probes will measure the energy density of relativistic particles with higher precision, but could also start probing other properties of the neutrino spectra. When convolved with results from terrestrial experiments, cosmology can become even more acute at probing new physics related to neutrinos or even Beyond the Standard Model (BSM). Any discordance between laboratory and cosmological data sets may reveal new BSM physics and/or suggest alternative models of cosmology. We give examples of the intersection between terrestrial and cosmological probes in the neutrino sector, and briefly discuss the possibilities of what different laboratory experiments may see in conjunction with cosmological observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07377v3-abstract-full').style.display = 'none'; document.getElementById('2203.07377v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Originally prepared for submission to the Snowmass Community Planning Exercise, 2021; Current version accepted by Physics of the Dark Universe; 136 pages; 9 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.07805">arXiv:2201.07805</a> <span> [<a href="https://arxiv.org/pdf/2201.07805">pdf</a>, <a href="https://arxiv.org/format/2201.07805">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ac9cee">10.1088/1361-6633/ac9cee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Physics Searches at Kaon and Hyperon Factories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Goudzovski%2C+E">Evgueni Goudzovski</a>, <a href="/search/hep-ph?searchtype=author&query=Redigolo%2C+D">Diego Redigolo</a>, <a href="/search/hep-ph?searchtype=author&query=Tobioka%2C+K">Kohsaku Tobioka</a>, <a href="/search/hep-ph?searchtype=author&query=Zupan%2C+J">Jure Zupan</a>, <a href="/search/hep-ph?searchtype=author&query=Alonso-Alvarez%2C+G">Gonzalo Alonso-Alvarez</a>, <a href="/search/hep-ph?searchtype=author&query=Alves%2C+D+S+M">Daniele S. M. Alves</a>, <a href="/search/hep-ph?searchtype=author&query=Bansal%2C+S">Saurabh Bansal</a>, <a href="/search/hep-ph?searchtype=author&query=Bauer%2C+M">Martin Bauer</a>, <a href="/search/hep-ph?searchtype=author&query=Brod%2C+J">Joachim Brod</a>, <a href="/search/hep-ph?searchtype=author&query=Chobanova%2C+V">Veronika Chobanova</a>, <a href="/search/hep-ph?searchtype=author&query=D%27Ambrosio%2C+G">Giancarlo D'Ambrosio</a>, <a href="/search/hep-ph?searchtype=author&query=Datta%2C+A">Alakabha Datta</a>, <a href="/search/hep-ph?searchtype=author&query=Dery%2C+A">Avital Dery</a>, <a href="/search/hep-ph?searchtype=author&query=Dettori%2C+F">Francesco Dettori</a>, <a href="/search/hep-ph?searchtype=author&query=Dobrescu%2C+B+A">Bogdan A. Dobrescu</a>, <a href="/search/hep-ph?searchtype=author&query=Dobrich%2C+B">Babette Dobrich</a>, <a href="/search/hep-ph?searchtype=author&query=Egana-Ugrinovic%2C+D">Daniel Egana-Ugrinovic</a>, <a href="/search/hep-ph?searchtype=author&query=Elor%2C+G">Gilly Elor</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fabbrichesi%2C+M">Marco Fabbrichesi</a>, <a href="/search/hep-ph?searchtype=author&query=Fornal%2C+B">Bartosz Fornal</a>, <a href="/search/hep-ph?searchtype=author&query=Fox%2C+P+J">Patrick J. Fox</a>, <a href="/search/hep-ph?searchtype=author&query=Gabrielli%2C+E">Emidio Gabrielli</a>, <a href="/search/hep-ph?searchtype=author&query=Geng%2C+L">Li-Sheng Geng</a>, <a href="/search/hep-ph?searchtype=author&query=Gligorov%2C+V+V">Vladimir V. Gligorov</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.07805v2-abstract-short" style="display: inline;"> Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07805v2-abstract-full').style.display = 'inline'; document.getElementById('2201.07805v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.07805v2-abstract-full" style="display: none;"> Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements. We summarize the relevant phenomenological models and the status of the searches in a comprehensive list of kaon and hyperon decay channels. We identify new search strategies for under-explored signatures, and demonstrate that the improved sensitivities from current and next-generation experiments could lead to a qualitative leap in the exploration of light dark sectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.07805v2-abstract-full').style.display = 'none'; document.getElementById('2201.07805v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">108 pages, 25 figures, 9 tables, matches the published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14870">arXiv:2111.14870</a> <span> [<a href="https://arxiv.org/pdf/2111.14870">pdf</a>, <a href="https://arxiv.org/format/2111.14870">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.063501">10.1103/PhysRevD.105.063501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Neutrino Background Detection in Large-Neutrino-Mass Cosmologies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a>, <a href="/search/hep-ph?searchtype=author&query=Schwetz%2C+T">Thomas Schwetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14870v2-abstract-short" style="display: inline;"> The Cosmic Neutrino Background (CNB) is a definite prediction of the standard cosmological model and its direct discovery would represent a milestone in cosmology and neutrino physics. In this work, we consider the capture of relic neutrinos on a tritium target as a possible way to detect the CNB, as aimed for by the PTOLEMY project. Crucial parameters for this measurement are the absolute neutrin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14870v2-abstract-full').style.display = 'inline'; document.getElementById('2111.14870v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14870v2-abstract-full" style="display: none;"> The Cosmic Neutrino Background (CNB) is a definite prediction of the standard cosmological model and its direct discovery would represent a milestone in cosmology and neutrino physics. In this work, we consider the capture of relic neutrinos on a tritium target as a possible way to detect the CNB, as aimed for by the PTOLEMY project. Crucial parameters for this measurement are the absolute neutrino mass $m_谓$ and the local neutrino number density $n_谓^{\rm loc}$. Within the $螞$CDM model, cosmology provides a stringent upper limit on the sum of neutrino masses of $\sum m_谓< 0.12\,{\rm eV}$, with further improvements expected soon from galaxy surveys by DESI and EUCLID. This makes the prospects for a CNB detection and a neutrino mass measurement in the laboratory very difficult. In this context, we consider a set of non-standard cosmological models that allow for large neutrino masses ($m_谓\sim 1\,{\rm eV}$), potentially in reach of the KATRIN neutrino mass experiment or upcoming neutrinoless double-beta decay searches. We show that the CNB detection prospects could be much higher in some of these models compared to those in $螞$CDM, and discuss the potential for such a detection to discriminate between cosmological scenarios. Moreover, we provide a simple rule to estimate the required values of energy resolution, exposure, and background rate for a PTOLEMY-like experiment to cover a certain region in the $(m_谓,\, n_谓^{\rm loc})$ parameter space. Alongside this paper, we publicly release a code to calculate the CNB sensitivity in a given cosmological model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14870v2-abstract-full').style.display = 'none'; document.getElementById('2111.14870v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, 1 table. Code available at https://github.com/james-alvey-42/DistNuAndPtolemy. Minor modifications, some references added. Matches published version in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1374/21, KCL-2021-88 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12726">arXiv:2111.12726</a> <span> [<a href="https://arxiv.org/pdf/2111.12726">pdf</a>, <a href="https://arxiv.org/format/2111.12726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2022/02/037">10.1088/1475-7516/2022/02/037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What can CMB observations tell us about the neutrino distribution function? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12726v2-abstract-short" style="display: inline;"> Cosmic Microwave Background (CMB) observations have been used extensively to constrain key properties of neutrinos, such as their mass. However, these inferences are typically dependent on assumptions about the cosmological model, and in particular upon the distribution function of neutrinos in the early Universe. In this paper, we aim to assess the full extent to which CMB experiments are sensiti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12726v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12726v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12726v2-abstract-full" style="display: none;"> Cosmic Microwave Background (CMB) observations have been used extensively to constrain key properties of neutrinos, such as their mass. However, these inferences are typically dependent on assumptions about the cosmological model, and in particular upon the distribution function of neutrinos in the early Universe. In this paper, we aim to assess the full extent to which CMB experiments are sensitive to the shape of the neutrino distribution. We demonstrate that Planck and CMB-S4-like experiments have no prospects for detecting particular features in the distribution function. Consequently, we take a general approach and marginalise completely over the form of the neutrino distribution to derive constraints on the relativistic and non-relativistic neutrino energy densities, characterised by $N_\mathrm{eff} = 3.0 \pm 0.4$ and $蟻_{谓,0}^{\rm NR} < 14 \, \mathrm{eV}\,\mathrm{cm}^{-3}$ at 95% CL, respectively. The fact that these are the only neutrino properties that CMB data can constrain has important implications for neutrino mass limits from cosmology. Specifically, in