CINXE.COM

Search results for: phytosterols

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phytosterols</title> <meta name="description" content="Search results for: phytosterols"> <meta name="keywords" content="phytosterols"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phytosterols" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phytosterols"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phytosterols</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Consumption Habits of Low-Fat Plant Sterol-Enriched Yoghurt Enriched with Phytosterols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Reis%20Lima">M. J. Reis Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Oliveira"> J. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sousa%20Pereira"> A. C. Sousa Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Castilho"> M. C. Castilho</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Teixeira-Lemos"> E. Teixeira-Lemos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing interest in plant sterol enriched foods is due to the fact that they reduce blood cholesterol concentrations without adverse side effects. In this context, enriched foods with phytosterols may be helpful in protecting population against atherosclerosis and cardiovascular diseases. The aim of the present work was to evaluate in a population of Viseu, Portugal, the consumption habits low-fat, plant sterol-enriched yoghurt. For this study, 577 inquiries were made and the sample was randomly selected for people shopping in various supermarkets. The preliminary results showed that the biggest consumers of these products were women aged 45 to 65 years old. Most of the people who claimed to buy these products consumed them once a day. Also, most of the consumers under antidyslipidemic therapeutics noticed positive effects on hypercholesterolemia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumption%20habits" title="consumption habits">consumption habits</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title=" fermented milk"> fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20foods" title=" functional foods"> functional foods</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20fat" title=" low fat"> low fat</a>, <a href="https://publications.waset.org/abstracts/search?q=phytosterols" title=" phytosterols"> phytosterols</a> </p> <a href="https://publications.waset.org/abstracts/11513/consumption-habits-of-low-fat-plant-sterol-enriched-yoghurt-enriched-with-phytosterols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Wild Rice (Zizania sp.): A Potential Source for Functional Foods and Nutraceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farooq%20Anwar">Farooq Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Zengin"> Gokhan Zengin</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20M.%20Alkharfy"> Khalid M. Alkharfy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wild rice (Zizania sp.) is an annual cross-pollinated, emergent, aquatic grass that mainly grows naturally in the Great Lakes region of the North America. The nutritional quality attributes of wild rice are superior to the conventional brown rice (Oryza sativa L.) in terms of higher contents of important minerals (especially phosphorous, potassium, magnesium and calcium), B-complex vitamins, vitamin E and amino acids. In some parts of the world, wild rice is valued as a primary food source. The lipids content of wild rice is reported to be low in the range of 0.7 and 1.1%, however, the lipids are recognized as a rich source of polyunsaturated fatty acids (including linoleic and α-linolenic acid) and phytosterols in addition to containing reasonably good amount of tocols. Besides, wild rice is reported to contain an appreciable amount of high-value compounds such as phenolics with antioxidant properties. Presence of such nutritional bioactives contributes towards medicinal benefits and multiple biological activities of this specialty rice. The present lecture is mainly designed to focus on the detailed nutritional attributes, profile of high-value bioactive components and pharmaceutical/biological activities of wild rice leading to exploring functional food and nutraceutical potential of this food commodity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha-linolenic%20acid" title="alpha-linolenic acid">alpha-linolenic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=phytosterols" title=" phytosterols"> phytosterols</a>, <a href="https://publications.waset.org/abstracts/search?q=tocols" title=" tocols"> tocols</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20rice%20lipids" title=" wild rice lipids"> wild rice lipids</a> </p> <a href="https://publications.waset.org/abstracts/38406/wild-rice-zizania-sp-a-potential-source-for-functional-foods-and-nutraceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Isolation, Characterization and Biological Activities of Compounds Isolated from Callicarpa maingayi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Ado">Muhammad A. Ado</a>, <a href="https://publications.waset.org/abstracts/search?q=Intan%20S.%20Ismail"> Intan S. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasanah%20M.