CINXE.COM

Search results for: hydrocarbon potential

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: hydrocarbon potential</title> <meta name="description" content="Search results for: hydrocarbon potential"> <meta name="keywords" content="hydrocarbon potential"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrocarbon potential" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrocarbon potential"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12053</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrocarbon potential</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12053</span> An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ceren%20Sevimli">Ceren Sevimli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20%C4%B0nan"> Sedat İnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dada%C5%9F%20formation" title="dadaş formation">dadaş formation</a>, <a href="https://publications.waset.org/abstracts/search?q=diyarbak%C4%B1r%20basin" title=" diyarbakır basin"> diyarbakır basin</a>, <a href="https://publications.waset.org/abstracts/search?q=silurian%20hot%20shale" title=" silurian hot shale"> silurian hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/189223/an-assesment-of-unconventional-hydrocarbon-potential-of-the-silurian-dadas-shales-in-diyarbakir-basin-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12052</span> Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emir%20Borovac">Emir Borovac</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20I%CC%87nan"> Sedat İnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tanezzuft%20formation" title="tanezzuft formation">tanezzuft formation</a>, <a href="https://publications.waset.org/abstracts/search?q=ghadames%20basin" title=" ghadames basin"> ghadames basin</a>, <a href="https://publications.waset.org/abstracts/search?q=silurian%20hot%20shale" title=" silurian hot shale"> silurian hot shale</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/189237/thermal-maturity-and-hydrocarbon-generation-histories-of-the-silurian-tannezuft-shale-formation-ghadames-basin-northwestern-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12051</span> Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tunde%20Olagunju">K. Tunde Olagunju</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Scott%20Allen"> C. Scott Allen</a>, <a href="https://publications.waset.org/abstracts/search?q=Freek%20Van%20Der%20Meer"> Freek Van Der Meer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spill" title=" oil spill"> oil spill</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon-substrate%20combination" title=" hydrocarbon-substrate combination"> hydrocarbon-substrate combination</a>, <a href="https://publications.waset.org/abstracts/search?q=Sentinel-2" title=" Sentinel-2"> Sentinel-2</a>, <a href="https://publications.waset.org/abstracts/search?q=WorldView-3" title=" WorldView-3"> WorldView-3</a> </p> <a href="https://publications.waset.org/abstracts/139188/assessing-the-theoretical-suitability-of-sentinel-2-and-worldview-3-data-for-hydrocarbon-mapping-of-spill-events-using-hydrocarbon-spectral-slope-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12050</span> Basin Professor, Petroleum Geology Assessor in Indonesia Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arditya%20Nugraha">Arditya Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Herry%20Gunawan"> Herry Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20P.%20Widodo"> Agung P. Widodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The various possible strategies to find hydrocarbon are explored within a wide ranging of efforts. It started to identify petroleum concept in the basin. The main objectives of this paper are to integrate and develop information, knowledge, and evaluation from Indonesia’s sedimentary basins system in terms of their suitability for exploration activity and estimate the hydrocarbon potential available. The system which compiled data information and knowledge and comprised exploration and production data of all basins in Indonesia called as Basin Professor which stands for Basin Professional and Processor. Basin Professor is a website application using Geography Information System which consists of all information about basin montage, basin summary, petroleum system, stratigraphy, development play, risk factor, exploration history, working area, regional cross section, well correlation, prospect & lead inventory and infrastructure spatial. From 82 identified sedimentary basins, North Sumatra, Central Sumatra, South Sumatera, East Java, Kutai, and Tarakan basins are respectively positioned of the Indonesia’ s mature basin and the most productive basin. The Eastern of Indonesia also have many hydrocarbon potential and discovered several fields in Papua and East Abadi. Basin Professor compiled the well data in all of the basin in Indonesia from mature basin to frontier basin. Well known geological data, subsurface mapping, prospect and lead, resources and established infrastructures are the main factors make these basins have higher suitability beside another potential basin. The hydrocarbon potential resulted from this paper based on the degree of geological data, petroleum, and economic evaluation. Basin Professor has provided by a calculator tool in lead and prospect for estimate the hydrocarbon reserves, recoverable in place and geological risk. Furthermore, the calculator also defines the preliminary economic evaluation such as investment, POT IRR and infrastructures in each basin. From this Basin Professor, petroleum companies are able to estimate that Indonesia has a huge potential of hydrocarbon oil and gas reservoirs and still interesting for hydrocarbon exploration and production activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basin%20summary" title="basin summary">basin summary</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20system" title=" petroleum system"> petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a> </p> <a href="https://publications.waset.org/abstracts/62961/basin-professor-petroleum-geology-assessor-in-indonesia-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12049</span> Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Wadood">Bilal Wadood</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed"> Sajjad Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycle" title="cycle">cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies" title=" microfacies"> microfacies</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a> </p> <a href="https://publications.waset.org/abstracts/93674/establishing-sequence-stratigraphic-framework-and-hydrocarbon-potential-of-the-late-cretaceous-strata-a-case-study-from-central-indus-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12048</span> Organic Geochemical Evaluation of the Ecca Group Shale: Implications for Hydrocarbon Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20L.