CINXE.COM
Search results for: AMPs
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: AMPs</title> <meta name="description" content="Search results for: AMPs"> <meta name="keywords" content="AMPs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="AMPs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="AMPs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: AMPs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Optimization of Heterojunction Solar Cell Using AMPS-1D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benmoussa%20%20Dennai">Benmoussa Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benslimane"> H. Benslimane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Helmaoui"> A. Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photo voltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP/GaAs configuration for p/ n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title=" photovoltaic cell"> photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaInP%20%2F%20GaAs%20AMPS-1D" title=" GaInP / GaAs AMPS-1D"> GaInP / GaAs AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=hetetro-junction" title=" hetetro-junction"> hetetro-junction</a> </p> <a href="https://publications.waset.org/abstracts/18863/optimization-of-heterojunction-solar-cell-using-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Optimization of Heterojunction Solar Cell Using AMPS-1D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benmoussa%20Dennai">Benmoussa Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Benslimane"> H. Benslimane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Helmaoui"> A. Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title=" photovoltaic cell"> photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaInP%20%2F%20GaAs%20AMPS-1D" title=" GaInP / GaAs AMPS-1D"> GaInP / GaAs AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=hetetro-junction" title=" hetetro-junction"> hetetro-junction</a> </p> <a href="https://publications.waset.org/abstracts/24643/optimization-of-heterojunction-solar-cell-using-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassane%20Ben%20Slimane">Hassane Ben Slimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmoussa%20Dennai"> Benmoussa Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahman%20Hemmani"> Abderrahman Hemmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrachid%20Helmaoui"> Abderrachid Helmaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multijunction%20solar%20cell" title="multijunction solar cell">multijunction solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=CIGS" title=" CIGS"> CIGS</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a> </p> <a href="https://publications.waset.org/abstracts/20170/numerical-simulation-of-multijunction-gaascigs-solar-cell-by-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20E.%20Gorji">Nima E. Gorji </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=GaAs" title=" GaAs"> GaAs</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20solar%20cell" title=" hybrid solar cell"> hybrid solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D%20modelling" title=" AMPS-1D modelling "> AMPS-1D modelling </a> </p> <a href="https://publications.waset.org/abstracts/5267/simulation-of-carbon-nanotubesgaas-hybrid-pv-using-amps-1d" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Antibacterial Hydrogels for Wound Care</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Atefyekta">Saba Atefyekta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Control of bacterial bioburden in wounds is an important step for minimizing the risk of wound infection. An antimicrobial hydrogel wound dressing is developed out of soft polymeric hydrogels that contain antimicrobial peptides (AMPs). Such wound dressings can bind and kill all types of bacteria, even the resistance types at the wound site. Methods: AMPs are permanently bonded onto a soft nanostructured polymer via covalent attachment and physical entanglement. This improves stability, rapid antibacterial activity, and, most importantly, prevents the leaching of AMPs. Major Findings: Antimicrobial analysis of antimicrobial hydrogels using in-vitro wound models confirmed >99% killing efficiency against multiple bacterial trains, including MRSA, MDR, E. Coli. Furthermore, the hydrogel retained its antibacterial activity for up to 4 days when exposed to human serum. Tests confirmed no release of AMPs, and it was proven non-toxic to mammalian cells. An in-vivo study on human intact skin showed a significant reduction of bacteria for part of the subject’s skin treated with antibacterial hydrogels. A similar result was detected through a qualitative study in veterinary trials on different types of surgery wounds in cats, dogs, and horses. Conclusions: Antimicrobial hydrogels wound dressings developed by permanent attachment of AMPs can effectively and rapidly kill bacteria in contact. Such antibacterial hydrogel wound dressings are non-toxic and do not release any substances into the wound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20wound%20dressing" title="antibacterial wound dressing">antibacterial wound dressing</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title=" antimicrobial peptides"> antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=post-surgical%20wounds" title=" post-surgical wounds"> post-surgical wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a> </p> <a href="https://publications.waset.org/abstracts/162114/antibacterial-hydrogels-for-wound-care" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> An Alternative Nano Design Strategy by Neutralized AMPS and Soy Bean Lecithin to Form Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20Cansever%20Mutlu">Esra Cansever Mutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muge%20Sennaroglu%20Bostan"> Muge Sennaroglu Bostan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Bahadori"> Fatemeh Bahadori</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Toksoy%20Oner"> Ebru Toksoy Oner</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20S.