%20Ghazali"> Hasanah M. Ghazali</a>, <a href="https://publications.waset.org/abstracts/search?q=Faridah%20Abas"> Faridah Abas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have investigated the phytochemical constituents of soluble fractions of dichloromethane (DCM) of methanolic leaves extract of the Callicarpa maingayi. The phytochemicals investigation has resulted in the isolation of three triterpenoids (euscaphic acid (1), arjunic acid (2), and ursolic acid (3)) together with two flavones apigenin (4) and acacetin (5)), two phytosterols (stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)), and one fatty acid (n-hexacosanoic acid (8)). Six (6) compounds isolated from this species were isolated for the first time (1, 2, 3, 4, 5, and 8). Their structures were elucidated and identified by spectral methods of one and two-dimensional NMR techniques, gas chromatography-mass spectrometry, and comparison with the previously reported literature. The biological activity of three compounds (1-3) was carried out on acetylcholinesterase inhibition activity. Compound (3) was found to displayed good inhibition against AChE with an IC₅₀ value of 21.5 ± 0.022 μM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylcholinesterase" title="acetylcholinesterase">acetylcholinesterase</a>, <a href="https://publications.waset.org/abstracts/search?q=Callicarpa%20maingayi" title=" Callicarpa maingayi"> Callicarpa maingayi</a>, <a href="https://publications.waset.org/abstracts/search?q=euscaphic%20acid" title=" euscaphic acid"> euscaphic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/132971/isolation-characterization-and-biological-activities-of-compounds-isolated-from-callicarpa-maingayi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Assisted Supercritical Carbon Dioxide Extraction of Tocotrienols from Palm Fatty Acid Distillate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najwa%20Othman">Najwa Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhidayah%20Suleiman"> Norhidayah Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gun%20Hean%20Chong"> Gun Hean Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm fatty acid distillate (PFAD) is a by-product of palm oil refineries which contains valuable compounds such as phytosterols, squalene, polycosanol, co-enzyme Q10 and vitamin E (tocopherols and tocotrienols). Approximately 0.7-1.0% of vitamin E accumulates in PFAD, and it functions as antioxidants and anti-inflammatory. The objective of this research is to evaluate the effect of manipulated variables in supercritical carbon dioxide towards the recovery of tocotrienols in PFAD. The vitamin E concentrate isolated varies depending on the pre-treatment of sample and extraction techniques. In this research, tocotrienols in PFAD was concentrated by removing the extraneous matters, especially free fatty acid (FFA) and acylglycerols. Pre-treatment method such as enzymatic hydrolysis by using lipase from Candida rugosa as an enzyme was used to remove FFA and improve recovery of vitamin E. After that, treated PFAD was extracted by using supercritical fluid extraction in co-current glass beads packed column (22 cm x 75 cm i.d) at different temperatures (40-60°C) and pressures (100-300 bar) for 5 hours. After the extraction, the sample was analyzed by using high-pressure liquid chromatography (HPLC) system to quantify the tocotrienols. The results indicated that a combined pressure (200 bar) and temperature (60°C) was predicted to provide highest tocotrienols yield and the extraction yield obtained was 106.45%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title="enzymatic hydrolysis">enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20fatty%20acid%20distillate" title=" palm fatty acid distillate"> palm fatty acid distillate</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20fluid%20extraction" title=" supercritical fluid extraction"> supercritical fluid extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=tocotrienols" title=" tocotrienols "> tocotrienols </a> </p> <a href="https://publications.waset.org/abstracts/104869/assisted-supercritical-carbon-dioxide-extraction-of-tocotrienols-from-palm-fatty-acid-distillate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Green Synthesis of Silver Nanoparticles with Aqueous Extract of Moringa oleifera Lam Leaves and Its Ameliorative Effect on Benign Prostatic Hyperplasia in Wistar Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotimi%20Larayetana">Rotimi Larayetana</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahaya%20Abdulrazaq"> Yahaya Abdulrazaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladunni%20O.%20Falola"> Oladunni O. Falola</a>, <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20Ajayi"> Abayomi Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to perform green synthesis of silver nanoparticles (AgNPs) with the aqueous extract of Moringa oleifera Lam (M oleifera) leaves and determine its effects on benign prostatic hyperplasia in Wistar rats. Silver nitrate (AgNO₃) solution was reduced using the aqueous extract of Moringa oleifera Lam leaves, the resultant biogenic AgNPs were characterized by Fourier transformed infrared spectrophotometric, SEM, TEM and X-ray diffraction analysis. Animal experiments involved thirty (30) adult male Wistar rats randomly divided into five groups (A to E; n ₌ 5). Group A received only subcutaneous injection of olive oil daily while the other groups got 3 mg/kg/daily of testosterone propionate (TP) subcutaneously plus 50 mg/kg/daily of AgNPs intraperitoneally (B), 3 mg/kg/daily of TP plus 25 mg/kg/daily of AgNPs (C), 3 mg/kg/daily of TP only (D) and 25 mg/kg/daily of AgNPs only (E). The animals were sacrificed after 14 days, and the prostate gland, liver, and kidney were processed for histological analysis. Phytochemical screening and GC-MS analysis were performed to determine the composition of the M oleifera extract used. Biogenic AgNPs with an average diameter of 23 nm were synthesized. Biogenic AgNPs ameliorated hormone-induced prostate enlargement, and the inhibition of prostatic hypertrophy could be due to the presence of a significant amount of plant fatty acids and phytosterols in the aqueous extract of M oleifera extract. However, the