%20Baiyegunhi">Temitope L. Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi"> Christopher Baiyegunhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shale gas has recently been the exploration focus for future energy resource in South Africa. Specifically, the black shales of the lower Ecca Group in the study area are considered to be one of the most prospective targets for shale gas exploration. Evaluation of this potential resource has been restricted due to the lack of exploration and scarcity of existing drill core data. Thus, only limited previous geochemical data exist for these formations. In this study, outcrop and core samples of the Ecca Group were analysed to assess their total organic carbon (TOC), organic matter type, thermal maturity and hydrocarbon generation potential (SP). The results show that these rocks have TOC ranging from 0.11 to 7.35 wt.%. The SP values vary from 0.09 to 0.53 mg HC/g, suggesting poor hydrocarbon generative potential. The plot of S1 versus TOC shows that the source rocks were characterized by autochthonous hydrocarbons. S2/S3 values range between 0.40 and 7.5, indicating Type- II/III, III, and IV kerogen. With the exception of one sample from the collingham formation which has HI value of 53 mg HC/g TOC, all other samples have HI values of less than 50 mg HC/g TOC, thus suggesting Type-IV kerogen, which is mostly derived from reworked organic matter (mainly dead carbon) with little or no potential for hydrocarbon generation. Tmax values range from 318 to 601℃, indicating immature to over-maturity of hydrocarbon. The vitrinite reflectance values range from 2.22 to 3.93%, indicating over-maturity of the kerogen. Binary plots of HI against OI and HI versus Tmax show that the shales are of Type II and mixed Type II-III kerogen, which are capable of generating both natural gas and minor oil at suitable burial depth. Based on the geochemical data, it can be inferred that the source rocks are immature to over-matured variable from localities and have potential of producing wet to dry gas at present-stage. Generally, the Whitehill formation of the Ecca Group is comparable to the Marcellus and Barnett Shales. This further supports the assumption that the Whitehill Formation has a high probability of being a profitable shale gas play, but only when explored in dolerite-free area and away from the Cape Fold Belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=source%20rock" title="source rock">source rock</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter%20type" title=" organic matter type"> organic matter type</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20maturity" title=" thermal maturity"> thermal maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20generation%20potential" title=" hydrocarbon generation potential"> hydrocarbon generation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a> </p> <a href="https://publications.waset.org/abstracts/100472/organic-geochemical-evaluation-of-the-ecca-group-shale-implications-for-hydrocarbon-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12047</span> Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Heon%20Han">Sang Heon Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Daejun%20Chang"> Daejun Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Won%20Yang"> Won Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=syngas" title="syngas">syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=reburning" title=" reburning"> reburning</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil" title=" heavy oil"> heavy oil</a>, <a href="https://publications.waset.org/abstracts/search?q=furnace" title=" furnace"> furnace</a> </p> <a href="https://publications.waset.org/abstracts/23342/reburning-characteristics-of-biomass-syngas-in-a-pilot-scale-heavy-oil-furnace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12046</span> Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Althalb">Hakima Althalb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/90318/potential-of-ozonation-and-phytoremediation-to-reduce-hydrocarbon-levels-remaining-after-the-pilot-scale-microbial-based-bioremediation-land-farming-of-a-heavily-polluted-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12045</span> Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaustuvmani%20Patowary">Kaustuvmani Patowary</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Deka"> Suresh Deka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbon" title="petroleum hydrocarbon">petroleum hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20contamination" title=" hydrocarbon contamination"> hydrocarbon contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=rhamnolipid" title=" rhamnolipid"> rhamnolipid</a> </p> <a href="https://publications.waset.org/abstracts/27073/characterization-of-biosurfactant-during-crude-oil-biodegradation-employing-pseudomonas-sp-pg1-a-strain-isolated-from-garage-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12044</span> Preliminary Analysis for Oil and Gas Geological Characteristics and Exploration Prospects of Doseo Basin in