CINXE.COM
Search results for: steel content measurement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: steel content measurement</title> <meta name="description" content="Search results for: steel content measurement"> <meta name="keywords" content="steel content measurement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="steel content measurement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="steel content measurement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10133</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: steel content measurement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10133</span> Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bouhouche">S. Bouhouche</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Drai"> R. Drai</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bast"> J. Bast</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chain%20Monte%20Carlo" title=" Markov chain Monte Carlo"> Markov chain Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20fluorescence%20calibration%20and%20testing" title=" x-ray fluorescence calibration and testing"> x-ray fluorescence calibration and testing</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement" title=" steel content measurement"> steel content measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20measurement" title=" uncertainty measurement"> uncertainty measurement</a> </p> <a href="https://publications.waset.org/abstracts/88897/extended-kalman-filter-and-markov-chain-monte-carlo-method-for-uncertainty-estimation-application-to-x-ray-fluorescence-machine-calibration-and-metal-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10132</span> The Effect of the Proportion of Carbon on the Corrosion Rate of Carbon-Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hablous"> Ahmed A. Hablous</a>, <a href="https://publications.waset.org/abstracts/search?q=Mofied%20M.%20Elnemry"> Mofied M. Elnemry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carbon steel is of one of the most common mineral materials used in engineering and industrial applications in order to have access to the required mechanical properties, especially after the change of carbon ratio, but this may lead to stimulate corrosion. It has been used in models of solids with different carbon ratios such as 0.05% C, 0.2% C, 0.35% C, 0.5% C, and 0.65% C and have been studied using three testing durations which are 4 weeks, 6 weeks, and 8 weeks and among different corrosion environments such as atmosphere, fresh water, and salt water. This research is for the purpose of finding the effect of the carbon content on the corrosion resistance of steels in different corrosion medium by using the weight loss technique as a function of the corrosion resistance. The results that have been obtained through this research shows that a correlation can be made between corrosion rates and steel's carbon content, and the corrosion resistance decreases with the increase in carbon content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proportion%20of%20carbon%20in%20the%20steel" title="proportion of carbon in the steel">proportion of carbon in the steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20rate" title=" corrosion rate"> corrosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance%20in%20carbon-steel" title=" corrosion resistance in carbon-steel"> corrosion resistance in carbon-steel</a> </p> <a href="https://publications.waset.org/abstracts/26940/the-effect-of-the-proportion-of-carbon-on-the-corrosion-rate-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10131</span> Effect of Sulfur Content on Fatigue Strength of AISI 4140 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20S.%20Patil">Sachin S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20I.%20Mehta"> Mohan I. Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20J.%20Sutar"> Sandip J. Sutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshay%20B.%20Patil"> Akshay B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20S.%20Kirwai"> Shreyas S. Kirwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Arangi"> Suresh Arangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MnS is the most commonly found inclusion in steel, which is desirable for machinability of alloy steels but only up to a certain limit, beyond which it weakens fatigue properties of steel. In present work, the effect of sulfur content and its inclusions on the fatigue behavior of AISI 4140 steel is studied (sulfur content 0.002% and 0.016%). Metallurgical analysis, Mechanical testing and Rotating Bending Fatigue (RBF) test were carried out. With the increase in sulfur content, ductility and toughness of the material decrease significantly and large scatter is observed in UTS and impact energy values. From the results of RBF testing, it can be observed that increase in sulfur content from 0.002% to 0.016% has a negligible effect on the endurance strength of AISI 4140 for similar hardness level. Fractography analysis was carried out to study the failure modes in testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%204140" title="AISI 4140">AISI 4140</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20content" title=" sulfur content"> sulfur content</a>, <a href="https://publications.waset.org/abstracts/search?q=MnS%20inclusion" title=" MnS inclusion"> MnS inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20bending%20fatigue" title=" rotating bending