contrast to the $螞$CDM case where CMB and BAO data tightly constrain the sum of neutrinos masses to be $\sum m_谓< 0.12 \, \mathrm{eV}$, we explicitly show that neutrino masses as large as $\sum m_谓\sim 3 \, \mathrm{eV}$ are perfectly consistent with this data. Importantly, for this to be the case, the neutrino number density should be suitably small such that the bound on $蟻_{谓,0}^\mathrm{NR} = \sum m_谓n_{谓,0}$ is still satisfied. We conclude by giving an outlook on the opportunities that may arise from other complementary experimental probes, such as galaxy surveys, neutrino mass experiments and facilities designed to directly detect the cosmic neutrino background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12726v2-abstract-full').style.display = 'none'; document.getElementById('2111.12726v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures. Minor modifications, some references added. Matches published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1375/21, KCL-2021-87 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12712">arXiv:2111.12712</a> <span> [<a href="https://arxiv.org/pdf/2111.12712">pdf</a>, <a href="https://arxiv.org/format/2111.12712">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.115005">10.1103/PhysRevD.105.115005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Strange Physics of Dark Baryons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alonso-%C3%81lvarez%2C+G">Gonzalo Alonso-脕lvarez</a>, <a href="/search/hep-ph?searchtype=author&query=Elor%2C+G">Gilly Elor</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fornal%2C+B">Bartosz Fornal</a>, <a href="/search/hep-ph?searchtype=author&query=Grinstein%2C+B">Benjam铆n Grinstein</a>, <a href="/search/hep-ph?searchtype=author&query=Camalich%2C+J+M">Jorge Martin Camalich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12712v2-abstract-short" style="display: inline;"> Dark sector particles at the GeV scale carrying baryon number provide an attractive framework for understanding the origin of dark matter and the matter-antimatter asymmetry of the universe. We demonstrate that dark decays of hadronic states containing strange quarks -- hyperons -- offer excellent prospects for discovering such dark baryons. Building up on novel calculations of the matrix elements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12712v2-abstract-full').style.display = 'inline'; document.getElementById('2111.12712v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12712v2-abstract-full" style="display: none;"> Dark sector particles at the GeV scale carrying baryon number provide an attractive framework for understanding the origin of dark matter and the matter-antimatter asymmetry of the universe. We demonstrate that dark decays of hadronic states containing strange quarks -- hyperons -- offer excellent prospects for discovering such dark baryons. Building up on novel calculations of the matrix elements relevant for hyperon dark decays, and in view of various collider, flavor, and astrophysical constraints, we determine the expected rates at hyperon factories like BESIII and LHCb. We also highlight the interesting theoretical connections of hyperon dark decays to the neutron lifetime anomaly and Mesogenesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12712v2-abstract-full').style.display = 'none'; document.getElementById('2111.12712v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 12 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP-1373/21, MITP-21-060 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 105, 115005 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11232">arXiv:2107.11232</a> <span> [<a href="https://arxiv.org/pdf/2107.11232">pdf</a>, <a href="https://arxiv.org/format/2107.11232">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/08/A01">10.1088/1475-7516/2021/08/A01 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Addendum: Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a>, <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a>, <a href="/search/hep-ph?searchtype=author&query=Blas%2C+D">Diego Blas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11232v2-abstract-short" style="display: inline;"> Very recently, the LUNA collaboration has reported a new measurement of the $d+p\to {}^{3}\text{He}+纬$ reaction rate, which plays an important role in the prediction of the primordial deuterium abundance at the time of BBN. This new measurement has triggered a new set of global BBN analyses within the context of the Standard Model. In this addendum to JCAP 01 (2020) 004 (arXiv:1910.01649), we cons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11232v2-abstract-full').style.display = 'inline'; document.getElementById('2107.11232v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11232v2-abstract-full" style="display: none;"> Very recently, the LUNA collaboration has reported a new measurement of the $d+p\to {}^{3}\text{He}+纬$ reaction rate, which plays an important role in the prediction of the primordial deuterium abundance at the time of BBN. This new measurement has triggered a new set of global BBN analyses within the context of the Standard Model. In this addendum to JCAP 01 (2020) 004 (arXiv:1910.01649), we consider the implications of these new results for our constraints on MeV-scale dark sectors. Importantly, we find that our bounds in the BBN-only and Planck-only analyses are insensitive to these updates. Similarly, we find that our constraints derived using BBN and CMB data simultaneously are not significantly modified for neutrinophilic particles. The bounds on electrophilic dark sector states, however, can vary moderately when combining BBN and CMB observations. We present updated results for all the relevant light dark sector states, calculated using the rates obtained by the leading groups performing standard BBN analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11232v2-abstract-full').style.display = 'none'; document.getElementById('2107.11232v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 Pages, 1 Table. Accepted for publication in JCAP as an addendum to our paper arXiv:1910.01649, JCAP 01 (2020) 004. v2: Title updated to match published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.12668">arXiv:2105.12668</a> <span> [<a href="https://arxiv.org/pdf/2105.12668">pdf</a>, <a href="https://arxiv.org/format/2105.12668">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ac4649">10.1088/1361-6633/ac4649 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unleashing the full power of LHCb to probe Stealth New Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Borsato%2C+M">Martino Borsato</a>, <a href="/search/hep-ph?searchtype=author&query=Vidal%2C+X+C">Xabier Cid Vidal</a>, <a href="/search/hep-ph?searchtype=author&query=Tsai%2C+Y">Yuhsin Tsai</a>, <a href="/search/hep-ph?searchtype=author&query=Sierra%2C+C+V">Carlos V谩zquez Sierra</a>, <a href="/search/hep-ph?searchtype=author&query=Zurita%2C+J">Jos茅 Zurita</a>, <a href="/search/hep-ph?searchtype=author&query=Alonso-%C3%81lvarez%2C+G">Gonzalo Alonso-脕lvarez</a>, <a href="/search/hep-ph?searchtype=author&query=Boyarsky%2C+A">Alexey Boyarsky</a>, <a href="/search/hep-ph?searchtype=author&query=Rodr%C3%ADguez%2C+A+B">Alexandre Brea Rodr铆guez</a>, <a href="/search/hep-ph?searchtype=author&query=Franzosi%2C+D+B">Diogo Buarque Franzosi</a>, <a href="/search/hep-ph?searchtype=author&query=Cacciapaglia%2C+G">Giacomo Cacciapaglia</a>, <a href="/search/hep-ph?searchtype=author&query=Vidal%2C+A+C">Adri谩n Casais Vidal</a>, <a href="/search/hep-ph?searchtype=author&query=Du%2C+M">Mingxuan Du</a>, <a href="/search/hep-ph?searchtype=author&query=Elor%2C+G">Gilly Elor</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Ferretti%2C+G">Gabriele Ferretti</a>, <a href="/search/hep-ph?searchtype=author&query=Flacke%2C+T">Thomas Flacke</a>, <a href="/search/hep-ph?searchtype=author&query=Foldenauer%2C+P">Patrick Foldenauer</a>, <a href="/search/hep-ph?searchtype=author&query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&query=Henry%2C+L">Louis Henry</a>, <a href="/search/hep-ph?searchtype=author&query=Ilten%2C+P">Philip Ilten</a>, <a href="/search/hep-ph?searchtype=author&query=Kamenik%2C+J">Jernej Kamenik</a>, <a href="/search/hep-ph?searchtype=author&query=Jashal%2C+B+K">Brij Kishor Jashal</a>, <a href="/search/hep-ph?searchtype=author&query=Knapen%2C+S">Simon Knapen</a>, <a href="/search/hep-ph?searchtype=author&query=Redi%2C+F+L">Federico Leo Redi</a>, <a href="/search/hep-ph?searchtype=author&query=Low%2C+M">Matthew Low</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.12668v2-abstract-short" style="display: inline;"> In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12668v2-abstract-full').style.display = 'inline'; document.getElementById('2105.12668v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.12668v2-abstract-full" style="display: none;"> In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.12668v2-abstract-full').style.display = 'none'; document.getElementById('2105.12668v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">82 pages, 31 figures. This is the version of the article before peer review or editing, as submitted by an author to Reports on Progress in Physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1361-6633/ac4649</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03249">arXiv:2103.03249</a> <span> [<a href="https://arxiv.org/pdf/2103.03249">pdf</a>, <a href="https://arxiv.org/format/2103.03249">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09276-5">10.1140/epjc/s10052-021-09276-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03249v2-abstract-short" style="display: inline;"> The majoron, a neutrinophilic pseudo-Goldstone boson conventionally arising in the context of neutrino mass models, can damp neutrino free-streaming and inject additional energy density