%20Eroglu"> Mehmet S. Eroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paclitaxel is used in treatment of different cancer types mainly breast, ovarian, lung and Kaposi’s sarcoma. It is poorly soluble in water; therefore, currently used formulations tremendously show side-effects and high toxicity. Encapsulation of the drug in a nano drug carrier which causes both reducing side effects and increasing drug activity is a desired new approach for the nano-medicine to target the site of cancer. In this study, synthesis of a novel nano paclitaxel formulation made of a new amphiphilic monomer was followed by the investigation of its pharmacological properties. UV radical polymerization was carried out by using the monomer Lecithin-2-Acrylamido-2-methylpropane (L-AMPS) and the drug-spacer, to obtain sterically high stabilized, biocompatible and biodegradable phospholipid nanoparticles, in which the drug paclitaxel (Pxl) was encapsulated (NanoPxl). Particles showed high drug loading capacity (68%) and also hydrodynamic size less than 200 nm with slight negative surface charge. The drug release profile was obtained and in vitro cytotoxicity test was performed on MCF-7 cell line. Consequently, these data indicated that paclitaxel loaded Lecithin-AMPS/PCL-MAC nanoparticles can be considered as a new, safe and effective nanocarrier for the treatment of breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title="paclitaxel">paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=L-AMPS" title=" L-AMPS"> L-AMPS</a> </p> <a href="https://publications.waset.org/abstracts/68815/an-alternative-nano-design-strategy-by-neutralized-amps-and-soy-bean-lecithin-to-form-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yasir">Muhammad Yasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Debarun%20Dutta"> Debarun Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Willcox"> Mark Willcox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilized%20antimicrobial%20peptides" title=" immobilized antimicrobial peptides"> immobilized antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20aeruginosa" title=" P. aeruginosa"> P. aeruginosa</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20of%20action" title=" mode of action"> mode of action</a> </p> <a href="https://publications.waset.org/abstracts/98822/mode-of-action-of-surface-bound-antimicrobial-peptides-melimine-and-mel4-against-pseudomonas-aeruginosa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Modeling of Silicon Window Layers for Solar Cells Based SIGE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Boukais">Meriem Boukais</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-%20Abbas"> A. Ould- Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the modeling, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=SiGe" title=" SiGe"> SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/27800/modeling-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Simulation Of Silicon Window Layers For Solar Cells Based Sige </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Meriem">Boukais Meriem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dennai"> B. Dennai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ould-Abbas"> A. Ould-Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of SiGe solar cells might be improved by a wide-band-gap window layer. In this work we were simulated using the one dimensional simulation program called analysis of microelectronic and photonic structures (AMPS-1D). In the simulation, the thickness of silicon window was varied from 80 to 150 nm. The rest of layer’s thicknesses were kept constant, by varying thickness of window layer the simulated device performance was demonstrate in the form of current-voltage (I-V) characteristics and quantum efficiency (QE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiGe" title="SiGe">SiGe</a>, <a href="https://publications.waset.org/abstracts/search?q=AMPS-1D" title=" AMPS-1D"> AMPS-1D</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=conversion" title=" conversion"> conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20efficiency" title=" quantum efficiency"> quantum efficiency</a> </p> <a href="https://publications.waset.org/abstracts/19153/simulation-of-silicon-window-layers-for-solar-cells-based-sige" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">805</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Attempts for the Synthesis of Indol-Ring Fluorinated Tryptophan Derivatives to Enhance the Activity of Antimicrobial Peptides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anita%20K.