Central Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiqiang%20Song">Haiqiang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiqing%20Liu"> Huiqing Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Doseo basin in Chad, Central Africa is one of the most important oil and gas blocks in the world. However, the low degree of oil and gas exploration and the lack of relevant geological data restrict the understanding and resource evaluation of the basin. To further develop the Doseo basin efficiently, it is urgent to deeply analyze the source rock characteristics and hydrocarbon generation potential of the Doseo basin. Based on seismic and drilling data in recent years, this paper systematically evaluates the geochemical characteristics of source rocks and their generated oils in Doseo Basin, explores the development, distribution, and evolution characteristics of source rocks, and evaluates the exploration potential of Doseo Basin according to the hydrocarbon enrichment law. The results show that the Lower Cretaceous Baliemian and Apudian source rocks in Doseo Basin are well developed, with high organic matter abundance (average TOC≥3%) and good organic matter types (type I~II), which are the main development layers of source rocks, but the organic matter maturity is generally low (Ro of the drilled source rocks is mainly between 0.4%~0.8%). The planar structure also shows that the main hydrocarbon accumulation mode in Doseo sag is the forward tectonic reservoirs such as near source anticlines and faulted noses. Finally, it is estimated that the accumulative resources of the main source rocks in the Doseo Basin are about 4.33× 108T in Apudite and Balim terrace layers. The results of this study will help guide the next step of oil and gas exploration, which is expected to drive the next step of oil and gas development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doseo%20basin" title="Doseo basin">Doseo basin</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous" title=" lower cretaceous"> lower cretaceous</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock%20characteristics" title=" source rock characteristics"> source rock characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20characteristics" title=" developmental characteristics"> developmental characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20generation%20potential" title=" hydrocarbon generation potential"> hydrocarbon generation potential</a> </p> <a href="https://publications.waset.org/abstracts/158057/preliminary-analysis-for-oil-and-gas-geological-characteristics-and-exploration-prospects-of-doseo-basin-in-central-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12043</span> Hydrocarbon New Business Opportunities in the Bida Basin of Central Nigeria: Prospect and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Obaje">N. G. Obaje</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Ibrahim"> S. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dadi-Mamud"> N. Dadi-Mamud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Musa"> M. K. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yusuf"> I. Yusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated study combining geological prospectivity mapping and geophysical aeromagnetic interpretation was carried out to determine hydrocarbon new business opportunities that may exist in the Bida Basin of Central Nigeria. Geological mapping was used to delineate the geological boundaries between the formations which is a significant initial criterion in evaluating hydrocarbon prospectivity. Processed and interpreted geophysical aeromagnetic data over the basin juxtaposed against the geological map has led to ranking of the prospectivity as less prospective, prospective and more prospective. The prospective and more prospective areas constitute new hydrocarbon business opportunities in the basin. The more prospective areas are at Pattishabakolo near Bida and at Kandi near Gulu. Prospective areas cover Badegi, Lemu, Duba, Kutigi, Auna, Mashegu and Mokwa. Geochemical data show that hydrocarbon source rocks exist within the Enagi and Patti formations in the northern and southern sections respectively. The geophysical aeromagnetic data indicates depths of more than 2,000m (> 2 Km) within the identified prospective areas. New business opportunities as used here refer to open acreages in Nigeria’s sedimentary basins that have not been licensed out by the government (Department of Petroleum Resources) to any operator but with significant potentials for commercial hydrocarbon accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=aeromagnetic" title=" aeromagnetic"> aeromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20opportunity" title=" business opportunity"> business opportunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bida%20Basin" title=" Bida Basin"> Bida Basin</a> </p> <a href="https://publications.waset.org/abstracts/37447/hydrocarbon-new-business-opportunities-in-the-bida-basin-of-central-nigeria-prospect-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12042</span> Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samim%20Khair%20Mohammad">Samim Khair Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Tsuji"> Takeshi Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanmaly%20Chhun"> Chanmaly Chhun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Afghan%20Tajik%20basin" title="The Afghan Tajik basin">The Afghan Tajik basin</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20lines" title=" seismic lines"> seismic lines</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20decomposition" title=" spectral decomposition"> spectral decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20folds" title=" thrust folds"> thrust folds</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20reservoirs" title=" hydrocarbon reservoirs"> hydrocarbon reservoirs</a> </p> <a href="https://publications.waset.org/abstracts/168361/subsurface-structures-related-to-the-hydrocarbon-migration-and-accumulation-in-the-afghan-tajik-basin-northern-afghanistan-insights-from-seismic-attribute-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12041</span> Evaluation