fatigue"> rotating bending fatigue</a> </p> <a href="https://publications.waset.org/abstracts/50032/effect-of-sulfur-content-on-fatigue-strength-of-aisi-4140-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10130</span> The Interaction between Hydrogen and Surface Stress in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osamu%20Takakuwa">Osamu Takakuwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Mano"> Yuta Mano</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Soyama"> Hitoshi Soyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20embrittlement" title="hydrogen embrittlement">hydrogen embrittlement</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20finishing" title=" surface finishing"> surface finishing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/16765/the-interaction-between-hydrogen-and-surface-stress-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10129</span> Determination of Steel Cleanliness of Non-Grain Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Alan">Emre Alan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zafer%20Cetin"> Zafer Cetin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical steels are widely used as a magnetic core materials in many electrical applications such as transformers, electric motors, and generators. Core loss property of these magnetic materials refers to dissipation of electrical energy during magnetization in service conditions. Therefore, in order to minimize the magnetic core loss, certain precautions are taken from steel producers; “Steel Cleanliness” is one of the major points among them. For obtaining lower core loss values, increasing proper elements in chemical composition such as silicon is a must. Therefore, impurities of these alloys are a key value for producing a cleaner steel. In this study, effects of impurity levels of different FeSi alloying materials to the steel cleanliness will be investigated. One of the important element content in FeSi alloy materials is Calcium. A SEM investigation will be done in order to present if Ca content in FeSi alloy is enough for proper inclusion modification or an additional Ca-treatment is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steels" title="electrical steels">electrical steels</a>, <a href="https://publications.waset.org/abstracts/search?q=FeSi%20alloy" title=" FeSi alloy"> FeSi alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=impurities" title=" impurities"> impurities</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20cleanliness" title=" steel cleanliness"> steel cleanliness</a> </p> <a href="https://publications.waset.org/abstracts/56726/determination-of-steel-cleanliness-of-non-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10128</span> Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thi%20Nguyet%20Hang%20Nguyen">Thi Nguyet Hang Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kang%20Hai%20Tan"> Kang Hai Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hollow-core%20slabs" title="hollow-core slabs">hollow-core slabs</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=web-shear%20failure" title=" web-shear failure"> web-shear failure</a> </p> <a href="https://publications.waset.org/abstracts/108492/shear-behavior-of-steel-fiber-reinforced-precastprestressed-concrete-hollow-core-slabs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10127</span> Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Fathi%20Mohamed">Ahmed Fathi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasir%20Shafiq"> Nasir Shafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhd%20Fadhil%20Nuruddin"> Muhd Fadhil Nuruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elheber%20Ahmed"> Ali Elheber Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20taste" title=" fresh taste"> fresh taste</a> </p> <a href="https://publications.waset.org/abstracts/1321/performance-of-fiber-reinforced-self-compacting-concrete-containing-different-pozzolanic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10126</span> Analysis of Various Factors Affecting Hardness and Content of Phases Resulting from 1030 Carbon Steel Heat Treatment Using AC3 Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Shahraki">Saeid Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Kaekha"> Mohammad Mahdi Kaekha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 1030 steel, a kind of carbon steel used in homogenization, cold-forming, quenching, and tempering conditions, is generally utilized in small parts resisting medium stress, such as connection foundations, hydraulic cylinders, tiny gears, pins, clamps, automotive normal forging parts, camshafts, levers, pundits, and nuts. In this study, AC3 software was used to measure the effect of carbon and manganese percentage, dimensions and geometry of pieces, the type of the cooling fluid, temperature, and time on hardness and the content of 1030 steel phases. Next, the results are compared with the analytical values obtained from the Lumped Capacity Method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1030Steel" title="1030Steel">1030Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=AC3software" title=" AC3software"> AC3software</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20capacity%20method" title=" lumped capacity method"> lumped capacity method</a> </p> <a