into neutrinos prior to recombination. The combination of these effects for an eV-scale mass majoron has been shown to ameliorate the outstanding $H_0$ tension, however only if one introduces additional dark radiat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03249v2-abstract-full').style.display = 'inline'; document.getElementById('2103.03249v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03249v2-abstract-full" style="display: none;"> The majoron, a neutrinophilic pseudo-Goldstone boson conventionally arising in the context of neutrino mass models, can damp neutrino free-streaming and inject additional energy density into neutrinos prior to recombination. The combination of these effects for an eV-scale mass majoron has been shown to ameliorate the outstanding $H_0$ tension, however only if one introduces additional dark radiation at the level of $螖N_{\rm eff} \sim 0.5$. We show here that models of low-scale leptogenesis can naturally source this dark radiation by generating a primordial population of majorons from the decays of GeV-scale sterile neutrinos in the early Universe. Using a posterior predictive distribution conditioned on Planck2018+BAO data, we show that the value of $H_0$ observed by the SH$_0$ES collaboration is expected to occur at the level of $\sim 10\%$ in the primordial majoron cosmology (to be compared with $\sim 0.1\%$ in the case of $螞$CDM). This insight provides an intriguing connection between the neutrino mass mechanism, the baryon asymmetry of the Universe, and the discrepant measurements of $H_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03249v2-abstract-full').style.display = 'none'; document.getElementById('2103.03249v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 4 appendices. v2: Matches the published version in EPJC. Minor upgrades: several references added, fixed typos, corrected a factor of 2 in Eq. 10, added a discussion about possible decoherence effects. Results and conclusions remain unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP 1318/21 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2021) 81, 515 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.02706">arXiv:2101.02706</a> <span> [<a href="https://arxiv.org/pdf/2101.02706">pdf</a>, <a href="https://arxiv.org/format/2101.02706">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.035028">10.1103/PhysRevD.104.035028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collider Signals of Baryogenesis and Dark Matter from $B$ Mesons: A Roadmap to Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alonso-%C3%81lvarez%2C+G">Gonzalo Alonso-脕lvarez</a>, <a href="/search/hep-ph?searchtype=author&query=Elor%2C+G">Gilly Elor</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.02706v3-abstract-short" style="display: inline;"> Low-scale baryogenesis could be discovered at $B$-factories and the LHC. In the $B$-Mesogenesis paradigm [G. Elor, M. Escudero, and A. E. Nelson, PRD 99, 035031 (2019), arXiv:1810.00880], the CP violating oscillations and subsequent decays of $B$ mesons in the early Universe simultaneously explain the origin of the baryonic and the dark matter of the Universe. This mechanism for baryo- and dark ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02706v3-abstract-full').style.display = 'inline'; document.getElementById('2101.02706v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.02706v3-abstract-full" style="display: none;"> Low-scale baryogenesis could be discovered at $B$-factories and the LHC. In the $B$-Mesogenesis paradigm [G. Elor, M. Escudero, and A. E. Nelson, PRD 99, 035031 (2019), arXiv:1810.00880], the CP violating oscillations and subsequent decays of $B$ mesons in the early Universe simultaneously explain the origin of the baryonic and the dark matter of the Universe. This mechanism for baryo- and dark matter genesis from $B$ mesons gives rise to distinctive signals at collider experiments, which we scrutinize in this paper. We study CP violating observables in the $B^0_q-\bar{B}_q^0$ system, discuss current and expected sensitivities for the exotic decays of $B$ mesons into a visible baryon and missing energy, and explore the implications of direct searches for a TeV-scale colored scalar at the LHC and in meson-mixing observables. Remarkably, we conclude that a combination of measurements at BaBar, Belle, Belle II, LHCb, ATLAS and CMS can fully test $B$-Mesogenesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.02706v3-abstract-full').style.display = 'none'; document.getElementById('2101.02706v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 13 figures, 5 appendices. v2: Major update. Thanks to our referee, we have found and analyzed and old ALEPH search for b-decays with large missing energy which leads to relevant new constraints on the parameter space. The discussion of the implications of CP violation measurements has also been improved. Main conclusions remain unchanged. v3: Fixed typos. Matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-HEP 1299/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 035028 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.03572">arXiv:2010.03572</a> <span> [<a href="https://arxiv.org/pdf/2010.03572">pdf</a>, <a href="https://arxiv.org/format/2010.03572">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3640">10.1093/mnras/staa3640 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New Constraints on the Mass of Fermionic Dark Matter from Dwarf Spheroidal Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a>, <a href="/search/hep-ph?searchtype=author&query=Tiki%2C+V">Victoria Tiki</a>, <a href="/search/hep-ph?searchtype=author&query=Blas%2C+D">Diego Blas</a>, <a href="/search/hep-ph?searchtype=author&query=Bondarenko%2C+K">Kyrylo Bondarenko</a>, <a href="/search/hep-ph?searchtype=author&query=Boyarsky%2C+A">Alexey Boyarsky</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a>, <a href="/search/hep-ph?searchtype=author&query=Orkney%2C+M">Matthew Orkney</a>, <a href="/search/hep-ph?searchtype=author&query=Read%2C+J+I">Justin I. Read</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.03572v2-abstract-short" style="display: inline;"> Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lower bounds on the mass of fermionic dark matter particles. The refinement in the results compared to previous works is realised particularly due to a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03572v2-abstract-full').style.display = 'inline'; document.getElementById('2010.03572v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.03572v2-abstract-full" style="display: none;"> Dwarf spheroidal galaxies are excellent systems to probe the nature of fermionic dark matter due to their high observed dark matter phase-space density. In this work, we review, revise and improve upon previous phase-space considerations to obtain lower bounds on the mass of fermionic dark matter particles. The refinement in the results compared to previous works is realised particularly due to a significantly improved Jeans analysis of the galaxies. We discuss two methods to obtain phase-space bounds on the dark matter mass, one model-independent bound based on Pauli's principle, and the other derived from an application of Liouville's theorem. As benchmark examples for the latter case, we derive constraints for thermally decoupled particles and (non-)resonantly produced sterile neutrinos. Using the Pauli principle, we report a model-independent lower bound of $m \geq 0.18\,\mathrm{keV}$ at 68% CL and $m \geq 0.13\,\mathrm{keV}$ at 95% CL. For relativistically decoupled thermal relics, this bound is strengthened to $m \geq 0.59\,\mathrm{keV}$ at 68% CL and $m \geq 0.41\,\mathrm{keV}$ at 95% CL, whilst for non-resonantly produced sterile neutrinos the constraint is $m \geq 2.80\,\mathrm{keV}$ at 68% CL and $m \geq 1.74\,\mathrm{keV}$ at 95% CL. Finally, the phase-space bounds on resonantly produced sterile neutrinos are compared with complementary limits from X-ray, Lyman-$伪$ and Big Bang Nucleosynthesis observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.03572v2-abstract-full').style.display = 'none'; document.getElementById('2010.03572v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, 1 table. Matches version to appear in MNRAS - minor clarifications added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2020-58, TUM-HEP-1285/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc. 501, (2021), 1, 1188-1201 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.03917">arXiv:2009.03917</a> <span> [<a href="https://arxiv.org/pdf/2009.03917">pdf</a>, <a href="https://arxiv.org/format/2009.03917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2021)032">10.1007/JHEP01(2021)032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Axion Quality Problem: Global Symmetry Breaking and Wormholes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.03917v3-abstract-short" style="display: inline;"> Continuous global symmetries are expected to be broken by gravity, which can lead to important phenomenological consequences. A prime example is the threat that this poses to the viability of the Peccei-Quinn solution to the strong CP problem. In this paper, we explore the impact of wormholes as a source of global symmetry breaking by gravity. We review the current status of wormholes and global s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03917v3-abstract-full').style.display = 'inline'; document.getElementById('2009.03917v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.03917v3-abstract-full" style="display: none;"> Continuous global symmetries are expected to be broken by gravity, which can lead to important phenomenological consequences. A prime example is the threat that this poses to the viability of the Peccei-Quinn solution to the strong CP problem. In this paper, we explore the impact of wormholes as a source of global