of the Hydrocarbon Sources Potential of Source Rock in the Ghadames Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Omran">Ibrahim Omran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important potential source rock intervals for the oils in the Ghadames Basin is the Tanezzuft shale. The Tanezzuft shale is very mature with respect to high oil generation. The aim of this project is to estimate the total yield of the source rocks in the Ghadames Basin, which is represented by the Tanezzuft Formation (oil shale interbedded with sandstone). To evaluate the source rock in the Ghadames Basin, we take one of the wells, which is G1-NC2; this well was chosen to give an initial idea about the status of the Tanezzuft source rock in the Ghadames Basin, and the Rock-Eval 6 devices used for this study. This study will use molecular geochemical techniques to compare 35 samples obtained from boreholes during drill well G1-NC2 in the Ghadames basin and compare the result with the GC result. The comparison showed the following: the TOC has fair hydrocarbon source rock potential where immature in the upper zone, but the lower zone has adequate organic carbon to generate hydrocarbon, and the source potential of kerogen has Type II, III oil porn. The GC result indicates that the origin of the oil is richer in lipids or algae than phytane chlorophyll or terrestrial matter for kerogen Type II and III, and the condition here is suboxic. The ratios of Pr/Ph are close together as well as nC17/Pr and nC18/Ph; the origin of oil is richer in lipid or algae than phytol chlorophyll or terrestrial that for kerogen Type II and the condition here is suboxic. It is noticeable when using the Talukdar graph that all the selected crude oil samples take position of kerogen type II and III and transition zone between oxidizing and reducing, and the source of oil mixed between algal and marine. This implies that the migration path was vertical rather than horizontal, so the oil comes from the source rocks in the same well G1-NC2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kerogen%20type" title="kerogen type">kerogen type</a>, <a href="https://publications.waset.org/abstracts/search?q=maturation" title=" maturation"> maturation</a>, <a href="https://publications.waset.org/abstracts/search?q=generation" title=" generation"> generation</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a> </p> <a href="https://publications.waset.org/abstracts/194924/evaluation-of-the-hydrocarbon-sources-potential-of-source-rock-in-the-ghadames-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12040</span> Defining Unconventional Hydrocarbon Parameter Using Shale Play Concept</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Ryacudu">Rudi Ryacudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edi%20Artono"> Edi Artono</a>, <a href="https://publications.waset.org/abstracts/search?q=Gema%20Wahyudi%20Purnama"> Gema Wahyudi Purnama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil and gas consumption in Indonesia is currently on the rise due to its nation economic improvement. Unfortunately, Indonesia’s domestic oil production cannot meet it’s own consumption and Indonesia has lost its status as Oil and Gas exporter. Even worse, our conventional oil and gas reserve is declining. Unwilling to give up, the government of Indonesia has taken measures to invite investors to invest in domestic oil and gas exploration to find new potential reserve and ultimately increase production. Yet, it has not bear any fruit. Indonesia has taken steps now to explore new unconventional oil and gas play including Shale Gas, Shale Oil and Tight Sands to increase domestic production. These new plays require definite parameters to differentiate each concept. The purpose of this paper is to provide ways in defining unconventional hydrocarbon reservoir parameters in Shale Gas, Shale Oil and Tight Sands. The parameters would serve as an initial baseline for users to perform analysis of unconventional hydrocarbon plays. Some of the on going concerns or question to be answered in regards to unconventional hydrocarbon plays includes: 1. The TOC number, 2. Has it been well “cooked” and become a hydrocarbon, 3. What are the permeability and the porosity values, 4. Does it need a stimulation, 5. Does it has pores, and 6. Does it have sufficient thickness. In contrast with the common oil and gas conventional play, Shale Play assumes that hydrocarbon is retained and trapped in area with very low permeability. In most places in Indonesia, hydrocarbon migrates from source rock to reservoir. From this case, we could derive a theory that Kitchen and Source Rock are located right below the reservoir. It is the starting point for user or engineer to construct basin definition in relation with the tectonic play and depositional environment. Shale Play concept requires definition of characteristic, description and reservoir identification to discover reservoir that is technically and economically possible to develop. These are the steps users and engineers has to do to perform Shale Play: a. Calculate TOC and perform mineralogy analysis using water saturation and porosity value. b. Reconstruct basin that accumulate hydrocarbon c. Brittlenes Index calculated form petrophysical and distributed based on seismic multi attributes d. Integrated natural fracture analysis e. Best location to place a well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title="unconventional hydrocarbon">unconventional hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title=" shale gas"> shale gas</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20oil%20tight%20sand%20reservoir%20parameters" title=" shale oil tight sand reservoir parameters"> shale oil tight sand reservoir parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20play" title=" shale play"> shale play</a> </p> <a href="https://publications.waset.org/abstracts/12493/defining-unconventional-hydrocarbon-parameter-using-shale-play-concept" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12039</span> Potential