administration of biogenic AgNPs at higher doses impacted negatively on the cytoarchitecture of the liver. Green synthesis of AgNPs with the aqueous extract of Moringa oleifera might be beneficial for the treatment of BPH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benign%20prostatic%20hyperplasia" title="benign prostatic hyperplasia">benign prostatic hyperplasia</a>, <a href="https://publications.waset.org/abstracts/search?q=biogenic%20synthesis" title=" biogenic synthesis"> biogenic synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Moringa%20oleifera" title=" Moringa oleifera"> Moringa oleifera</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=testosterone" title=" testosterone"> testosterone</a> </p> <a href="https://publications.waset.org/abstracts/171460/green-synthesis-of-silver-nanoparticles-with-aqueous-extract-of-moringa-oleifera-lam-leaves-and-its-ameliorative-effect-on-benign-prostatic-hyperplasia-in-wistar-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20V.%20Viegas">Carolina V. Viegas</a>, <a href="https://publications.waset.org/abstracts/search?q=Monique%20Gon%C3%A7alves"> Monique Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Gisel%20Chenard%20Diaz"> Gisel Chenard Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yordanka%20Reyes%20Cruz"> Yordanka Reyes Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Donato%20Alexandre%20Gomes%20Aranda"> Donato Alexandre Gomes Aranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Desmodesmus" title=" Desmodesmus"> Desmodesmus</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20classes" title=" lipid classes"> lipid classes</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title=" fatty acid profile"> fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrates" title=" carbohydrates"> carbohydrates</a> </p> <a href="https://publications.waset.org/abstracts/170923/quantification-and-identification-of-the-main-components-of-the-biomass-of-the-microalgae-scenedesmus-sp-prospection-of-molecules-of-commercial-interest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Nutritional Characteristics, Phytochemical and Antimicrobial Potential of Leaf Protein Concentrates from Huckleberry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sodamade%20Abiodun">Sodamade Abiodun</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeboye%20Olubunmi%20Omolara"> Adeboye Olubunmi Omolara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that can serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of Huckleberry was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education campus, Oyo. The sample was authenticated at the forestry research institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition; mineral analysis phytochemical and antimicrobial properties of the leaf protein concentrates were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive results of the mineral analysis showed that the sample contains Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g while cadmium was not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, steroid, Terpenoid, cordial glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Huckleberry leaf protein concentrates showed that it contains bioactive compounds that are capable of eradicating some tested microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisidlae pneumonia and Proteus merabilis. The results of the analysis of leaf protein concentrates of Huckleberry showed that the sample contains high nutrient and mineral constituents and phytochemical compounds that could make the sample useful for medicinal activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=huckleberry" title="huckleberry">huckleberry</a>, <a href="https://publications.waset.org/abstracts/search?q=mentha%20piperita" title=" mentha piperita"> mentha piperita</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical" title=" phytochemical"> phytochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20protein%20concentrates" title=" leaf protein concentrates"> leaf protein concentrates</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20characteristics" title=" nutritional characteristics"> nutritional characteristics</a> </p> <a href="https://publications.waset.org/abstracts/166083/nutritional-characteristics-phytochemical-and-antimicrobial-potential-of-leaf-protein-concentrates-from-huckleberry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Phytochemical Screening and Antimicrobial Activity of Limeum indicum and Euphorbia granulata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noshaba%20Dilbar">Noshaba Dilbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hina%20Ashraf"> Hina Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants are considered as rich source of ingredients which can be used in drug development and synthesis. Moreover, these plants play a vital role in the development of human culture of using ayurvedic medicines around the whole world. Among all plants, dessert plants are being proved as effective source of ayurvedic medicines and remedy against many diseases. Considering the fact, two plant species Limium indicum and Euphorbia granulata were taken from Cholistan dessert of Bahawalpur, Pakistan. Firstly, phytochemical screening was done by making dry and fresh plant extracts in five different solvents i.e Petroleum ether, benzene, chloroform, ethanol and methanol. Standard confirmation tests for all compounds were applied for analysis. Results revealed the presence of high range of bioactive compounds such as alakaloids, terpenoids, glycosides, steroids, flavonoids, saponins, phytosterols, oxalic acid, anthocyanin and quinone in both plants. Best results were obtained by methanolic, chloroform