CINXE.COM
Search results for: infant wear
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: infant wear</title> <meta name="description" content="Search results for: infant wear"> <meta name="keywords" content="infant wear"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="infant wear" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="infant wear"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 782</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: infant wear</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Application of Natural Dyes on Polyester and Polyester-Cellulosic Blended Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepali%20Rastogi">Deepali Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanksha%20Rastogi"> Akanksha Rastogi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comfort and safety are two essential factors in a newborn’s clothing. Natural dyes are considered safe for infant clothes because they are non-toxic and have medicinal properties. Natural dyes are sensitive to pH and may show changes in hue under different pH conditions. Infant garments face treatments different than adult clothing, for instance, exposure to infant’s saliva, milk, and urine. The present study was designed to study the suitability of natural dyes for infant clothes. Cotton fabric was dyed using fifteen natural dyes and two mordants, alum, and ferrous sulphate. The dyed samples were assessed for colour fastness to washing, rubbing, perspiration and light. In addition, fastness to milk, saliva, and urine was also tested. Simulated solutions of saliva and urine were prepared for the study. For milk, one of the commercial formulations for infants was taken and used as per the directions. A wide gamut of colours was obtained after dyeing the cotton with different natural dyes and mordants. The colour strength of all the dyed samples was determined in terms of K/S values. Most of the ferrous sulphate mordanted dyes gave higher K/S values than alum mordanted samples. The wash fastness of dyed cotton fabrics ranged from 3/4 -5. Perspiration fastness test for the samples was done in both acidic and alkaline mediums. The ratings ranged from 3-5, with most of the dyes falling in the range of 4-5. The rubbing fastness of the dyed samples was tested in dry and wet conditions. The results showed excellent rub fastness ranging between 4-5. Light fastness was found to be good to moderate. The main food for infants is milk, and this becomes one of the main agents to spot infants' garments. All dyes showed excellent fastness properties against milk with a grey scale rating of 4-5. Fastness against saliva is recommended by various eco-labels, standards, and organizations for fabrics of infants or babies. The fastness of most of the dyes was found to be satisfactory against saliva. Infant garments get frequently soiled with urine. Most of the natural dyes on cotton fabric had good to excellent fastness to simulated urine. The grey scale ratings ranged from 3/4 – 5. Thus, it can be concluded that most of the natural dyes can be successfully used for infant wear and accessories and are fast to various liquids to which infant wear are exposed. Therefore, we can surround little ones with beautiful hues from nature's garden and clothe them in natural fibres dyed with natural dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fastness%20properties" title="fastness properties">fastness properties</a>, <a href="https://publications.waset.org/abstracts/search?q=infant%20wear" title=" infant wear"> infant wear</a>, <a href="https://publications.waset.org/abstracts/search?q=mordants" title=" mordants"> mordants</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a> </p> <a href="https://publications.waset.org/abstracts/124915/application-of-natural-dyes-on-polyester-and-polyester-cellulosic-blended-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Dry Sliding Wear Behaviour of Ti3SiC2 and the Effect of TiC on Its</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bendaoudi%20Seif-Eddine">Bendaoudi Seif-Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounazef%20Mokhtar"> Bounazef Mokhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wear behaviour of Ti3SiC2 coating in contact sliding under dry condition have been investigated on different pressures (0.1-0.8 MPa) at various speeds from 5 to 60 m/s. The ball-on-disc sliding-wear test was performed in ambient air with a relative humidity of 20%. An equation has been proposed to predict wear rates and describe sliding wear caused by Corundum ball on the studied material. The results show how the wear rate, measured by mass loss, varies in the range of (0.6 – 3.8 x E-6 mm3/Nm) with normal sliding distance under various test conditions; it increases with increasing load and rapidly with speed. The influence of TiC impurities on the wear behaviours was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball-on-disc" title="ball-on-disc">ball-on-disc</a>, <a href="https://publications.waset.org/abstracts/search?q=dry-sliding" title=" dry-sliding"> dry-sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti3SiC2" title=" Ti3SiC2"> Ti3SiC2</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/44824/dry-sliding-wear-behaviour-of-ti3sic2-and-the-effect-of-tic-on-its" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Wear Measurement of Thermomechanical Parameters of the Metal Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riad%20Harouz">Riad Harouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud"> Brahim Mahfoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifetime" title="lifetime">lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20carbides" title=" metal carbides"> metal carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical" title=" thermo-mechanical"> thermo-mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/26931/wear-measurement-of-thermomechanical-parameters-of-the-metal-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Gear Wear Product Analysis as Applied for Tribological