symmetry breaking by gravity. We review the current status of wormholes and global symmetries and note that, surprisingly, the axion has a quality problem within non-perturbative Einstein gravity. Although these wormholes lead to a large breaking of global symmetries, we show that their effect is nonetheless relevant for the model building of gauge protected axions. We also find wormhole solutions within two scenarios: (i) an extended global symmetry group within Einstein gravity, and (ii) U(1) wormholes within the low-energy limit of an open String Theory. The former allows us to show that the concept of a global symmetry in General Relativity is somewhat ill-defined. The latter illustrates that for motivated values of the string coupling constant, axions appear to have a quality problem within the open String Theory we consider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.03917v3-abstract-full').style.display = 'none'; document.getElementById('2009.03917v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures. Matches version to appear in JHEP - minor clarifications added, references updated</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2020-48, TUM-HEP-1282/20 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 01 (2021) 032 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.04994">arXiv:2007.04994</a> <span> [<a href="https://arxiv.org/pdf/2007.04994">pdf</a>, <a href="https://arxiv.org/format/2007.04994">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2020)119">10.1007/JHEP12(2020)119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Lopez-Pavon%2C+J">Jacobo Lopez-Pavon</a>, <a href="/search/hep-ph?searchtype=author&query=Rius%2C+N">Nuria Rius</a>, <a href="/search/hep-ph?searchtype=author&query=Sandner%2C+S">Stefan Sandner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.04994v3-abstract-short" style="display: inline;"> At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($螞$CDM), the Planck collaboration reports $\sum m_谓< 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $蟿_谓\lesssim t_U$, represent a par… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04994v3-abstract-full').style.display = 'inline'; document.getElementById('2007.04994v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.04994v3-abstract-full" style="display: none;"> At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($螞$CDM), the Planck collaboration reports $\sum m_谓< 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $蟿_谓\lesssim t_U$, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body decaying neutrinos into BSM particles are a promising option to relax cosmological neutrino mass bounds. We then build a simple extension of the type I seesaw scenario by adding one sterile state $谓_4$ and a Goldstone boson $蠁$, in which $谓_i \to 谓_4 \, 蠁$ decays can loosen the neutrino mass bounds up to $\sum m_谓\sim 1\,\text{eV}$, without spoiling the light neutrino mass generation mechanism. Remarkably, this is possible for a large range of the right-handed neutrino masses, from the electroweak up to the GUT scale. We successfully implement this idea in the context of minimal neutrino mass models based on a $U(1)_{渭-蟿}$ flavor symmetry, which are otherwise in tension with the current bound on $\sum m_谓$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.04994v3-abstract-full').style.display = 'none'; document.getElementById('2007.04994v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 8 figures, 2 tables, 7 appendices. v2: Matches published version. Minor upgrades: added appendix on BBN constraints on sterile neutrinos lighter than active neutrinos, added appendix discussing the potential amelioration of CMB neutrino decay bounds, refined discussion in Sec. 3. Results and conclusions remain unchanged. v3: fixed factor of 2 in Eqs A.4, A.6 and A.8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2020-27, FTUV-20-0625.4735, IFIC/20-33 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 12 (2020) 119 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16182">arXiv:2006.16182</a> <span> [<a href="https://arxiv.org/pdf/2006.16182">pdf</a>, <a href="https://arxiv.org/format/2006.16182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21105/astro.2006.16182">10.21105/astro.2006.16182 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Allahverdi%2C+R">Rouzbeh Allahverdi</a>, <a href="/search/hep-ph?searchtype=author&query=Amin%2C+M+A">Mustafa A. Amin</a>, <a href="/search/hep-ph?searchtype=author&query=Berlin%2C+A">Asher Berlin</a>, <a href="/search/hep-ph?searchtype=author&query=Bernal%2C+N">Nicol谩s Bernal</a>, <a href="/search/hep-ph?searchtype=author&query=Byrnes%2C+C+T">Christian T. Byrnes</a>, <a href="/search/hep-ph?searchtype=author&query=Delos%2C+M+S">M. Sten Delos</a>, <a href="/search/hep-ph?searchtype=author&query=Erickcek%2C+A+L">Adrienne L. Erickcek</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Figueroa%2C+D+G">Daniel G. Figueroa</a>, <a href="/search/hep-ph?searchtype=author&query=Freese%2C+K">Katherine Freese</a>, <a href="/search/hep-ph?searchtype=author&query=Harada%2C+T">Tomohiro Harada</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&query=Kaiser%2C+D+I">David I. Kaiser</a>, <a href="/search/hep-ph?searchtype=author&query=Karwal%2C+T">Tanvi Karwal</a>, <a href="/search/hep-ph?searchtype=author&query=Kohri%2C+K">Kazunori Kohri</a>, <a href="/search/hep-ph?searchtype=author&query=Krnjaic%2C+G">Gordan Krnjaic</a>, <a href="/search/hep-ph?searchtype=author&query=Lewicki%2C+M">Marek Lewicki</a>, <a href="/search/hep-ph?searchtype=author&query=Lozanov%2C+K+D">Kaloian D. Lozanov</a>, <a href="/search/hep-ph?searchtype=author&query=Poulin%2C+V">Vivian Poulin</a>, <a href="/search/hep-ph?searchtype=author&query=Sinha%2C+K">Kuver Sinha</a>, <a href="/search/hep-ph?searchtype=author&query=Smith%2C+T+L">Tristan L. Smith</a>, <a href="/search/hep-ph?searchtype=author&query=Takahashi%2C+T">Tomo Takahashi</a>, <a href="/search/hep-ph?searchtype=author&query=Tenkanen%2C+T">Tommi Tenkanen</a>, <a href="/search/hep-ph?searchtype=author&query=Unwin%2C+J">James Unwin</a>, <a href="/search/hep-ph?searchtype=author&query=Vaskonen%2C+V">Ville Vaskonen</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16182v2-abstract-short" style="display: inline;"> It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is theref… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16182v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16182v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16182v2-abstract-full" style="display: none;"> It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves, primordial black holes, or microhalos during a nonstandard expansion phase have been recently made. In this paper, we review various possible causes and consequences of deviations from radiation domination in the early Universe - taking place either before or after BBN - and the constraints on them, as they have been discussed in the literature during the recent years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16182v2-abstract-full').style.display = 'none'; document.getElementById('2006.16182v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">67 pages, 18 figures. v2: Discussion and references added. Accepted for publication in The Open Journal of Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-242-A, KCL-PH-TH/2020-33, KEK-Cosmo-257, KEK-TH-2231, IPMU20-0070, PI/UAN-2020-674FT, RUP-20-22 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Open J. Astrophys. Vol. 4, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01470">arXiv:2004.01470</a> <span> [<a href="https://arxiv.org/pdf/2004.01470">pdf</a>, <a href="https://arxiv.org/format/2004.01470">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Could the Hubble Tension be Pointing Towards the Neutrino Mass Mechanism? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01470v1-abstract-short" style="display: inline;"> Local measurements of the Hubble constant currently disagree with the high-precision value that is inferred from the CMB under the assumption of a $螞$CDM cosmology. The significance of this tension clearly motivates studying extensions of the standard cosmological model capable of addressing this outstanding issue. Broadly speaking, models that have been successful in reducing the the tension betw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01470v1-abstract-full').style.display = 'inline'; document.getElementById('2004.01470v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01470v1-abstract-full" style="display: none;"> Local measurements of the Hubble constant currently disagree with the high-precision value that is inferred from the CMB under the assumption of a $螞$CDM cosmology. The significance of this tension clearly motivates studying extensions of the standard cosmological model capable of addressing this outstanding issue. Broadly speaking, models that have been successful in reducing the the tension between the CMB and local measurements (without introducing additional tension in other datasets) require an additional component of the energy density in the Universe at a time close to recombination. In this contribution, I will show that the Majoron -- a pseudo-Goldstone boson arising from the spontaneous breaking of a global lepton number symmetry and often associated with the neutrino mass mechanism -- can help to reduce the Hubble tension. Importantly, I will also show that current CMB observations can constrain neutrino-Majoron couplings as small as $10^{-13}$, which within the type-I seesaw mechanism correspond to scales of lepton number breaking as high as $\sim 1\,\text{TeV}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01470v1-abstract-full').style.display = 'none'; document.getElementById('2004.01470v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 figure. Contribution to the NuPhys2019 proceedings: https://indico.cern.ch/event/818781/ . Poster can be found at https://www.dropbox.com/s/n6jizypa0wfcfto/Escudero_Poster_Nuphys2019.pdf?dl=0</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2020-12 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04466">arXiv:2001.04466</a> <span> [<a href="https://arxiv.org/pdf/2001.04466">pdf</a>, <a href="https://arxiv.org/format/2001.04466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/05/048">10.1088/1475-7516/2020/05/048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision Early Universe Thermodynamics made simple: $N_{\rm eff}$ and Neutrino Decoupling in the Standard Model and beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04466v2-abstract-short" style="display: inline;"> Precision measurements of the number of effective relativistic neutrino species and the primordial element abundances require accurate theoretical predictions for early Universe observables in the Standard Model and beyond. Given the complexity of accurately modelling the thermal history of the early Universe, in this work, we extend a previous method presented by the author to obtain simple, fast… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04466v2-abstract-full').style.display = 'inline'; document.getElementById('2001.04466v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04466v2-abstract-full" style="display: none;"> Precision measurements of the number of effective relativistic neutrino species and the primordial element abundances require accurate theoretical predictions for early Universe observables in the Standard Model and beyond. Given the complexity of accurately modelling the thermal history of the early Universe, in this work, we extend a previous method presented by the author to obtain simple, fast and accurate early Universe thermodynamics. The method is based upon the approximation that all relevant species can be described by thermal equilibrium distribution functions characterized by a temperature and a chemical potential. We apply the method to neutrino decoupling in the Standard Model and find $N_{\rm eff}^{\rm SM} = 3.045$ -- a result in excellent agreement with previous state-of-the-art calculations. We apply the method to study the thermal history of the Universe in the presence of a very light ($1\,\text{eV}<m_蠁< 1\,\text{MeV}$) and weakly coupled ($位\lesssim 10^{-9}$) neutrinophilic scalar. We find our results to be in excellent agreement with the solution to the exact Liouville equation. Finally, we release a code: NUDEC_BSM (available in both Mathematica and Python formats), with which neutrino decoupling can be accurately and efficiently solved in the Standard Model and beyond: https://github.com/MiguelEA/nudec_BSM . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04466v2-abstract-full').style.display = 'none'; document.getElementById('2001.04466v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures, 2 tables, 7 appendices. NUDEC_BSM code can be found at https://github.com/MiguelEA/nudec_BSM . Ancillary file contains the SM evolution as relevant for BBN. v2: Matches published version. Minor upgrades: refined parametrization of nu-e neutral current interactions in the SM, added a bonus section discussing Neff in the SM at full NLO. Results and conclusions remain unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2019-85 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.10730">arXiv:1910.10730</a> <span> [<a href="https://arxiv.org/pdf/1910.10730">pdf</a>, <a href="https://arxiv.org/format/1910.10730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7727-y">10.1140/epjc/s10052-020-7727-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved BBN Constraints on the Variation of the Gravitational Constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.10730v2-abstract-short" style="display: inline;"> Big Bang Nucleosynthesis (BBN) is very sensitive to the cosmological expansion rate. If the gravitational constant $G$ took a different value during the nucleosynthesis epoch than today, the primordial abundances of light elements would be affected. In this work, we improve the bounds on this variation using recent determinations of the primordial element abundances, updated nuclear and weak react… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10730v2-abstract-full').style.display = 'inline'; document.getElementById('1910.10730v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.10730v2-abstract-full" style="display: none;"> Big Bang Nucleosynthesis (BBN) is very sensitive to the cosmological expansion rate. If the gravitational constant $G$ took a different value during the nucleosynthesis epoch than today, the primordial abundances of light elements would be affected. In this work, we improve the bounds on this variation using recent determinations of the primordial element abundances, updated nuclear and weak reaction rates and observations of the Cosmic Microwave Background (CMB). When combining the measured abundances and the baryon density from CMB observations by Planck, we find $G_\mathrm{BBN}/G_0 = 0.99^{+0.06}_{-0.05}$ at $2蟽$ confidence level. If the variation of $G$ is linear in time, we find $\dot{G}/G_0 = 0.7^{+3.8}_{-4.3}\times 10^{-12} \, \mathrm{yr}^{-1}$, again at $2蟽$. These bounds are significantly stronger than those from previous primordial nucleosynthesis studies, and are comparable and complementary to CMB, stellar, solar system, lunar laser ranging, pulsar timing and gravitational wave constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.10730v2-abstract-full').style.display = 'none'; document.getElementById('1910.10730v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Theoretical deuterium error updated, bounds amended accordingly. Minor clarifications also added. Fixed typos. Updated references. Conclusions remain unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01649">arXiv:1910.01649</a> <span> [<a href="https://arxiv.org/pdf/1910.01649">pdf</a>, <a href="https://arxiv.org/format/1910.01649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/01/004">10.1088/1475-7516/2020/01/004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Refined Bounds on MeV-scale Thermal Dark Sectors from BBN and the CMB </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Sabti%2C+N">Nashwan Sabti</a>, <a href="/search/hep-ph?searchtype=author&query=Alvey%2C+J">James Alvey</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a>, <a href="/search/hep-ph?searchtype=author&query=Blas%2C+D">Diego Blas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01649v2-abstract-short" style="display: inline;"> New light states thermally coupled to the Standard Model plasma alter the expansion history of the Universe and impact the synthesis of the primordial light elements. In this work, we carry out an exhaustive and precise analysis of the implications of MeV-scale BSM particles in Big Bang Nucleosynthesis (BBN) and for Cosmic Microwave Background (CMB) observations. We find that, BBN observations set… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01649v2-abstract-full').style.display = 'inline'; document.getElementById('1910.01649v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01649v2-abstract-full" style="display: none;"> New light states thermally coupled to the Standard Model plasma alter the expansion history of the Universe and impact the synthesis of the primordial light elements. In this work, we carry out an exhaustive and precise analysis of the implications of MeV-scale BSM particles in Big Bang Nucleosynthesis (BBN) and for Cosmic Microwave Background (CMB) observations. We find that, BBN observations set a lower bound on the thermal dark matter mass of $m_蠂> 0.4\,\text{MeV}$ at $2蟽$. This bound is independent of the spin and number of internal degrees of freedom of the particle, of the annihilation being s-wave or p-wave, and of the annihilation final state. Furthermore, we show that current BBN plus CMB observations constrain purely electrophilic and neutrinophilic BSM species to have a mass, $m_蠂> 3.7\,\text{MeV}$ at $2蟽$. We explore the reach of future BBN measurements and show that upcoming CMB missions should improve the bounds on light BSM thermal states to $m_蠂> (10-15)\,\text{MeV}$. Finally, we demonstrate that very light BSM species thermally coupled to the SM plasma are highly disfavoured by current cosmological observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01649v2-abstract-full').style.display = 'none'; document.getElementById('1910.01649v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 10 figures, 7 tables. v2. References and minor clarifications added. Matches published version in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2019-75 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.04044">arXiv:1909.04044</a> <span> [<a href="https://arxiv.org/pdf/1909.04044">pdf</a>, <a href="https://arxiv.org/format/1909.04044">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7854-5">10.1140/epjc/s10052-020-7854-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A CMB Search for the Neutrino Mass Mechanism and its Relation to the $H_0$ Tension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.04044v2-abstract-short" style="display: inline;"> The majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the Cosmic Microwave Background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse n… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04044v2-abstract-full').style.display = 'inline'; document.getElementById('1909.04044v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.04044v2-abstract-full" style="display: none;"> The majoron, a pseudo-Goldstone boson arising from the spontaneous breaking of global lepton number, is a generic feature of many models intended to explain the origin of the small neutrino masses. In this work, we investigate potential imprints in the Cosmic