and petroleum ether extracts and methanolic, ethanolic and benzene extracts of Limium indicum and Euphorbia granulate respectively. Considering the results, methanolic extracts of both plants were further analysed for antibacterial activity. Plants were analysed against four pathogens including Escherchia coli, Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aruginosa using disc diffusion method. Limium indicum showed highly significant activity against all pathogens while Euphorbia granulata showed significant activity against Klebsiella pneumonia and Proteus vulgaris but lesser against Escherchia coli and Pseudomonas aruginosa. MIC of extracts against each positive bacterium was calculated and recorded. Present plants can be considered for making useful drugs but further studies are needed to isolate active agents from plant extracts for drug development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphorbia%20granulata" title=" Euphorbia granulata"> Euphorbia granulata</a>, <a href="https://publications.waset.org/abstracts/search?q=Limium%20indicum" title=" Limium indicum"> Limium indicum</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a> </p> <a href="https://publications.waset.org/abstracts/122769/phytochemical-screening-and-antimicrobial-activity-of-limeum-indicum-and-euphorbia-granulata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Nutritional Characteristics, Phytochemical and Antimicrobial Properties Vaccinium Pavifolium (Ericacea) Leaf Protein Concentrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sodamade%20A.">Sodamade A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolaji%20K.%20A."> Bolaji K. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that could serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of the plant (Vaccinium pavifolium) was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education Campus, Oyo. The sample was authenticated at the Forestry Research Institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition, mineral analysis phytochemical and antimicrobial properties were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive. The mineral analysis of the sample showed; Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g, Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g Cadmium and Mercury were not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, Steroids, Terpenoids, Cardiac glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Vaccinium parvifolium L. leaf protein concentrates showed that it contains bioactive compounds that are capable of combating the following microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisialae pneumonia and Proteus mirabilis. The results of the analysis of Vaccinium parvifolium L. leaf protein concentrates showed that the sample contains valuable nutrient and mineral constituents, and phytochemical compounds that could make the sample useful for medicinal activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaf%20protein%20concentrates" title="leaf protein concentrates">leaf protein concentrates</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccinium%20parvifolium" title=" vaccinium parvifolium"> vaccinium parvifolium</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20characteristics" title=" nutritional characteristics"> nutritional characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20composition" title=" mineral composition"> mineral composition</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/171102/nutritional-characteristics-phytochemical-and-antimicrobial-properties-vaccinium-pavifolium-ericacea-leaf-protein-concentrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Neuropharmacological and Neurochemical Evaluation of Methanolic Extract of Elaeocarpus sphaericus (Gaertn.) Stem Bark by Using Multiple Behaviour Models of Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaspreet%20Kaur">Jaspreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Nain"> Parminder Nain</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Saini"> Vipin Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumitra%20Dahiya"> Sumitra Dahiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elaeocarpus sphaericus has been traditionally used in the Indian traditional medicine system for the treatment of stress, anxiety, depression, palpitation, epilepsy, migraine and lack of concentration. The study was investigated to evaluate the neurological potential such as anxiolytic, muscle relaxant and sedative activity of methanolic extract of Elaeocarpus sphaericus stem bark (MEESSB) in mice. Preliminary phytochemical screening and acute oral toxicity of MEESSB was carried out by using standard methods. The anxiety was induced by employing Elevated Plus-Maze (EPM), Light and Dark Test (LDT), Open Field Test (OFT) and Social Interaction test (SIT). The motor coordination and sedative effect was also observed by using actophotometer, rota-rod apparatus and ketamine-induced sleeping time, respectively. Animals were treated with different doses of MEESSB (i.e.100, 200, 400 and 800 mg/kg orally) and diazepam (2 mg/kg i.p) for 21 days. Brain neurotransmitters like dopamine, serotonin and nor-epinephrine level were estimated by validated methods. Preliminary phytochemical analysis of the extract revealed the presence of tannins, phytosterols, steroids and alkaloids. In the acute toxicity studies, MEESSB was found to be non-toxic and with no mortality. In anxiolytic studies, the different doses of MEESSB showed a significant (p<0.05) effect on EPM and LDT. In OFT and SIT, a significant (p<0.05) increase in ambulation, rearing and social interaction time was observed. In the case of motor coordination activity, the MEESSB does