Maintenance Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surapol%20Raadnui">Surapol Raadnui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an experimental investigation on a pair of gears in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back-to-back spur gear test rig was used. The test samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs was assessed with the utilization of the statistical design of the experiment. It can be deduced that wear debris characteristics exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tribology" title="tribology">tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=spur%20gear%20wear" title=" spur gear wear"> spur gear wear</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title=" predictive maintenance"> predictive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20particle%20analysis" title=" wear particle analysis"> wear particle analysis</a> </p> <a href="https://publications.waset.org/abstracts/140858/gear-wear-product-analysis-as-applied-for-tribological-maintenance-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Wet Sliding Wear and Frictional Behavior of Commercially Available Perspex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Reaz%20Ahmed">S. Reaz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Kaiser"> M. S. Kaiser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of commercially used Perspex was evaluated under dry and wet sliding condition using a pin-on-disc wear tester with different applied loads ranging from 2.5 to 20 N. Experiments were conducted with varying sliding distance from 0.2 km to 4.6 km, wherein the sliding velocity was kept constant, 0.64 ms<sup>-1</sup>. The results reveal that the weight loss increases with applied load and the sliding distance. The nature of the wear rate was very similar in both the sliding environments in which initially the wear rate increased very rapidly with increasing sliding distance and then progressed to a slower rate. Moreover, the wear rate in wet sliding environment was significantly lower than that under dry sliding condition. The worn surfaces were characterized by optical microscope and SEM. It is found that surface modification has significant effect on sliding wear performance of Perspex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perspex" title="Perspex">Perspex</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/73593/wet-sliding-wear-and-frictional-behavior-of-commercially-available-perspex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Wear Particle Analysis from used Gear Lubricants for Maintenance Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surapol%20Raadnui">Surapol Raadnui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This particular work describes an experimental investigation on gear wear in which wear and pitting were intentionally allowed to occur, namely, moisture corrosion pitting, acid-induced corrosion pitting, hard contaminant-related pitting and mechanical induced wear. A back to back spur gear test rig and a grease lubricated worm gear rig were used. The tests samples of wear debris were collected and assessed through the utilization of an optical microscope in order to correlate and compare the debris morphology to pitting and wear degradation of the worn gears. In addition, weight loss from all test gear pairs were assessed with utilization of statistical design of experiment. It can be deduced that wear debris characteristics from both cases exhibited a direct relationship with different pitting and wear modes. Thus, it should be possible to detect and diagnose gear pitting and wear utilization of worn surfaces, generated wear debris and quantitative measurement such as weight loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predictive%20maintenance" title="predictive maintenance">predictive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=worm%20gear" title=" worm gear"> worm gear</a>, <a href="https://publications.waset.org/abstracts/search?q=spur%20gear" title=" spur gear"> spur gear</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20debris%20analysis" title=" wear debris analysis"> wear debris analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20diagnostic" title=" problem diagnostic"> problem diagnostic</a> </p> <a href="https://publications.waset.org/abstracts/140861/wear-particle-analysis-from-used-gear-lubricants-for-maintenance-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Sawke">Kshitij Sawke</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradnyavant%20Kamble"> Pradnyavant Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Patil"> Shrikant Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20clad" title="laser clad">laser clad</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20parameters" title=" processing parameters"> processing parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20rate" title=" wear rate"> wear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/76458/to-study-the-effect-of-optic-fibre-laser-cladding-of-cast-iron-with-silicon-carbide-on-wear-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Review on Wear Behavior of Magnesium Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amandeep%20Singh">Amandeep Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Niraj%20Bala"> Niraj Bala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, light-weight materials such as magnesium matrix composites have become hot topic for material research due to their excellent mechanical and physical properties. However, relatively very less work has been done related to the wear behavior of these composites. Magnesium matrix composites have wide applications in automobile and aerospace sector. In this review, attempt has been done to collect the literature related to wear behavior of magnesium matrix composites fabricated through various processing techniques such as stir casting, powder metallurgy, friction stir processing etc. Effect of different reinforcements, reinforcement content, reinforcement size, wear load, sliding speed