Hydrocarbon Degraders Present in Oil from WWII Wrecks in the Pacific</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awei%20Bainivalu">Awei Bainivalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Larsen"> Joachim Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Logesh%20Panneerselvan"> Logesh Panneerselvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Mills"> Toby Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Brett%20Neilan"> Brett Neilan</a>, <a href="https://publications.waset.org/abstracts/search?q=Megharaj%20Mallavarapu"> Megharaj Mallavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World War II (WWII) shipwrecks harbour up to 20 million tonnes of oil. More than 3000 wrecks are in the Pacific Ocean; 300 are oil tankers. Compared to other oil removal methods, bioremediation is environmentally friendly and cost-effective. Oil's microbial community and hydrocarbon properties from the Pacific WWII wrecks were identified. Dominant phyla are Proteobacteria, Actinobacteria, and Firmicutes. Native marine bacteria oil-degraders were isolated for bioremediation. Petroleum degradation data from the bacterial consortium will be analyzed over the next three months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20bioremediation" title="oil bioremediation">oil bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20bacteria" title=" marine bacteria"> marine bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=WWII%20shipwrecks" title=" WWII shipwrecks"> WWII shipwrecks</a>, <a href="https://publications.waset.org/abstracts/search?q=pacific" title=" pacific"> pacific</a> </p> <a href="https://publications.waset.org/abstracts/147889/potential-hydrocarbon-degraders-present-in-oil-from-wwii-wrecks-in-the-pacific" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12038</span> Aspects of Environmental Sustainability in the Operation of Onshore Hydrocarbon Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emil%20Aliyev">Emil Aliyev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main focus of this conference paper is on the aspects of the environmental sustainability of onshore hydrocarbon pipelines. The latter is notorious for being a source of major environmental contamination and a consumer of vast amounts of natural resources such as water, land, steel, etc. Therefore, the environmentally sustainable operation of pipelines is a concern that requires attention and research. The geographical scope of the paper is confined to onshore hydrocarbon pipelines operated in the Middle East region. The research contains elements of originality as it draws on the author’s field experience and practical implementation of environmental and sustainability solutions in a major Middle East-based pipeline organization. The authors describe some of the most common significant environmental aspects of pipeline operations and provide examples of various approaches and technologies that can be successfully utilized to make pipelines more environmentally sustainable. The author concludes that the operation of onshore hydrocarbon pipelines can be made environmentally sustainable. This can be achieved by adopting a systematic framework, focusing limited resources on significant aspects, integrating a circular economy into day-to-day activities, and having strong management support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipelines" title="pipelines">pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=onshore%20hydrocarbon%20pipelines" title=" onshore hydrocarbon pipelines"> onshore hydrocarbon pipelines</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sustainability" title=" environmental sustainability"> environmental sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=significant%20environmental%20aspects" title=" significant environmental aspects"> significant environmental aspects</a> </p> <a href="https://publications.waset.org/abstracts/160305/aspects-of-environmental-sustainability-in-the-operation-of-onshore-hydrocarbon-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12037</span> Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Bilawal%20Ali%20Shah">Syed Bilawal Ali Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Potwar%20Basin" title="Potwar Basin">Potwar Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=Patala%20Shale" title=" Patala Shale"> Patala Shale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rock-Eval%20pyrolysis" title=" Rock-Eval pyrolysis"> Rock-Eval pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Indus%20Basin" title=" Indus Basin"> Indus Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=VR%20%25Ro" title=" VR %Ro"> VR %Ro</a> </p> <a href="https://publications.waset.org/abstracts/179984/petroleum-generative-potential-of-eocene-paleocene-sequences-of-potwar-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12036</span> Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Hasan%20Omar">Mustafa Hasan Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solutions" title=" hydrocarbon solutions"> hydrocarbon solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20concrete" title=" polymer concrete"> polymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a> </p> <a href="https://publications.waset.org/abstracts/110602/studying-the-effect-of-hydrocarbon-solutions-on-the-properties-of-epoxy-polymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12035</span> A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afiq%20Mohd%20Fahmi">Afiq Mohd Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tony%20Gutierrez"> Tony Gutierrez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Hennige"> Sebastian Hennige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ocean%20acidification" title=" ocean acidification"> ocean acidification</a> </p> <a href="https://publications.waset.org/abstracts/140551/a-microcosm-study-on-the-response-of-phytoplankton-and-bacterial-community-of-the-subarctic-northeast-atlantic-ocean-to-oil-pollution-under-projected-atmospheric-co2-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12034</span> Evaluation of Hydrocarbon Prospects of &#039;ADE&#039; Field, Niger Delta </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluseun%20A.