%20Kovacs">Anita K. Kovacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Hegyes"> Peter Hegyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Bozso"> Zsolt Bozso</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabor%20Toth"> Gabor Toth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorination has been used extensively by the pharmaceutical industry as a strategy to improve the pharmacokinetics of drugs due to its effectiveness in increasing the potency of antimicrobial peptides (AMPs). Multiple-fluorinated indole-ring-containing tryptophan derivatives have the potential of having better antimicrobial activity than the widely used mono-fluorinated indole-ring containing tryptophan derivatives, but they are not available commercially. Therefore, our goal is to synthesize multiple-fluorinated indole-ring containing tryptophan derivatives to incorporate them into AMPs to enhance their antimicrobial activity. During our work, we are trying several methods (classical organic synthesis, enzymic synthesis, and solid phase peptide synthesis) for the synthesis of the said compounds, with mixed results. With classical organic synthesis (four different routes), we did not get the desired results. The reaction of serin with substituted indole in the presence of acetic anhydride led to racemic tryptophane; with the reaction of protected serin with indole in the presence of nickel complex was unsuccessful; the reaction of serin containing protected dipeptide with disuccinimidyl carbonate we achieved a tryptophane containing dipeptide, its chiral purity is being examined; the reaction of alcohol with substituted indole in the presence of copper complex was successful, but it was only a test reaction, we could not reproduce the same result with serine. The undergoing tryptophan-synthase method has shown some potential, but our work has not been finished yet. The successful synthesis of the desired multiple-fluorinated indole-ring-containing tryptophan will be followed by solid phase peptide synthesis in order to incorporate it into AMPs to enhance their antimicrobial activity. The successful completion of these phases will mean the possibility of manufacturing new, effective AMPs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halogenation" title="halogenation">halogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorination" title=" fluorination"> fluorination</a>, <a href="https://publications.waset.org/abstracts/search?q=tryptophan" title=" tryptophan"> tryptophan</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20antimicrobial%20activity" title=" enhancement of antimicrobial activity"> enhancement of antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/152468/attempts-for-the-synthesis-of-indol-ring-fluorinated-tryptophan-derivatives-to-enhance-the-activity-of-antimicrobial-peptides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patr%C3%ADcia%20Branco">Patrícia Branco</a>, <a href="https://publications.waset.org/abstracts/search?q=Catarina%20Prista"> Catarina Prista</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Albergaria"> Helena Albergaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel-ethanol%20microbial%20contaminations" title=" fuel-ethanol microbial contaminations"> fuel-ethanol microbial contaminations</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel-ethanol%20fermentation" title=" fuel-ethanol fermentation"> fuel-ethanol fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol%20agents" title=" biocontrol agents"> biocontrol agents</a>, <a href="https://publications.waset.org/abstracts/search?q=genetically-modified%20yeasts" title=" genetically-modified yeasts"> genetically-modified yeasts</a> </p> <a href="https://publications.waset.org/abstracts/149056/genetically-modified-fuel-ethanol-industrial-yeast-strains-as-biocontrol-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Li">Xuan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Weian%20Huang"> Weian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsheng%20Sun"> Jinsheng Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuhao%20Zhao"> Fuhao Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Wang"> Zhiyuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintang%20Wang"> Jintang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature-sensitive%20nanogel" title="temperature-sensitive nanogel">temperature-sensitive nanogel</a>, <a href="https://publications.waset.org/abstracts/search?q=NIPAM" title=" NIPAM"> NIPAM</a>, <a href="https://publications.waset.org/abstracts/search?q=self-adaptive%20plugging%20performance" title=" self-adaptive plugging performance"> self-adaptive plugging performance</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20operations" title=" drilling operations"> drilling operations</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrate-bearing%20sediments" title=" hydrate-bearing sediments"> hydrate-bearing sediments</a> </p> <a href="https://publications.waset.org/abstracts/166329/synthesis-of-temperature-sensitive-nanomicrogels-by-soap-free-emulsion-polymerization-and-their-application-in-hydrate-sediments-drilling-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Isolation, Characterization, and Antibacterial Evaluation of Antimicrobial Peptides and Derivatives from Fly Larvae Sarconesiopsis magellanica (Diptera: Calliphoridae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D%C3%ADaz-Roa">A. Díaz-Roa</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20I.%20Silva%20Junior"> P. I. Silva Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20J.%20Bello"> F. J. Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Dipterous maggots release diverse proteins and peptides contained in larval excretion and secretion (ES) products playing a key role in digestion. The most important mechanism for combating infection using larval therapy depends on larval ES. These larvae are protected against infection by a diverse spectrum of antimicrobial peptides (AMPs), one already known like lucifensin. Special interest in these peptides has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue and kill different bacteria during larval therapy. The action of larvae on wounds occurs through 3 mechanisms of action: removal of necrotic tissue, stimulation of granulation tissue, and antibacterial action of larval ES. Some components of the ES include calcium, urea, allantoin ammonium bicarbonate and reducing the viability of Gram positive and Gram negative bacteria. The Lucilia sericata fly larvae have been the most used, however, we need to evaluate new species that could potentially be similar or more effective than fly above. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES products for the first time and compared them with the common fly used L. sericata. These products were obtained from third-instar larvae taken from a previously established colony. For the first analysis, ES fractions were separate by Sep-Pak C18 disposable columns (first step). The material obtained was fractionated by RP-HPLC by using Júpiter C18 semi-preparative column. The products were then lyophilized and their antimicrobial activity was characterized by incubation with different bacterial strains. The first chromatographic analysis of ES from L. sericata gives 6 fractions with antimicrobial activity against Gram-positive bacteria Micrococus luteus, and 3 fractions with activity against Gram-negative bacteria Pseudomonae aeruginosa while the one from S. magellanica gaves 1 fraction against M. luteus and 4 against P. aeruginosa. Maybe one of these fractions could correspond to the peptide already known from L. sericata. These results show the first work for supporting further experiments aimed at validating S. magellanica use in larval therapy. We still need to search if we find some new molecules, by making mass spectrometry and ‘de novo sequencing’. Further studies are necessary to identify and characterize them to better understand their functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20peptides" title="antimicrobial peptides">antimicrobial peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=larval%20therapy" title=" larval therapy"> larval therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucilia%20sericata" title=" Lucilia sericata"> Lucilia sericata</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarconesiopsis%20magellanica" title=" Sarconesiopsis magellanica"> Sarconesiopsis magellanica</a> </p> <a href="https://publications.waset.org/abstracts/34404/isolation-characterization-and-antibacterial-evaluation-of-antimicrobial-peptides-and-derivatives-from-fly-larvae-sarconesiopsis-magellanica-diptera-calliphoridae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhaned%20Zaidi">Muhaned Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Grout"> Ian Grout</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Khari%20bin%20A%E2%80%99ain"> Abu Khari bin A’ain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=op-amp" title="op-amp">op-amp</a>, <a href="https://publications.waset.org/abstracts/search?q=rail-to-rail%20output" title=" rail-to-rail output"> rail-to-rail output</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20compensation" title=" Miller compensation"> Miller compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=Negative%20Miller%20capacitance" title=" Negative Miller capacitance"> Negative Miller capacitance</a> </p> <a href="https://publications.waset.org/abstracts/58421/rail-to-rail-output-op-amp-design-with-negative-miller-capacitance-compensation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Lanzagorta%20Garcia">Eduardo Lanzagorta Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitra%20%20Venkatesh"> Chaitra Venkatesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Romina%20Pezzoli"> Romina Pezzoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Gabriela%20Rodriguez%20Barroso"> Laura Gabriela Rodriguez Barroso</a>, <a href="https://publications.waset.org/abstracts/search?q=Declan%20Devine"> Declan Devine</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaret%20E.%20Brennan%20Fournet"> Margaret E. Brennan Fournet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle "> nanoparticle </a> </p> <a href="https://publications.waset.org/abstracts/122725/sustainable-antimicrobial-biopolymeric-food-biomedical-film-engineering-using-bioactive-amp-ag-formulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Optimization of Hydrogel Conductive Nanocomposite as Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20M.%20Elsaeed">Shimaa M. Elsaeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20K.%20Farag"> Reem K. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Nassar"> Ibrahim M. Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive%20polymer" title=" conductive polymer"> conductive polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/42489/optimization-of-hydrogel-conductive-nanocomposite-as-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouloufa">A. Bouloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Khaled"> F. Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Djessas"> K. Djessas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20window" title="optical window">optical window</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/14184/high-efficiency-achievement-by-a-new-heterojunction-n-znoalp-si-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Wideband Planar Antenna Based on Composite Right/Left-Handed Transmission-Line (CRLH-TL) for Operation across UHF/L/S-Bands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alibakhshikenari">Mohammad Alibakhshikenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Limiti"> Ernesto Limiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%20S.