and time have been studied by different researchers in detail. Wear mechanism under different experimental condition has been reviewed in detail. The wear resistance of magnesium and its alloys can be enhanced with the addition of different reinforcements. Wear resistance can further be enhanced by increasing the percentage of added reinforcements. Increase in applied load during wear test leads to increase in wear rate of magnesium composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20matrix%20composites" title=" magnesium matrix composites"> magnesium matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title=" reinforcement"> reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/52187/review-on-wear-behavior-of-magnesium-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> The Influence of Cycle Index of Simulation Condition on Main Bearing Wear Prognosis of Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziyu%20Diao">Ziyu Diao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Zhang"> Yanyan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhentao%20Liu"> Zhentao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruidong%20Yan"> Ruidong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The update frequency of wear profile in main bearing wear prognosis of internal combustion engine plays an important role in the calculation efficiency and accuracy. In order to investigate the appropriate cycle index of the simplified working condition of wear simulation, the main bearing-crankshaft journal friction pair of a diesel engine in service was studied in this paper. The method of multi-body dynamics simulation was used, and the wear prognosis model of the main bearing was established. Several groups of cycle indexes were set up for the wear calculation, and the maximum wear depth and wear profile were compared and analyzed. The results showed that when the cycle index reaches 3, the maximum deviation rate of the maximum wear depth is about 2.8%, and the maximum deviation rate comes to 1.6% when the cycle index reaches 5. This study provides guidance and suggestions for the optimization of wear prognosis by selecting appropriate value of cycle index according to the requirement of calculation cost and accuracy of the simulation work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycle%20index" title="cycle index">cycle index</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation%20rate" title=" deviation rate"> deviation rate</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20calculation" title=" wear calculation"> wear calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20profile" title=" wear profile"> wear profile</a> </p> <a href="https://publications.waset.org/abstracts/108766/the-influence-of-cycle-index-of-simulation-condition-on-main-bearing-wear-prognosis-of-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Synergetic Effects of Water and Sulfur Dioxide Treatments on Wear of Soda Lime Silicate Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Qiao">Qian Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongjin%20Xiao"> Tongjin Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongtu%20He"> Hongtu He</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxin%20Yu"> Jiaxin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is focused on the synergetic effects of water and sulfur dioxide treatments (SO₂ treatments) on the mechanochemical wear of SLS glass. It is found that the wear behavior of SLS glass in humid air is very sensitive to the water and SO₂ treatment environments based on the wear test using a ball-on-flat reciprocation tribometer. When SLS glass is treated with SO₂-without, the presence of water, the wear resistance of SLS glass in humid air becomes significantly higher compared to the pristine glass. However, when SLS glass is treated with SO₂ with the presence of water, the wear resistance of SLS glass decreases remarkably with increasing in the relative humidity (RH) from 0% to 90%. Further analyses indicate that when sodium ions are leached out of SLS glass surface via the water and SO₂ treatments, the mechanochemical properties of SLS glass surface become different depending on the RH. At lower humidity, the nano hardness of the Na⁺-leached surface is higher, and it can contribute to the enhanced wear resistance of SLS glass. In contrast, at higher humidity conditions, the SLS glass surface is more hydrophilic, and substantial wear debris can be found inside the wear track of SLS glass. Those phenomena suggest that adhesive wear and abrasive wear dominate the wear mechanism of SLS glass in humid air, causing the decreased wear resistance of SLS glass with increasing the RH. These results may not only provide a deep understanding of the wear mechanism of SLS glass but also helpful for operation process of functional and engineering glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soda%20lime%20silicate%20glass" title="soda lime silicate glass">soda lime silicate glass</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=SO%E2%82%82" title=" SO₂"> SO₂</a> </p> <a href="https://publications.waset.org/abstracts/115431/synergetic-effects-of-water-and-sulfur-dioxide-treatments-on-wear-of-soda-lime-silicate-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Role of Human Milk Oligosaccharides (HMOs) in Epigenetic Modulation of Bacterial Pathogen in Infant and Toddler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Yusuf%20Raj">Aftab Yusuf Raj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human milk oligosaccharides (HMOs) are complex carbohydrates. They are 3rd most abundant solid component found in breast milk, after lactose and lipids. HMO has profound beneficial health benefit effects on infants and toddlers. They have diverse roles, in immuno-modulation, development of neonatal gut, influencing the commensal microbiota of developing gut, and anti-inflammatory functions. HMOs, gut and commensal microbiota of the gut work synergistically to bring positive impact on infant and toddler health. HMO influences