%20Sanuade">Oluseun A. Sanuade</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanlinn%20I.%20Kaka"> Sanlinn I. Kaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesoji%20O.%20Akanji"> Adesoji O. Akanji</a>, <a href="https://publications.waset.org/abstracts/search?q=Olukole%20A.%20Akinbiyi"> Olukole A. Akinbiyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prospect evaluation of ‘the ‘ADE’ field was done using 3D seismic data and well log data. The field is located in the offshore Niger Delta where water depth ranges from 450 to 800 m. The objectives of this study are to explore deeper prospects and to ascertain the kind of traps that are favorable for the accumulation of hydrocarbon in the field. Six horizons with major and minor faults were identified and mapped in the field. Time structure maps of these horizons were generated and using the available check-shot data the maps were converted to top structure maps which were used to calculate the hydrocarbon volume. The results show that regional structural highs that are trending in northeast-southwest (NE-SW) characterized a large portion of the field. These highs were observed across all horizons revealing a regional post-depositional deformation. Three prospects were identified and evaluated to understand the different opportunities in the field. These include stratigraphic pinch out and bi-directional downlap. The results of this study show that the field has potentials for new opportunities that could be explored for further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=play" title=" play"> play</a>, <a href="https://publications.waset.org/abstracts/search?q=prospect" title=" prospect"> prospect</a>, <a href="https://publications.waset.org/abstracts/search?q=stratigraphy" title=" stratigraphy"> stratigraphy</a> </p> <a href="https://publications.waset.org/abstracts/86819/evaluation-of-hydrocarbon-prospects-of-ade-field-niger-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12033</span> Isolation, Identification and Crude Oil Biodegradation Potential of Providencia sp. BAZ 01</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aisami%20A.">Aisami A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Adamu"> Z. A. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Bulama"> Lawan Bulama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to growing issues of crude oil pollution in both marine and terrestrial environments, Billions to Trillions of US Dollars were spent over the years for the treatment of this spill. There is an urgent need for effective bioremediation strategies. This current study focuses on the isolation and characterization of a crude oil-degrading bacterium from hydrocarbon-contaminated soil samples. Soil samples were collected from an oil spill site and subjected to enrichment culture techniques in a mineral salt medium supplemented with crude oil as the singular carbon source. The isolates were screened for their crude oil-degrading capabilities using gravimetric analysis. The most efficient isolation was identified through 16S rRNA gene sequencing. Cultural and physical conditions such pH, temperature salinity and crude oil concentrations were optimized. The isolates showed significant crude oil degradation efficiency, reducing oil concentration (2.5%) by 75% within 15 days of incubation. The strain was identified as Providencia sp. through molecular characterization, the sequence was deposited at the NCBI Genbank with accession number MN880494. The bacterium exhibited optimal growth at 32.5°C, pH 7.0 to 7.5, and in the presence of 1.5% (w/v) NaCl. The isolated Providencia sp. shows encouraging potential for bioremediation of crude oil-contaminated environments. This study successfully isolated and characterized a crude oil-degrading Providencia sp., highlighting its potential in bioremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20degradation" title="crude oil degradation">crude oil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=providencia%20sp." title=" providencia sp."> providencia sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20utilization" title=" hydrocarbon utilization"> hydrocarbon utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution." title=" environmental pollution."> environmental pollution.</a> </p> <a href="https://publications.waset.org/abstracts/188258/isolation-identification-and-crude-oil-biodegradation-potential-of-providencia-sp-baz-01" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12032</span> Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakiullah%20Kalwar">Zakiullah Kalwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shabeer%20Abbassi"> Shabeer Abbassi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title="hydrocarbon potential">hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20style" title=" structural style"> structural style</a>, <a href="https://publications.waset.org/abstracts/search?q=reserve%20calculation" title=" reserve calculation"> reserve calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=enhance%20production" title=" enhance production"> enhance production</a> </p> <a href="https://publications.waset.org/abstracts/39878/study-of-structural-styles-and-hydrocarbon-potential-of-rajan-pur-area-middle-indus-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12031</span> Unconventional Hydrocarbon Management Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edi%20Artono">Edi Artono</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Tamtomo"> Budi Tamtomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gema%20Wahyudi%20Purnama"> Gema Wahyudi Purnama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world energy demand increasing extreamly high time by time, including domestic demand. That is impossible to avoid because energy a country demand