Microwave Background (CMB) arising from massive majorons, should they thermalize with neutrinos after Big Bang Nucleosynthesis via inverse neutrino decays. We show that Planck2018 measurements of the CMB are currently sensitive to neutrino-majoron couplings as small as $位\sim 10^{-13}$, which if interpreted in the context of the type-I seesaw mechanism correspond to a lepton number symmetry breaking scale $v_L \sim \mathcal{O}(100) \, {\rm GeV}$. Additionally, we identify parameter space for which the majoron-neutrino interactions, collectively with an extra contribution to the effective number of relativistic species $N_{\rm eff}$, can ameliorate the outstanding $H_0$ tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.04044v2-abstract-full').style.display = 'none'; document.getElementById('1909.04044v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures + Supplementary Material. Comments are welcome! v2: Minor clarifications added. References added. Expanded Table 1 and moved it to the main text. Results and conclusions remain unchanged. Matches Letter published in EPJC. Ancillary file contains the obtained Planck legacy bound on neutrino-majoron interactions at 95%CL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2019-71 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05893">arXiv:1907.05893</a> <span> [<a href="https://arxiv.org/pdf/1907.05893">pdf</a>, <a href="https://arxiv.org/format/1907.05893">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/11/024">10.1088/1475-7516/2019/11/024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $Z'$ Mediated WIMPs: Dead, Dying, or Soon to be Detected? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Blanco%2C+C">Carlos Blanco</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05893v2-abstract-short" style="display: inline;"> Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of da… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05893v2-abstract-full').style.display = 'inline'; document.getElementById('1907.05893v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05893v2-abstract-full" style="display: none;"> Although weakly interacting massive particles (WIMPs) have long been among the most studied and theoretically attractive classes of candidates for the dark matter of our universe, the lack of their detection in direct detection and collider experiments has begun to dampen enthusiasm for this paradigm. In this study, we set out to appraise the status of the WIMP paradigm, focusing on the case of dark matter candidates that interact with the Standard Model through a new gauge boson. After considering a wide range of $Z'$ mediated dark matter models, we quantitatively evaluate the fraction of the parameter space that has been excluded by existing experiments, and that is projected to fall within the reach of future direct detection experiments. Despite the existence of stringent constraints, we find that a sizable fraction of this parameter space remains viable. More specifically, if the dark matter is a Majorana fermion, we find that an order one fraction of the parameter space is in many cases untested by current experiments. Future direct detection experiments with sensitivity near the irreducible neutrino floor will be able to test a significant fraction of the currently viable parameter space, providing considerable motivation for the next generation of direct detection experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05893v2-abstract-full').style.display = 'none'; document.getElementById('1907.05893v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Published version. Modified text, no significant changes. v1:46 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.05425">arXiv:1907.05425</a> <span> [<a href="https://arxiv.org/pdf/1907.05425">pdf</a>, <a href="https://arxiv.org/format/1907.05425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.103531">10.1103/PhysRevD.100.103531 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmological Constraints on Invisible Neutrino Decays Revisited </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Fairbairn%2C+M">Malcolm Fairbairn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.05425v2-abstract-short" style="display: inline;"> Invisible neutrino decay modes are difficult to target at laboratory experiments, and current bounds on such decays from solar neutrino and neutrino oscillation experiments are somewhat weak. It has been known for some time that Cosmology can serve as a powerful probe of invisible neutrino decays. In this work, we show that in order for Big Bang Nucleosynthesis to be successful, the invisible neut… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05425v2-abstract-full').style.display = 'inline'; document.getElementById('1907.05425v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.05425v2-abstract-full" style="display: none;"> Invisible neutrino decay modes are difficult to target at laboratory experiments, and current bounds on such decays from solar neutrino and neutrino oscillation experiments are somewhat weak. It has been known for some time that Cosmology can serve as a powerful probe of invisible neutrino decays. In this work, we show that in order for Big Bang Nucleosynthesis to be successful, the invisible neutrino decay lifetime is bounded to be $蟿_谓> 10^{-3}\,\text{s}$ at 95\% CL. We revisit Cosmic Microwave Background constraints on invisible neutrino decays, and by using Planck2018 observations we find the following bound on the neutrino lifetime: $蟿_谓> (1.3-0.3)\times 10^{9}\,\text{s} \, \left({m_谓}/{ 0.05\,\text{eV} }\right)^3$ at $95\%$ CL. We show that this bound is robust to modifications of the cosmological model, in particular that it is independent of the presence of dark radiation. We find that lifetimes relevant for Supernova observations ($蟿_谓\sim 10^{5}\,\text{s}\, \left({m_谓}/{ 0.05\,\text{eV} }\right)^3$) are disfavoured at more than $5\,蟽$ with respect to $螞$CDM given the latest Planck CMB observations. Finally, we show that when including high-$\ell$ Planck polarization data, neutrino lifetimes $蟿_谓= (2-16)\times 10^{9}\,\text{s} \, \left({m_谓}/{ 0.05\,\text{eV} }\right)^3$ are mildly preferred -- with a 1-2 $蟽$ significance -- over neutrinos being stable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.05425v2-abstract-full').style.display = 'none'; document.getElementById('1907.05425v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, 2 tables. v2: updated analysis with Planck legacy data and BAO data, new results are in good agreement with the Planck 2015 analysis. References and minor clarifications added. Conclusions unchanged. Matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2019-57 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 103531 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02010">arXiv:1901.02010</a> <span> [<a href="https://arxiv.org/pdf/1901.02010">pdf</a>, <a href="https://arxiv.org/format/1901.02010">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2019)071">10.1007/JHEP03(2019)071 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmology With a Very Light $L_渭- L_蟿$ Gauge Boson </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&query=Krnjaic%2C+G">Gordan Krnjaic</a>, <a href="/search/hep-ph?searchtype=author&query=Pierre%2C+M">Mathias Pierre</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02010v3-abstract-short" style="display: inline;"> In this paper, we explore in detail the cosmological implications of an abelian $L_渭-L_蟿$ gauge extension of the Standard Model featuring a light and weakly coupled $Z'$. Such a scenario is motivated by the longstanding $\sim \, 4 蟽$ discrepancy between the measured and predicted values of the muon's anomalous magnetic moment, $(g-2)_渭$, as well as the tension between late and early time determina… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02010v3-abstract-full').style.display = 'inline'; document.getElementById('1901.02010v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02010v3-abstract-full" style="display: none;"> In this paper, we explore in detail the cosmological implications of an abelian $L_渭-L_蟿$ gauge extension of the Standard Model featuring a light and weakly coupled $Z'$. Such a scenario is motivated by the longstanding $\sim \, 4 蟽$ discrepancy between the measured and predicted values of the muon's anomalous magnetic moment, $(g-2)_渭$, as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the $Z'$ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significantly relaxed. The first of these is the previously identified region in which a $\sim \, 10-20$ MeV $Z'$ reaches equilibrium in the early universe and then decays, heating the neutrino population and delaying the process of neutrino decoupling. For a coupling of $g_{渭-蟿} \simeq (3-8) \times 10^{-4}$, such a particle can also explain the observed $(g-2)_渭$ anomaly. In the second region, the $Z'$ is very light ($m_{Z'} \sim 1\,\text{eV}$ to $\text{MeV}$) and very weakly coupled ($g_{渭-蟿} \sim 10^{-13}$ to $10^{-9}$). In this case, the $Z'$ population is produced through freeze-in, and decays to neutrinos after neutrino decoupling. Across large regions of parameter space, we predict a contribution to the energy density of radiation that can appreciably relax the reported Hubble tension, $螖N_{\rm eff} \simeq 0.2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02010v3-abstract-full').style.display = 'none'; document.getElementById('1901.02010v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + 5 appendices, 10 figures. v2: Added comment to reflect that $螖N_{eff}$ is only modified for $m_{Z'} > {\rm eV}$ and cropped Fig. 2 accordingly. Added comment on possible cosmological energy injection bounds. Main conclusions unchanged. Added references. v3: Matches the published version, typos fixed, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-19-001-A, LPT-Orsay-18-15, IFIC-19-02, KCL-19-01, IFT-UAM/CSIC-19-7 