the gut-brain axis, maintains good mental health and cognitive function and inhibits neuronal inflammation. HMOs are now applied in infant nutrition, and supplementation of HMOs in infant formula is a promising innovation for infant nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HMO%E2%80%99s" title="HMO’s">HMO’s</a>, <a href="https://publications.waset.org/abstracts/search?q=gut" title=" gut"> gut</a>, <a href="https://publications.waset.org/abstracts/search?q=epigenetic%20modulation" title=" epigenetic modulation"> epigenetic modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/191265/role-of-human-milk-oligosaccharides-hmos-in-epigenetic-modulation-of-bacterial-pathogen-in-infant-and-toddler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Pislaru"> C. Pislaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear%20modelling" title="wear modelling">wear modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Archard%20Model" title=" Archard Model"> Archard Model</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM%20Model" title=" ASTM Model"> ASTM Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Neural%20Networks%20Model" title=" Neural Networks Model"> Neural Networks Model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-on-disc%20Test" title=" Pin-on-disc Test"> Pin-on-disc Test</a>, <a href="https://publications.waset.org/abstracts/search?q=Talysurf" title=" Talysurf"> Talysurf</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20microscope" title=" digital microscope"> digital microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona" title=" Alicona "> Alicona </a> </p> <a href="https://publications.waset.org/abstracts/17801/wear-measuring-and-wear-modelling-based-on-archard-astm-and-neural-network-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> The Effect of Surface Conditions on Wear of a Railway Wheel and Rail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shebani">A. Shebani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iwnicki"> S. Iwnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20wheel%2Frail%20wear" title="railway wheel/rail wear">railway wheel/rail wear</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20conditions" title=" surface conditions"> surface conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20disc%20test%20rig" title=" twin disc test rig"> twin disc test rig</a>, <a href="https://publications.waset.org/abstracts/search?q=replica%20material" title=" replica material"> replica material</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicona%20profilometer" title=" Alicona profilometer"> Alicona profilometer</a> </p> <a href="https://publications.waset.org/abstracts/47795/the-effect-of-surface-conditions-on-wear-of-a-railway-wheel-and-rail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Wear Resistance of 20MnCr5 Steel Nitrided by Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okba%20Belahssen">Okba Belahssen</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benramache"> Said Benramache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents wear behavior of the plasma-nitrided 20MnCr5 steel. Untreated and plasma nitrided samples were tested. The morphology was observed by scanning electron microscopy (SEM). The plasma nitriding behaviors of 20MnCr5 steel have been assessed by evaluating tribological properties and surface hardness by using a pin-on-disk wear machine and microhardness tester. Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer improve the wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma-nitriding" title="plasma-nitriding">plasma-nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%2020mncr5" title=" alloy 20mncr5"> alloy 20mncr5</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/31284/wear-resistance-of-20mncr5-steel-nitrided-by-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> A Review of Fractal Dimension Computing Methods Applied to Wear Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Thakur">Manish Kumar Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Kumar%20Ghosh"> Subrata Kumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title="fractal dimension">fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20analysis" title=" morphological analysis"> morphological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20particles" title=" wear particles"> wear particles</a> </p> <a href="https://publications.waset.org/abstracts/48239/a-review-of-fractal-dimension-computing-methods-applied-to-wear-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Predictive Modeling of Flank Wear in Hard Turning Using the Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suha%20K.%20Shihab">Suha K. Shihab</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aas%20Mohammad"> Aas Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Noor%20Siddiquee"> Arshad Noor Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influence of cutting parameters (cutting speed, feed and depth of cut) on flank wear (VB) in turning of 52100 hard alloy steel using multilayer coated carbide insert under dry condition. Nine experiments were performed based on Taguchi’s L9 orthogonal array. Analysis of variance (ANOVA) was used to determine the effects of the cutting parameters on flank wear. The results of the study revealed that the cutting speed (A) and feed rate (B) are the dominant factors affecting flank wear, while the depth of cut (C) has not a significant effect. The optimal combination of the cutting parameters for flank wear is found to be A1B1C1. The mathematical model for flank wear is found to be statistically significant. The predicted and measured values of flank wear are found to be very close to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title="flank wear">flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20turning" title=" hard turning"> hard turning</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20approach" title=" Taguchi approach"> Taguchi approach</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization "> optimization </a> </p> <a href="https://publications.waset.org/abstracts/7473/predictive-modeling-of-flank-wear-in-hard-turning-using-the-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">664</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karuna%20Tuchinda">Karuna Tuchinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasithon%20Bland"> Sasithon Bland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20vapour%20deposition" title="physical vapour deposition">physical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20turbine%20blade" title=" steam turbine blade"> steam turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-based%20coating" title=" titanium-based coating"> titanium-based coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20prediction" title=" wear prediction"> wear prediction</a> </p> <a href="https://publications.waset.org/abstracts/8420/computational-study-and-wear-prediction-of-steam-turbine-blade-with-titanium-nitride-coating-deposited-by-physical-vapor-deposition-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kious%20Mecheri">Kious Mecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Abdechafik"> Hadjadj Abdechafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Aissa"> Ameur Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title="flank wear">flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20milling" title=" high speed milling"> high speed milling</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/6906/neural-network-monitoring-strategy-of-cutting-tool-wear-of-horizontal-high-speed-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> A Review of Tribological Excellence of Bronze Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Dhani%20chauhan">Ram Dhani chauhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribology is a term that was developed from the Greek words ‘tribos’ (rubbing) and ‘logy’ (knowledge). In other words, a study of wear, friction and lubrication of material is known as Tribology. In groundwater irrigation, the life of submersible pump components like impeller, bush and wear ring will depend upon the wear and corrosion resistance of casted material. Leaded tin bronze (LTB) is an easily castable material with good mechanical properties and tribological behaviour and is utilised in submersible pumps at large. It has been investigated that, as Sn content increases from 4-8 wt. % in LTB alloys, the hardness of the alloys increases and the wear rate decreases. Similarly, a composite of copper with 3% wt. Graphite (threshold limit of mix) has a lower COF (coefficient of friction) and the lowest wear rate. In LTB alloys, in the initial low-speed range, wear increases and in the higher range, it was found that wear rate decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficent%20of%20friction" title="coefficent of friction">coefficent of friction</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20wear" title=" coefficient of wear"> coefficient of wear</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=leaded%20tin%20bronze" title=" leaded tin bronze"> leaded tin bronze</a> </p> <a href="https://publications.waset.org/abstracts/192235/a-review-of-tribological-excellence-of-bronze-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Lin">Yuan-Ching Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sin-Yu%20Chen"> Sin-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Yu%20Wu"> Pei-Yu Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTAW%E3%80%81A6061%20aluminum%20alloy" title="GTAW、A6061 aluminum alloy">GTAW、A6061 aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=%E3%80%81surface%20modification" title="、surface modification">、surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20study" title=" tribological study"> tribological study</a>, <a href="https://publications.waset.org/abstracts/search?q=TiC%20powder%20cladding" title=" TiC powder cladding"> TiC powder cladding</a> </p> <a href="https://publications.waset.org/abstracts/25409/tribological-study-of-tic-powder-cladding-on-6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Solution for Rider Ring Wear Problem in Boil off Gas Reciprocating Compressor: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hessam%20Mortezaei">Hessam Mortezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Joudakian"> Saeid Joudakian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the wear problem on rider rings of boil off gas compressor has been studied. This kind of oil free double acting compressor has free floating piston (FFP) technology and as a result of that it should have the lowest possible wear on its rider rings. But a design problem had caused a complete wear of rider rings after one month of continuous operation. In this case study, the source of this problem was recognized and solved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piston%20rider" title="piston rider">piston rider</a>, <a href="https://publications.waset.org/abstracts/search?q=rings" title=" rings"> rings</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution" title=" gas distribution"> gas distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20wear" title=" pressure wear"> pressure wear</a> </p> <a href="https://publications.waset.org/abstracts/3024/solution-for-rider-ring-wear-problem-in-boil-off-gas-reciprocating-compressor-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukant%20Mehra">Sukant Mehra</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Gupta"> Parth Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Arora"> Varun Arora</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvoday%20Singh"> Sarvoday Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kohli"> Amit Kohli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design%20%28CCD%29" title="central composite design (CCD)">central composite design (CCD)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology%20%28RSM%29" title=" response surface methodology (RSM)"> response surface methodology (RSM)</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/14478/optimization-of-wear-during-dry-sliding-wear-of-aisi-1042-steel-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Learning Participation and Baby Care Ability in Mothers of Preterm Infant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Chuan%20Cheng">Yi-Chuan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Chi%20Huang"> Li-Chi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shan%20Chang"> Yu-Shan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The main purpose of this study was to explore the relationship between the learning number, care knowledge, care skills and maternal confidence in preterm infant care in Taiwan. Background: Preterm infants care has been stressful for mother caring at home. Many programs have been applied for improving the infant care maternal confident. But less to know the learning behavior in mothers of preterm infant. Methods: The sample consisted of 55 mothers with preterm infants were recruited in a neonatal intermediate unit at a medical center in central Taiwan. The self-reported questionnaires including knowledge and skills of preterm infant care scales and maternal confidence scale were used to evaluation, which were conducted during hospitalization, before hospital discharge, and one month after discharge. We performed by using Pearson correlation of the collected data using SPSS 18. Results: The study showed that the learning number and knowledge in preterm infant care was a significant positive correlation (r = .40), and the skills and confidence preterm infant care was positively correlated (r = .89). Conclusions: Study results showed the mother had more learning number in preterm infant care will be stronger knowledge, and the skills and confidence in preterm infant care were also positively correlated. Thus, we found the learning behavior change significant care knowledge. And the maternal confidence change significant with skill on preterm infant’s care. But bondage still needs further study and develop the participation in hospital-based instructional programs, which could lead to greater long-term retention of learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20behavior" title="learning behavior">learning behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=care%20knowledge" title=" care knowledge"> care knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=care%20skills" title=" care skills"> care skills</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20confidence" title=" maternal confidence"> maternal confidence</a> </p> <a href="https://publications.waset.org/abstracts/79949/learning-participation-and-baby-care-ability-in-mothers-of-preterm-infant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> Infant and Child Mortality among the Low Socio-Economic Households in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Kumar">Narendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses data from the ‘National Family Health Survey (NFHS-3) 2005-06’ to investigate the predictors of infant and child mortality among low economic households in East and Northeast region. The cross tabulation, life table survival estimates and Cox proportional hazard model techniques have been used to estimate the predictors of infant and child mortality. The life table survival estimates for infant and child mortality shows that infant mortality in female child is lower in comparison to male child but with child mortality, the rates are higher for female in comparison to male child and the Cox proportional hazard model also give highly significant in female in comparison to male child. The infant and child mortality rates among poor households highest in the Central region followed by North and Northeast region and the lowest in South region in comparison to all regions of India. Education of respondent has been found a significant characteristics in both analyzes, further birth interval, respondent occupation, caste/tribe and place of delivery has substantial impact on infant and child mortality among low economic households in East and Northeast region. Finally these findings specified that an increase in parents’ education, improve health care services and improve socioeconomic conditions of low economic households which should in turn raise infant and child survival and should decrease child mortality among low economic households in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infant" title="infant">infant</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/40650/infant-and-child-mortality-among-the-low-socio-economic-households-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sridevi">Ch. Sridevi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chalapathi%20Rao"> A. Chalapathi Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Srinivasulu"> P. Srinivasulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathtub%20curve" title="bathtub curve">bathtub curve</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20performance" title=" geometric performance"> geometric performance</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20test" title=" Laplace test"> Laplace test</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20accuracy" title=" location accuracy"> location accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20analysis" title=" reliability analysis"> reliability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20analysis" title=" Weibull analysis"> Weibull analysis</a> </p> <a href="https://publications.waset.org/abstracts/167750/reliability-analysis-of-geometric-performance-of-onboard-satellite-sensors-a-study-on-location-accuracy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">757</span> Wear Map for Cu-Based Friction Materials with Different Contents of Fe Reinforcement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haibin%20Zhou">Haibin Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pingping%20Yao"> Pingping Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Kunyang%20Fan"> Kunyang Fan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper-based sintered friction