proportional to surge in the number of residents, economic growth and addition of industrial sector. Domestic Oil and gas conventional reserves depleted naturally while production outcome from reservoir also depleted time to time. In the other hand, new reserve did not discover significantly to replace it all. Many people are investigating to looking for new alternative energy to answer the challenge. There are several option to solve energy fossil needed problem using Unconventional Hydrocarbon. There are four aspects to consider as a management reference in order that Unconventional Hydrocarbon business can work properly, divided to: 1. Legal aspect, 2. Environmental aspect, 3. Technical aspect and 4. Economy aspect. The economic aspect as the key to whether or not a project can be implemented or not in Oil and Gas business scheme, so do Unconventional Hydorcarbon business scheme. The support of regulation are needed to buttress Unconventional Hydorcarbon business grow up and make benefits contribute to Government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20energy" title="alternative energy">alternative energy</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon" title=" unconventional hydrocarbon"> unconventional hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation%20support" title=" regulation support"> regulation support</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20strategy" title=" management strategy"> management strategy</a> </p> <a href="https://publications.waset.org/abstracts/12494/unconventional-hydrocarbon-management-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12030</span> Organic Geochemical Characteristics of Cenozoic Mudstones, NE Bengal Basin, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Zakir%20Hossain">H. M. Zakir Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cenozoic mudstone samples, obtained from drilled cored and outcrop in northeastern Bengal Basin of Bangladesh were organic geochemically analyzed to identify vertical variations of organic facies, thermal maturity, hydrocarbon potential and depositional environments. Total organic carbon (TOC) content ranges from 0.11 to 1.56 wt% with an average of 0.43 wt%, indicating a good source rock potential. Total sulphur content is variable with values ranging from ~0.001 to 1.75 wt% with an average of 0.065 wt%. Rock-Eval S1 and S2 yields range from 0.03 to 0.14 mg HC/g rock and 0.01 to 0.66 mg HC/g rock, respectively. The hydrogen index values range from 2.71 to 56.09 mg HC/g TOC. These results revealed that the samples are dominated by type III kerogene. Tmax values of 426 to 453 °C and vitrinite reflectance of 0.51 to 0.66% indicate the organic matter is immature to mature. Saturated hydrocarbon ratios such as pristane, phytane, steranes, and hopanes, indicate mostly terrigenous organic matter with small influence of marine organic matter. Organic matter in the succession was accumulated in three different environmental conditions based on the integration of biomarker proxies. First phase (late Eocene to early Miocene): Deposition occurred entirely in seawater-dominated oxic conditions, with high inputs of land plants organic matter including angiosperms. Second phase (middle to late Miocene): Deposition occurred in freshwater-dominated anoxic conditions, with phytoplanktonic organic matter and a small influence of land plants. Third phase (late Miocene to Pleistocene): Deposition occurred in oxygen-poor freshwater conditions, with abundant input of planktonic organic matter and high influx of angiosperms. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC contents and primarily terrestrial organic matter could have generated some condensates and oils in and around the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title="Bangladesh">Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential" title=" hydrocarbon potential"> hydrocarbon potential</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a> </p> <a href="https://publications.waset.org/abstracts/14260/organic-geochemical-characteristics-of-cenozoic-mudstones-ne-bengal-basin-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12029</span> Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmau%20Mukhtar%20Ahmed">Asmau Mukhtar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Duran"> Olga Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title="hydrocarbon">hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Deep%20Neural%20Network" title=" Deep Neural Network"> Deep Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20wave%20infrared%20region" title="short wave infrared region">short wave infrared region</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20region" title=" near-infrared region"> near-infrared region</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image" title=" hyperspectral image"> hyperspectral image</a> </p> <a href="https://publications.waset.org/abstracts/153072/hyperspectral-band-selection-for-oil-spill-detection-using-deep-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12028</span> Characterization of Petrophysical Properties of Reservoirs in Bima Formation, Northeastern Nigeria: Implication for Hydrocarbon Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Efomeh%20Omolaiye">Gabriel Efomeh Omolaiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Ajadi"> Jimoh Ajadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olatunji%20Seminu"> Olatunji Seminu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Ayoola%20Jimoh"> Yusuf Ayoola Jimoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ubulom%20Daniel"> Ubulom Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identification and characterization of petrophysical properties of reservoirs in the Bima Formation were undertaken to understand their spatial distribution and impacts on hydrocarbon saturation in the highly heterolithic siliciclastic sequence. The study was carried out using nine well logs from Maiduguri and Baga/Lake sub-basins within the Borno Basin. The different log curves were combined