href="https://publications.waset.org/abstracts/51308/analysis-of-various-factors-affecting-hardness-and-content-of-phases-resulting-from-1030-carbon-steel-heat-treatment-using-ac3-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10125</span> Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qian%20Zhu">Qian Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidong%20Nie"> Shidong Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Yang"> Bo Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Xiong"> Gang Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoxin%20Dai"> Guoxin Dai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q460GJ%20structural%20steel" title="Q460GJ structural steel">Q460GJ structural steel</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=sectioning%20method" title=" sectioning method"> sectioning method</a>, <a href="https://publications.waset.org/abstracts/search?q=welded%20medium-walled%20I-shaped%20sections" title=" welded medium-walled I-shaped sections"> welded medium-walled I-shaped sections</a> </p> <a href="https://publications.waset.org/abstracts/66348/experimental-investigation-on-residual-stresses-in-welded-medium-walled-i-shaped-sections-fabricated-from-q460gj-structural-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10124</span> Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Aldossari">K. M. Aldossari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Elsaigh"> W. A. Elsaigh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shannag"> M. J. Shannag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fiber content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: Matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; Fiber volume fraction including 0, 0.5%, 0.76%, and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fiber content added; Whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fiber content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fibers" title=" steel fibers"> steel fibers</a> </p> <a href="https://publications.waset.org/abstracts/2834/effect-of-steel-fibers-on-flexural-behavior-of-normal-and-high-strength-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10123</span> Strengthening of Reinforced Concrete Beams Using Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghusen%20al-Kafri">Ghusen al-Kafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Abdallah%20Elsageer"> Mohammed Ali Abdallah Elsageer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed%20Hadya%20Alsdaai"> Ahmed Mohamed Hadya Alsdaai</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeimanam%20Salhien%20Salih%20Khalifa"> Abdeimanam Salhien Salih Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beams" title="beams">beams</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=beflection" title=" beflection"> beflection</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plates" title=" steel plates"> steel plates</a> </p> <a href="https://publications.waset.org/abstracts/27830/strengthening-of-reinforced-concrete-beams-using-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10122</span> Steel Dust as a Coating Agent for Iron Ore Pellets at Ironmaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bahgat">M. Bahgat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hanafy"> H. Hanafy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Al-Tassan"> H. Al-Tassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cluster formation is an essential phenomenon during direct reduction processes at shaft furnaces. Decreasing the reducing temperature to avoid this problem can cause a significant drop in throughput. In order to prevent sticking of pellets, a coating material basically inactive under the reducing conditions prevailing in the shaft furnace, should be applied to cover the outer layer of the pellets. In the present work, steel dust is used as coating material for iron ore pellets to explore dust coating effectiveness and determines the best coating conditions. Steel dust coating is applied for iron ore pellets in various concentrations. Dust slurry concentrations of 5.0-30% were used to have a coated steel dust amount of 1.0-5.0 kg per ton iron ore. Coated pellets with various concentrations were reduced isothermally in weight loss technique with simulated gas mixture to the composition of reducing gases at shaft furnaces. The influences of various coating conditions on the reduction behavior and the morphology were studied. The optimum reduced samples were comparatively applied for sticking index measurement. It was found that the optimized steel dust coating condition that achieve higher reducibility with lower sticking index was 30% steel dust slurry concentration with 3.0 kg steel dust/ton ore. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduction" title="reduction">reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=ironmaking" title=" ironmaking"> ironmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20dust" title=" steel dust"> steel dust</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/83968/steel-dust-as-a-coating-agent-for-iron-ore-pellets-at-ironmaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10121</span> Influence of Aluminum Content on the Microstructural, Mechanical and Tribological Properties of TiAlN Coatings for Using in Dental and Surgical Instrumentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hernan%20D.%20Mejia">Hernan D. Mejia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20B.%20Gaitan"> Gilberto B. Gaitan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20A.