materials are widely used in the brake system of different applications such as engineering machinery or high-speed train, due to the excellent mechanical, thermal and tribological performance. Considering the diversity of the working conditions of brake system, it is necessary to identify well and understand the tribological performance and wear mechanisms of friction materials for different conditions. Fe has been a preferred reinforcement for copper-based friction materials, due to its ability to improve the wear resistance and mechanical properties of material. Wear map is well accepted as a useful research method for evaluation of wear performances and wear mechanisms over a wider range of working conditions. Therefore, it is significantly important to construct a wear map which can give out the effects of work condition and Fe reinforcement on tribological performance of Cu-based friction materials. In this study, the copper-based sintered friction materials with the different addition of Fe reinforcement (0-20 vol. %) were studied. The tribological tests were performed against stainless steel in a ring-on-ring braking tester with varying braking energy density (0-5000 J/cm2). The linear wear and friction coefficient were measured. The worn surface, cross section and debris were analyzed to determine the dominant wear mechanisms for different testing conditions. On the basis of experimental results, the wear map and wear mechanism map were established, in terms of braking energy density and the addition of Fe. It was found that with low contents of Fe and low braking energy density, adhesive wear was the dominant wear mechanism of friction materials. Oxidative wear and abrasive wear mainly occurred under moderate braking energy density. In the condition of high braking energy density, with both high and low addition of Fe, delamination appeared as the main wear mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-based%20friction%20materials" title="Cu-based friction materials">Cu-based friction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20reinforcement" title=" Fe reinforcement"> Fe reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20map" title=" wear map"> wear map</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20mechanism" title=" wear mechanism"> wear mechanism</a> </p> <a href="https://publications.waset.org/abstracts/64328/wear-map-for-cu-based-friction-materials-with-different-contents-of-fe-reinforcement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">756</span> Child Mortality in Portuguese Speaking Africa Countries: Levels and Trends, 1975-2021</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alcino%20Panguana">Alcino Panguana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All Portuguese-speaking African countries are in Sub-Saharan Africa, a region that has high infant mortality rates, being responsible for 49.6% of deaths in Portuguese-speaking African countries, Angola has levels of infant mortality among children, where 2017, 156 children who died before reaching 1 year of life in 1000 live births. Although there is an increase in studies that document trends and specific causes of infant mortality in each country, historical-comparative studies of infant mortality among these countries remain rare. Understanding the trend of this indicator is important for policymakers and planners in order to improve access to successful child survival operations. Lusophone Africa continues with high infant mortality rates in the order of 64 deaths per thousand births. Assuming heterogeneities that can characterize these countries, raise an analysis investigated indicator at the country level to understand the pattern and historical trend of infant mortality within Lusophone Africa from the year 2021. The result is to understand the levels and evolution of infant mortality in Portuguese-speaking African countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20mortality" title="child mortality">child mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=levels" title=" levels"> levels</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a>, <a href="https://publications.waset.org/abstracts/search?q=lusophone%20African%20countries" title=" lusophone African countries"> lusophone African countries</a> </p> <a href="https://publications.waset.org/abstracts/150755/child-mortality-in-portuguese-speaking-africa-countries-levels-and-trends-1975-2021" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">755</span> Mike Hat: Coloured-Tape-in-Hat as a Head Circumference Measuring Instrument for Early Detection of Hydrocephalus in an Infant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyimas%20Annissa%20Mutiara%20Andini">Nyimas Annissa Mutiara Andini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year, children develop hydrocephalus during the first year of life. If it is not treated, hydrocephalus can lead to brain damage, a loss in mental and physical abilities, and even death. To be treated, first, we have to do a proper diagnosis using some examinations especially to detect hydrocephalus earlier. One of the examination that could be done is using a head circumference measurement. Increased head circumference is a first and main sign of hydrocephalus, especially in infant (0-1 year age). Head circumference is a measurement of a child's head largest area. In this measurement, we want to get the distance from above the eyebrows and ears and around the back of the head using a measurement tape. If the head circumference of an infant is larger than normal, this infant might potentially suffer hydrocephalus. If early diagnosis and timely treatment of hydrocephalus could be done most children can recover successfully. There are some problems with early detection of hydrocephalus using regular tape for head circumference measurement. One of the problem is the infant’s comfort. We need to make the infant feel comfort along the head circumference measurement to get a proper result of the examination. For that, we can use a helpful stuff, like