to decipher the lithological heterogeneity of the serrated sand facies and to aid the geologic correlation of sand bodies within the sub-basins. Evaluation of the formation reveals largely undifferentiated to highly serrated and lenticular sand bodies from which twelve reservoirs named Bima Sand-1 to Bima Sand-12 were identified. The reservoir sand bodies are bifurcated by shale beds, which reduced their thicknesses variably from 0.61 to 6.1 m. The shale content in the sand bodies ranged from 11.00% (relatively clean) to high shale content of 88.00%. The formation also has variable porosity values, with calculated total porosity ranged as low as 10.00% to as high as 35.00%. Similarly, effective porosity values spanned between 2.00 to 24.00%. The irregular porosity values also accounted for a wide range of field average permeability estimates computed for the formation, which measured between 0.03 to 319.49 mD. Hydrocarbon saturation (Sh) in the thin lenticular sand bodies also varied from 40.00 to 78.00%. Hydrocarbon was encountered in three intervals in Ga-1, four intervals in Da-1, two intervals in Ar-1, and one interval in Ye-1. Ga-1 well encountered 30.78 m thick of hydrocarbon column in 14 thin sand lobes in Bima Sand-1, with thicknesses from 0.60 m to 5.80 m and average saturation of 51.00%, while Bima Sand-2 intercepted 45.11 m thick of hydrocarbon column in 12 thin sand lobes with an average saturation of 61.00% and Bima Sand-9 has 6.30 m column in 4 thin sand lobes. Da-1 has hydrocarbon in Bima Sand-8 (5.30 m, Sh of 58.00% in 5 sand lobes), Bima Sand-10 (13.50 m, Sh of 52.00% in 6 sand lobes), Bima Sand-11 (6.20 m, Sh of 58.00% in 2 sand lobes) and Bima Sand-12 (16.50 m, Sh of 66% in 6 sand lobes). In the Ar-1 well, hydrocarbon occurs in Bima Sand-3 (2.40 m column, Sh of 48% in a sand lobe) and Bima Sand-9 (6.0 m, Sh of 58% in a sand lobe). Ye-1 well only intersected 0.5 m hydrocarbon in Bima Sand-1 with 78% saturation. Although Bima Formation has variable saturation of hydrocarbon, mainly gas in Maiduguri, and Baga/Lake sub-basins of the research area, its highly thin serrated sand beds, coupled with very low effective porosity and permeability in part, would pose a significant exploitation challenge. The sediments were deposited in a fluvio-lacustrine environment, resulting in a very thinly laminated or serrated alternation of sand and shale beds lithofacies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bima" title="Bima">Bima</a>, <a href="https://publications.waset.org/abstracts/search?q=Chad%20Basin" title=" Chad Basin"> Chad Basin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluvio-lacustrine" title=" fluvio-lacustrine"> fluvio-lacustrine</a>, <a href="https://publications.waset.org/abstracts/search?q=lithofacies" title=" lithofacies"> lithofacies</a>, <a href="https://publications.waset.org/abstracts/search?q=serrated%20sand" title=" serrated sand"> serrated sand</a> </p> <a href="https://publications.waset.org/abstracts/135605/characterization-of-petrophysical-properties-of-reservoirs-in-bima-formation-northeastern-nigeria-implication-for-hydrocarbon-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12027</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12026</span> Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saif%20N.%20Al-Bahry">Saif N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahya%20M.%20Al-Wahaibi"> Yahya M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20E.%20Elshafie"> Abdulkadir E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20S.%20Al-Bemani"> Ali S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanket%20J.%20Joshi"> Sanket J. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20pollution" title=" hydrocarbon pollution"> hydrocarbon pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=spore-forming%20bacteria" title=" spore-forming bacteria"> spore-forming bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-surfactant" title=" bio-surfactant"> bio-surfactant</a> </p> <a href="https://publications.waset.org/abstracts/3715/isolation-of-biosurfactant-producing-spore-forming-bacteria-from-oman-potential-applications-in-bioremediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12025</span> Comparative Analysis of the Computer Methods&#039; Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Shcherban">Pavel Shcherban</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlad%20Golovanov"> Vlad Golovanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20modelling%20of%20deposits" title=" computer modelling of deposits"> computer modelling of deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=correction%20of%20the%20feasibility%20study" title=" correction of the feasibility study"> correction of the feasibility study</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20hydrocarbon%20fields" title=" offshore hydrocarbon fields"> offshore hydrocarbon fields</a> </p> <a href="https://publications.waset.org/abstracts/88053/comparative-analysis-of-the-computer-methods-usage-for-calculation-of-hydrocarbon-reserves-in-the-baltic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12024</span> Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetokunbo%20Ademola%20Falade">Adetokunbo Ademola Falade</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Olakunle%20Akinsete"> Oluwatoyin Olakunle Akinsete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Omeiza%20Aliu"> Hussein Omeiza Aliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent" title=" hydrocarbon solvent"> hydrocarbon solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a> </p> <a href="https://publications.waset.org/abstracts/187476/solvent-aided-dilution-approach-for-heavy-hydrocarbon-liquid-evaluation-in-the-eastern-dahomey-basin-southwestern-nigeria-case-study-of-agbabu-bitumen-in-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=401">401</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=402">402</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20potential&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10