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1903 (2019) 071 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05605">arXiv:1812.05605</a> <span> [<a href="https://arxiv.org/pdf/1812.05605">pdf</a>, <a href="https://arxiv.org/format/1812.05605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/02/007">10.1088/1475-7516/2019/02/007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino decoupling beyond the Standard Model: CMB constraints on the Dark Matter mass with a fast and precise $N_{\rm eff}$ evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05605v4-abstract-short" style="display: inline;"> The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05605v4-abstract-full').style.display = 'inline'; document.getElementById('1812.05605v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05605v4-abstract-full" style="display: none;"> The number of effective relativistic neutrino species represents a fundamental probe of the thermal history of the early Universe, and as such of the Standard Model of Particle Physics. Traditional approaches to the neutrino decoupling are either very technical and computationally expensive, or assume that neutrinos decouple instantaneously. In this work, we aim to fill the gap between these two approaches by modeling the neutrino decoupling in terms of two simple coupled differential equations for the electromagnetic and neutrino sector temperatures, in which all the relevant interactions are taken into account and which allows for a straightforward implementation of BSM species. Upon including finite temperature QED corrections we reach an accuracy on $N_{\rm eff}$ in the SM of $0.01$. We illustrate the usefulness of this approach to the neutrino decoupling by considering, in a model independent manner, the impact of MeV thermal dark matter on $N_{\rm eff}$. We show that Planck rules out electrophilic and neutrinophilic thermal dark matter particles of $m< 3.0\,\text{MeV}$ at 95\% CL regardless of their spin, and of their annihilation being $s$-wave or $p$-wave. We point out that thermal dark matter particles with non-negligible interactions with both electrons and neutrinos are more elusive to CMB observations than purely electrophilic or neutrinophilic ones. In addition, assisted by the accuracy of our approach, we show that CMB Stage-IV experiments will generically test thermal dark matter particles with $m \lesssim 15\,\text{MeV}$. We make publicly available the codes developed for this study at https://github.com/MiguelEA/nudec_BSM . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05605v4-abstract-full').style.display = 'none'; document.getElementById('1812.05605v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v4: Corrected an error in the $谓$-$e$ and $谓$-$谓$ interaction rates. Constraints change by as much as 30%. Conclusions and results remain unchanged. Code is available at https://github.com/MiguelEA/nudec_BSM</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-2018-76 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1902 (2019) 007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00880">arXiv:1810.00880</a> <span> [<a href="https://arxiv.org/pdf/1810.00880">pdf</a>, <a href="https://arxiv.org/format/1810.00880">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.035031">10.1103/PhysRevD.99.035031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Baryogenesis and Dark Matter from $B$ Mesons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Elor%2C+G">Gilly Elor</a>, <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Nelson%2C+A+E">Ann E. Nelson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00880v3-abstract-short" style="display: inline;"> We present a new mechanism of Baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral $B$ meson oscillations and subsequent decays. This set-up is testable at hadron colliders and $B$-factories. In the early Universe, decays of a long lived particle produce $B$ mesons and anti-mesons out of thermal equilibrium. These mesons/… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00880v3-abstract-full').style.display = 'inline'; document.getElementById('1810.00880v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00880v3-abstract-full" style="display: none;"> We present a new mechanism of Baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral $B$ meson oscillations and subsequent decays. This set-up is testable at hadron colliders and $B$-factories. In the early Universe, decays of a long lived particle produce $B$ mesons and anti-mesons out of thermal equilibrium. These mesons/anti-mesons then undergo CP violating oscillations before quickly decaying into visible and dark sector particles. Dark matter will be charged under Baryon number so that the visible sector baryon asymmetry is produced without violating the total baryon number of the Universe. The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral $B$ decays; an experimental observable. Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics. We will illustrate this mechanism with a model that is unconstrained by di-nucleon decay, does not require a high reheat temperature, and would have unique experimental signals -- a positive leptonic asymmetry in $B$ meson decays, a new decay of $B$ mesons into a baryon and missing energy, and a new decay of $b$-flavored baryons into mesons and missing energy. These three observables are testable at current and upcoming collider experiments, allowing for a distinct probe of this mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00880v3-abstract-full').style.display = 'none'; document.getElementById('1810.00880v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures. v2: references added, corrected the antinucleon abundance calculation (sec III.C.iii), and included comments on the viability of a measurement of the decay of $b$-flavored baryons into mesons and missing energy at hadron colliders (sec IV.A.iii). v3: matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KCL-18-53, IFIC-18-35 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 035031 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02823">arXiv:1806.02823</a> <span> [<a href="https://arxiv.org/pdf/1806.02823">pdf</a>, <a href="https://arxiv.org/format/1806.02823">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2018)190">10.1007/JHEP08(2018)190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Dispirited Case of Gauged $U(1)_{B-L}$ Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a>, <a href="/search/hep-ph?searchtype=author&query=Rius%2C+N">Nuria Rius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02823v2-abstract-short" style="display: inline;"> We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonan… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02823v2-abstract-full').style.display = 'inline'; document.getElementById('1806.02823v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02823v2-abstract-full" style="display: none;"> We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for $ 150 \, \text{GeV} < m_{Z'} < 3 \, \text{TeV}$. We further explore the phenomenology in the high mass region (i.e. masses $\gtrsim \mathcal{O}(1) \, \text{TeV}$) and highlight theoretical arguments, related to the appearance of a Landau pole or an instability of the scalar potential, disfavoring large portions of this parameter space. Collectively, these considerations illustrate that a minimal extension of the Standard Model via a local $U(1)_{B-L}$ symmetry with a viable thermal dark matter candidate is difficult to achieve without fine-tuning. We conclude by discussing possible extensions of the model that relieve tension with collider constraints by reducing the gauge coupling required to produce the correct relic abundance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02823v2-abstract-full').style.display = 'none'; document.getElementById('1806.02823v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures. v2: References added. Matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/18-21, FTUV-18-0524.0283 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.07002">arXiv:1709.07002</a> <span> [<a href="https://arxiv.org/pdf/1709.07002">pdf</a>, <a href="https://arxiv.org/format/1709.07002">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2017/11/042">10.1088/1475-7516/2017/11/042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hidden Sector Dark Matter and the Galactic Center Gamma-Ray Excess: A Closer Look </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.07002v2-abstract-short" style="display: inline;"> Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07002v2-abstract-full').style.display = 'inline'; document.getElementById('1709.07002v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.07002v2-abstract-full" style="display: none;"> Stringent constraints from direct detection experiments and the Large Hadron Collider motivate us to consider models in which the dark matter does not directly couple to the Standard Model, but that instead annihilates into hidden sector particles which ultimately decay through small couplings to the Standard Model. We calculate the gamma-ray emission generated within the context of several such hidden sector models, including those in which the hidden sector couples to the Standard Model through the vector portal (kinetic mixing with Standard Model hypercharge), through the Higgs portal (mixing with the Standard Model Higgs boson), or both. In each case, we identify broad regions of parameter space in which the observed spectrum and intensity of the Galactic Center gamma-ray excess can easily be accommodated, while providing an acceptable thermal relic abundance and remaining consistent with all current constraints. We also point out that cosmic-ray antiproton measurements could potentially discriminate some