a hat. This paper is aimed to describe the possibility of using a head circumference measuring instrument for early detection of hydrocephalus in an infant with a mike hat, coloured-tape-in-hat. In the first life, infants’ head size is about 35 centimeters. First three months after that infants will gain 2 centimeters each month. The second three months, infant’s head circumference will increase 1 cm each month. And for the six months later, the rate is 0.5 cm per month, and end up with an average of 47 centimeters. This formula is compared to the WHO’s head circumference growth chart. The shape of this tape-in-hat is alike an upper arm measurement. This tape-in-hat diameter is about 47 centimeters. It contains twelve different colours range by age. If it is out of the normal colour, the infant potentially suffers hydrocephalus. This examination should be done monthly. If in two times of measurement there still in the same range abnormal of head circumference, or a rapid growth of the head circumference size, the infant should be referred to a pediatrician. There are the pink hat for girls and blue hat for boys. Based on this paper, we know that this measurement can be used to help early detection of hydrocephalus in an infant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=head%20circumference" title="head circumference">head circumference</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocephalus" title=" hydrocephalus"> hydrocephalus</a>, <a href="https://publications.waset.org/abstracts/search?q=infant" title=" infant"> infant</a>, <a href="https://publications.waset.org/abstracts/search?q=mike%20hat" title=" mike hat"> mike hat</a> </p> <a href="https://publications.waset.org/abstracts/58285/mike-hat-coloured-tape-in-hat-as-a-head-circumference-measuring-instrument-for-early-detection-of-hydrocephalus-in-an-infant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">754</span> Dynamic Simulation for Surface Wear Prognosis of the Main Bearings in the Internal Combustion Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanyan%20Zhang">Yanyan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziyu%20Diao"> Ziyu Diao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhentao%20Liu"> Zhentao Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruidong%20Yan"> Ruidong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear character of the main bearing is one of the critical indicators for the overhaul of an internal combustion engine, and the aim of this paper is to reveal the dynamic wear mechanism of the main bearings. A numerical simulation model combined multi-body dynamic equations of the engine, the average Reynolds equations of the bearing lubricant, asperity contact and wear model of the joint surfaces were established under typical operating conditions. The wear results were verified by experimental data, and then the influence of operating conditions, bearing clearance and cylinder pressure on the wear character of selected main bearings were analyzed. The results show that the contribution degree of different working conditions on the wear profile and depth of each bearing is obviously different, and the increase of joint clearance or cylinder pressure will accelerate the wear. The numerical model presented can be used to wear prognosis for joints and provide guidance for optimization design of sliding bearings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20simulation" title="dynamic simulation">dynamic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-body%20dynamics" title=" multi-body dynamics"> multi-body dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20bearing" title=" sliding bearing"> sliding bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wear" title=" surface wear"> surface wear</a> </p> <a href="https://publications.waset.org/abstracts/108763/dynamic-simulation-for-surface-wear-prognosis-of-the-main-bearings-in-the-internal-combustion-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">753</span> Reduction of Wear via Hardfacing of Rotavator Blades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh%20Randhawa">Gurjinder Singh Randhawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonny%20Garg"> Jonny Garg</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhraj%20Singh"> Sukhraj Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema"> Gurmeet Singh Cheema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major problem related to the use of rotavator is wear of rotavator blades due to abrasion by soil hard particles, as it seriously affects tillage quality and agricultural production economy. The objective of this study was to increase the wear resistance by covering the rotavator blades with two different hard facing electrodes. These blades are generally produced from low carbon or low alloy steel. During the field work i.e. preparing land for the cultivation these blades are subjected to severe wear conditions. Comparative wear tests on a regular rotavator blade and two kinds of hardfacing with electrodes were conducted in the field. These two different hardfacing electrodes, which are designated HARD ALLOY-400 and HARD ALLOY-650, were used for hardfacing. The wear rate in the field tests was found to be significantly different statistically. When the cost is taken into consideration; HARD ALLOY-650 and HARD ALLOY-400 have been found to be the best hardfacing electrodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardfacing" title="hardfacing">hardfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=rotavator%20blades" title=" rotavator blades"> rotavator blades</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20alloy-400" title=" hard alloy-400"> hard alloy-400</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasive%20wear" title=" abrasive wear"> abrasive wear</a> </p> <a href="https://publications.waset.org/abstracts/52466/reduction-of-wear-via-hardfacing-of-rotavator-blades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=infant%20wear&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>