%20Virdee"> Bal S. Virdee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a miniature wideband antenna using composite right/left-handed transmission-line (CRLH-TL) metamaterial. The proposed planar antenna has a fractional bandwidth of 100% and is designed to operate in several frequency bands from 800MHz to 2.40GHz. The antenna is constructed using just two CRLH-TL unit cells comprising of two T-shaped slots that are inverted. The slots contribute towards generating the series left-handed (LH) capacitance CL. The rectangular patch on which the slots are created is grounded with spiral shaped high impedance stubs that contribute towards LH inductance LL. The antenna has a size of 14×6×1.6mm3 (0.037λ0×0.016λ0× 0.004λ0, where λ0 is free space wavelength at 800MHz). The peak gain and efficiency of the antenna are 1.5 dBi and ~75%, respectively, at 1.6GHz. Proposed antenna is suitable for use in wireless systems working at UHF/L/S-bands, in particular, AMPS, GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000, JCDMA, KPCS, GPS, lower band of WiMAX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miniature%20antenna" title="miniature antenna">miniature antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20right%2Fleft-handed%20transmission%20line%20%28CRLH-TL%29" title=" composite right/left-handed transmission line (CRLH-TL)"> composite right/left-handed transmission line (CRLH-TL)</a>, <a href="https://publications.waset.org/abstracts/search?q=wideband%20antenna" title=" wideband antenna"> wideband antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20transceiver" title=" communication transceiver"> communication transceiver</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterials" title=" metamaterials"> metamaterials</a> </p> <a href="https://publications.waset.org/abstracts/64045/wideband-planar-antenna-based-on-composite-rightleft-handed-transmission-line-crlh-tl-for-operation-across-uhfls-bands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Detection of Resistive Faults in Medium Voltage Overhead Feeders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarak%20Suliman">Mubarak Suliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan"> Mohamed Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of downed conductors occurring with high fault resistance (reaching kilo-ohms) has always been a challenge, especially in countries like Saudi Arabia, on which earth resistivity is very high in general (reaching more than 1000 Ω-meter). The new approaches for the detection of resistive and high impedance faults are based on the analysis of the fault current waveform. These methods are still under research and development, and they are currently lacking security and dependability. The other approach is communication-based solutions which depends on voltage measurement at the end of overhead line branches and communicate the measured signals to substation feeder relay or a central control center. However, such a detection method is costly and depends on the availability of communication medium and infrastructure. The main objective of this research is to utilize the available standard protection schemes to increase the probability of detection of downed conductors occurring with a low magnitude of fault currents and at the same time avoiding unwanted tripping in healthy conditions and feeders. By specifying the operating region of the faulty feeder, use of tripping curve for discrimination between faulty and healthy feeders, and with proper selection of core balance current transformer (CBCT) and voltage transformers with fewer measurement errors, it is possible to set the pick-up of sensitive earth fault current to minimum values of few amps (i.e., Pick-up Settings = 3 A or 4 A, …) for the detection of earth faults with fault resistance more than (1 - 2 kΩ) for 13.8kV overhead network and more than (3-4) kΩ fault resistance in 33kV overhead network. By implementation of the outcomes of this study, the probability of detection of downed conductors is increased by the utilization of existing schemes (i.e., Directional Sensitive Earth Fault Protection). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensitive%20earth%20fault" title="sensitive earth fault">sensitive earth fault</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20sequence%20current" title=" zero sequence current"> zero sequence current</a>, <a href="https://publications.waset.org/abstracts/search?q=grounded%20system" title=" grounded system"> grounded system</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20fault%20detection" title=" resistive fault detection"> resistive fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20feeder" title=" healthy feeder"> healthy feeder</a> </p> <a href="https://publications.waset.org/abstracts/135913/detection-of-resistive-faults-in-medium-voltage-overhead-feeders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Strategies of Drug Discovery in Insects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaaeddeen%20M.%20Seufi">Alaaeddeen M. Seufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMPs" title="AMPs">AMPs</a>, <a href="https://publications.waset.org/abstracts/search?q=insect" title=" insect"> insect</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunitty" title=" innate immunitty"> innate immunitty</a>, <a href="https://publications.waset.org/abstracts/search?q=therappeutics" title=" therappeutics"> therappeutics</a> </p> <a href="https://publications.waset.org/abstracts/38537/strategies-of-drug-discovery-in-insects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>