hidden sector models from more conventional dark matter scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.07002v2-abstract-full').style.display = 'none'; document.getElementById('1709.07002v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: Published Version. Added references and text, and modified Figure 1. Conclusions unchanged. v1: 28 pages, 35 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/17-38, FERMILAB-PUB-17-383-A </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1612.06462">arXiv:1612.06462</a> <span> [<a href="https://arxiv.org/pdf/1612.06462">pdf</a>, <a href="https://arxiv.org/format/1612.06462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2017/02/038">10.1088/1475-7516/2017/02/038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated Collider and Direct Detection Constraints on Dark Matter Models for the Galactic Center Gamma-Ray Excess </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&query=Witte%2C+S+J">Samuel J. Witte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1612.06462v3-abstract-short" style="display: inline;"> Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06462v3-abstract-full').style.display = 'inline'; document.getElementById('1612.06462v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1612.06462v3-abstract-full" style="display: none;"> Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling to Standard Model fermions. All scenarios in which the dark matter annihilates through $t$-channel processes are now ruled out by a combination of the constraints from LUX/PandaX-II and the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1612.06462v3-abstract-full').style.display = 'none'; document.getElementById('1612.06462v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 December, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v3: Footnote and reference added. v2: Published version, text and citations added. 19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.09079">arXiv:1609.09079</a> <span> [<a href="https://arxiv.org/pdf/1609.09079">pdf</a>, <a href="https://arxiv.org/format/1609.09079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2016/12/029">10.1088/1475-7516/2016/12/029 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Berlin%2C+A">Asher Berlin</a>, <a href="/search/hep-ph?searchtype=author&query=Hooper%2C+D">Dan Hooper</a>, <a href="/search/hep-ph?searchtype=author&query=Lin%2C+M">Meng-Xiang Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.09079v2-abstract-short" style="display: inline;"> In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model $Z$ or the Stand… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09079v2-abstract-full').style.display = 'inline'; document.getElementById('1609.09079v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.09079v2-abstract-full" style="display: none;"> In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model $Z$ or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of $Z$ mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the $Z$ resonance ($m_{\rm DM} \simeq m_Z/2$) or greater than 200 GeV, or with a vector coupling and with $m_{\rm DM} > 6$ TeV. Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ($m_{\rm DM} \simeq m_H/2$). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.09079v2-abstract-full').style.display = 'none'; document.getElementById('1609.09079v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected an error on the relic abundance curves in the high mass region for the Z mediated models and for fermionic dark matter mediated by the Higgs. Some figures changed accordingly. Conclusions remain unchanged but for the case of a fermionic dark matter with purely axial couplings to the Z. References added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/16-66, FERMILAB-PUB-16-370-A </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.02373">arXiv:1607.02373</a> <span> [<a href="https://arxiv.org/pdf/1607.02373">pdf</a>, <a href="https://arxiv.org/format/1607.02373">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-4963-x">10.1140/epjc/s10052-017-4963-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sterile Neutrino portal to Dark Matter II: Exact Dark symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Rius%2C+N">Nuria Rius</a>, <a href="/search/hep-ph?searchtype=author&query=Sanz%2C+V">Ver贸nica Sanz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.02373v3-abstract-short" style="display: inline;"> We analyze a simple extension of the Standard Model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02373v3-abstract-full').style.display = 'inline'; document.getElementById('1607.02373v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.02373v3-abstract-full" style="display: none;"> We analyze a simple extension of the Standard Model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.02373v3-abstract-full').style.display = 'none'; document.getElementById('1607.02373v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: WIMP-nucleon scattering cross section constraints overestimated, some figures have changed accordingly. LUX and PANDAX limits updated. H.E.S.S. limits added. v3: Matches the published version. Feynman diagrams included. Improved discussion in Sec 5. Discussion on the thermal history of the model provided in Sec 4. Main conclusions remain unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1606.01258">arXiv:1606.01258</a> <span> [<a href="https://arxiv.org/pdf/1606.01258">pdf</a>, <a href="https://arxiv.org/format/1606.01258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2017)045">10.1007/JHEP02(2017)045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sterile neutrino portal to Dark Matter I: The $U(1)_{B-L}$ case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Rius%2C+N">Nuria Rius</a>, <a href="/search/hep-ph?searchtype=author&query=Sanz%2C+V">Ver贸nica Sanz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1606.01258v2-abstract-short" style="display: inline;"> In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global $U(1)_{B-L}$, broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01258v2-abstract-full').style.display = 'inline'; document.getElementById('1606.01258v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1606.01258v2-abstract-full" style="display: none;"> In this paper we explore the possibility that the sterile neutrino and Dark Matter sectors in the Universe have a common origin. We study the consequences of this assumption in the simple case of coupling the dark sector to the Standard Model via a global $U(1)_{B-L}$, broken down spontaneously by a dark scalar. This dark scalar provides masses to the dark fermions and communicates with the Higgs via a Higgs portal coupling. We find an interesting interplay between Dark Matter annihilation to dark scalars - the CP-even that mixes with the Higgs and the CP-odd which becomes a Goldstone boson, the Majoron - and heavy neutrinos, as well as collider probes via the coupling to the Higgs. Moreover, Dark Matter annihilation into sterile neutrinos and its subsequent decay to gauge bosons and quarks, charged leptons or neutrinos lead to indirect detection signatures which are close to current bounds on the gamma ray flux from the galactic center and dwarf galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1606.01258v2-abstract-full').style.display = 'none'; document.getElementById('1606.01258v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches the published version. References added. Improved discussion and figures. Conclusions unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FTUV-16-0419, IFIC/16-32 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 1702 (2017) 045 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1505.06735">arXiv:1505.06735</a> <span> [<a href="https://arxiv.org/pdf/1505.06735">pdf</a>, <a href="https://arxiv.org/format/1505.06735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2015/09/034">10.1088/1475-7516/2015/09/034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploring dark matter microphysics with galaxy surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&query=Escudero%2C+M">Miguel Escudero</a>, <a href="/search/hep-ph?searchtype=author&query=Mena%2C+O">Olga Mena</a>, <a href="/search/hep-ph?searchtype=author&query=Vincent%2C+A+C">Aaron C. Vincent</a>, <a href="/search/hep-ph?searchtype=author&query=Wilkinson%2C+R+J">Ryan J. Wilkinson</a>, <a href="/search/hep-ph?searchtype=author&query=Boehm%2C+C">Celine Boehm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1505.06735v3-abstract-short" style="display: inline;"> We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard $螞$CDM scenario. To quantify this statement, we focus on an extension of $螞$CDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and mat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06735v3-abstract-full').style.display = 'inline'; document.getElementById('1505.06735v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1505.06735v3-abstract-full" style="display: none;"> We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard $螞$CDM scenario. To quantify this statement, we focus on an extension of $螞$CDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via $N$-body simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1505.06735v3-abstract-full').style.display = 'none'; document.getElementById('1505.06735v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 May, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures, 4 tables. v2: refined DESI forecast technique, added contour plot for p-wave constraints and forecast. v3: corrected typo in H0 values in Tables II and III for the s-wave interaction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> IFIC/15-32, IPPP/15/29, DCPT/15/58 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 09 (2015) 034 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>