not cause any significant effect on the latency to fall off from the rotarod bar as compared to the control group. Moreover, no significant effects on ketamine-induced sleep latency and total sleeping time induced by ketamine were observed. Results of neurotransmitter estimation revealed the increased concentration of dopamine, whereas the level of serotonin and nor-epinephrine was found to be decreased in the mice brain, with MEESSB at dose 800 mg/kg only. The study has validated the folkloric use of the plant as an anxiolytic in Indian traditional medicine while also suggesting potential usefulness in the treatment of stress and anxiety without causing sedation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiolytic" title="anxiolytic">anxiolytic</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20experiments" title=" behavior experiments"> behavior experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20neurotransmitters" title=" brain neurotransmitters"> brain neurotransmitters</a>, <a href="https://publications.waset.org/abstracts/search?q=elaeocarpus%20sphaericus" title=" elaeocarpus sphaericus"> elaeocarpus sphaericus</a> </p> <a href="https://publications.waset.org/abstracts/140887/neuropharmacological-and-neurochemical-evaluation-of-methanolic-extract-of-elaeocarpus-sphaericus-gaertn-stem-bark-by-using-multiple-behaviour-models-of-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evaluation of Anti-inflammatory Activities of Extracts Obtained from Capparis Erythrocarpos In-Vivo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Ofori">Benedict Ofori</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwabena%20Sarpong"> Kwabena Sarpong</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Antwi"> Stephen Antwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Medicinal plants are utilized all around the world and are becoming increasingly important economically. The WHO notes that ‘inappropriate use of traditional medicines or practices can have negative or dangerous effects and that future research is needed to ascertain the efficacy and safety of such practices and medicinal plants used by traditional medicine systems. The poor around the world have limited access to palliative care or pain relief. Pharmacologists have been focused on developing safe and effective anti-inflammatory drugs. Most of the issues related to their use have been linked to the fact that numerous traditional and herbal treatments are classified in different nations as meals or dietary supplements. As a result, there is no need for evidence of the quality, efficacy, or safety of these herbal formulations before they are marketed. The fact that access to drugs meant for pain relief is limited in low-income countries means advanced studies should be done on home drugs meant for inflammation to close the gap. Methods: The ethanolic extracts of the plant were screened for the presence of 10 phytochemicals. The Pierce BCA Protein Assay Kit was used for the determination of the protein concentration of the egg white. The rats were randomly selected and put in 6 groups. The egg white was sub-plantar injected into the right-hand paws of the rats to induce inflammation. The animals were treated with the three plant extracts obtained from the root bark, stem, and leaves of the plant. The control groups were treated with normal saline, while the standard groups were treated with standard drugs indomethacin and celecoxib. Plethysmometer was used to measure the change in paw volume of the animals over the course of the experiment. Results: The results of the phytochemical screening revealed the presence of reducing sugars and saponins. Alkaloids were present in only R.L.S (1:1:1), and phytosterols were found in R.L(1:1) and R.L.S (1:1:1). The estimated protein concentration was found to be 103.75 mg/ml. The control group had an observable increase in paw volume, which indicated that inflammation was induced during the 5 hours. The increase in paw volume for the control group peaked at the 1st hour and decreased gradually throughout the experiment, with minimal changes in the paw volumes. The 2nd and 3rd groups were treated with 20 mg/kg of indomethacin and celecoxib. The anti-inflammatory activities of indomethacin and celecoxib were calculated to be 21.4% and 4.28%, respectively. The remaining 3 groups were treated with 2 dose levels of 200mg/kg plant extracts. R.L.S, R.L, and S.R.L had anti-inflammatory activities of 22.3%, 8.2%, and 12.07%, respectively. Conclusions: Egg albumin-induced paw model in rats can be used to evaluate the anti-inflammatory activity of herbs that might have potential anti-inflammatory activity. Herbal medications have potential anti-inflammatory activities and can be used to manage various inflammatory conditions if their efficacy and side effects are well studied. The three extracts all possessed anti-inflammatory activity, with R.L.S having the highest anti-inflammatory activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=capparis%20erythrocarpos" title=" capparis erythrocarpos"> capparis erythrocarpos</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20activity" title=" anti-inflammatory activity"> anti-inflammatory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicine" title=" herbal medicine"> herbal medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=paw%20volume" title=" paw volume"> paw volume</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20albumin" title=" egg albumin"> egg albumin</a> </p> <a href="https://publications.waset.org/abstracts/163295/evaluation-of-anti-inflammatory-activities-of-extracts-obtained-from-capparis-erythrocarpos-in-vivo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10