%20Franco"> Mauricio A. Franco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 420 steel is normally used in the manufacture of dental and surgical instrumentation, as well as parts in the chemical, pharmaceutical, and food industries, among others, where they must withstand heavy loads and often be in contact with corrosive environments, which leads to wear and deterioration of these steels in relatively short times. In the case of medical applications, the instruments made of this steel also suffer wear and corrosion during the repetitive sterilization processes due to the relatively low achievable hardness of just 50 HRC and its hardly acceptable resistance to corrosion. In order to improve the wear resistance of 420 steel, TiAlN coatings were deposited, increasing the aluminum content in the alloy by varying the power applied to the aluminum target of 900, 1100, and 1300 W. Evaluations using XRD, Micro Raman, XPS, AFM, SEM, and TEM showed a columnar growth crystal structure with an average thickness of 2 microns and consisting of the TiN and TiAlN phases, whose roughness and grain size decrease with a higher Al content. The AlN phase also appears in the sample deposited at 1300W. The hardness, determined by nanoindentation, initially increases with the aluminum content from 9.7 GPa to 17.1 GPa, but then decreases to 15.4 GPa for the sample with the highest aluminum content due to the appearance of hexagonal AlN and a decrease of harder TiN and TiAlN phases. It was observed that the wear coefficient had a contrary behavior, which took values of 2.7; 1.7 and 6.6x10⁻⁶ mm³/N.m, respectively. All the coated samples significantly improved the wear resistance of the uncoated 420 steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20coatings" title="hard coatings">hard coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=TiAlN%20coatings" title=" TiAlN coatings"> TiAlN coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20instruments" title=" surgical instruments"> surgical instruments</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a> </p> <a href="https://publications.waset.org/abstracts/128620/influence-of-aluminum-content-on-the-microstructural-mechanical-and-tribological-properties-of-tialn-coatings-for-using-in-dental-and-surgical-instrumentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10120</span> Hybrid Stainless Steel Girder for Bridge Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetsuya%20Yabuki">Tetsuya Yabuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasunori%20Arizumi"> Yasunori Arizumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetsuhiro%20Shimozato"> Tetsuhiro Shimozato</a>, <a href="https://publications.waset.org/abstracts/search?q=Samy%20Guezouli"> Samy Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Matsusita"> Hiroaki Matsusita</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Tai"> Masayuki Tai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of this paper is to present the research results of the development of a hybrid stainless steel girder system for bridge construction undertaken at University of Ryukyu. In order to prevent the corrosion damage and reduce the fabrication costs, a hybrid stainless steel girder in bridge construction is developed, the stainless steel girder of which is stiffened and braced by structural carbon steel materials. It is verified analytically and experimentally that the ultimate strength of the hybrid stainless steel girder is equal to or greater than that of conventional carbon steel girder. The benefit of the life-cycle cost of the hybrid stainless steel girder is also shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structure" title="smart structure">smart structure</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20stainless%20steel%20members" title=" hybrid stainless steel members"> hybrid stainless steel members</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20bridge" title=" steel bridge"> steel bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20prevention" title=" corrosion prevention"> corrosion prevention</a> </p> <a href="https://publications.waset.org/abstracts/51375/hybrid-stainless-steel-girder-for-bridge-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10119</span> Effect of Steel Fibers on M30 Fly Ash Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saksham">Saksham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete's versatility and affordability make it a highly competitive building material capable of meeting diverse requirements. However, the increasing demands placed on structures and the need for enhanced durability and performance have driven the development of distinct cementitious materials and concrete composites. One significant aspect of this advancement is the utilization of waste materials from industries, such as fly ash, to improve concrete's properties. Fly ash, a byproduct of coal combustion can enhance concrete's strength and durability while reducing environmental impact. Additionally, steel fibers can enhance concrete's toughness and crack resistance, contributing to improved structural performance. The experimental study aims to optimize the proportion of ingredients in M30-grade concrete, incorporating fly ash and steel fibers. By varying fly ash content (10% to 30%) and steel fiber dosage (0% to 1.5%), the research seeks to determine the optimal combination for achieving the desired compressive strength. Two sets of experiments are conducted: one focusing on varying fly ash content while keeping steel fiber dosage constant, and the other focusing on varying steel fiber dosage while keeping other parameters fixed. Through systematic testing, molding, curing, and evaluation according to specified standards, the research aims to analyze the impact of fly ash and steel fibers on concrete's compressive strength. The findings have the potential to inform engineers about optimized concrete mix designs that balance performance, cost-effectiveness, and sustainability, advancing toward more resilient and environmentally friendly building practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/183828/effect-of-steel-fibers-on-m30-fly-ash-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10118</span> A Range of Steel Production in Japan towards 2050</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reina%20Kawase">Reina Kawase</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Japan set the goal of 80% reduction in GHG emissions by 2050. To consider countermeasures for reducing GHG emission, the production estimation of energy intensive materials, such as steel, is essential. About 50% of steel production is exported in Japan, so it is necessary to consider steel production including export. Steel productions from 2005-2050 in Japan were estimated under various global assumptions based on combination of scenarios such as goods trade scenarios and steel making process selection scenarios. Process selection scenarios decide volume of steel production by process (basic oxygen furnace and electric arc furnace) with considering steel consumption projection, supply-demand balance of steel, and scrap surplus. The range of steel production by process was analyzed. Maximum steel production was estimated under the scenario which consumes scrap in domestic steel production at maximum level. In 2035, steel production reaches 149 million ton because of increase in electric arc furnace steel. However, it decreases towards 2050 and amounts to 120 million ton, which is almost same as a current level. Minimum steel production is under the scenario which assumes technology progress in steel making and supply-demand balance consideration in each region. Steel production decreases from base year and is 44 million ton in 2050. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goods%20trade%20scenario" title="goods trade scenario">goods trade scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20making%20process%20selection%20scenario" title=" steel making process selection scenario"> steel making process selection scenario</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20production" title=" steel production"> steel production</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/41704/a-range-of-steel-production-in-japan-towards-2050" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10117</span> Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kok-Chong%20Yong">Kok-Chong Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20rubber" title="conductive rubber">conductive rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrile%20rubber" title=" nitrile rubber"> nitrile rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title=" carbon steel"> carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibition" title=" corrosion inhibition"> corrosion inhibition</a> </p> <a href="https://publications.waset.org/abstracts/11326/polybutadiene-co-acrylonitrile-polyaniline-dodecylbenzenesulfonate-nbr-panidbsa-blends-for-corrosion-inhibition-of-carbon-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10116</span> Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Khalaf">Mai M. Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20M.%20Abd%20El-Lateef"> Hany M. Abd El-Lateef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dip-coatings" title="dip-coatings">dip-coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20protection" title=" corrosion protection"> corrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2%20films" title=" TiO2 films"> TiO2 films</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a> </p> <a href="https://publications.waset.org/abstracts/24640/enhanced-of-corrosion-resistance-of-carbon-steel-c1018-with-nano-tio2-films-using-dip-coating-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10115</span> Effect of Steel Slag on Cold Bituminous Emulsion Mix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amol%20Rakhunde">Amol Rakhunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Namdeo%20Hedaoo"> Namdeo Hedaoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold bituminous emulsion mixes (CBEM) are preferred due to their low cost for the construction of low volume roads in India. Due to the low strength of CBEM’s, the strength is generally increased by the addition of Ordinary Portland Cement (OPC) and hydrated lime. To improve the performance of CBEM’s, the use of industrial waste material is also an alternative. Steel slag is by product of steel industry which is sustainable construction material. Due to limited modes of practice of utilization steel slag, huge amount of steel slag dumped in yards of each steel industry and engaging of important agricultural land and gave pollution to whole environment. The effective use of steel slag as additives in CBEM’s has ultimate benefits such improvement in strength of CBEM’s, waste disposal steel slag, saving natural aggregate and lowering cost of roadways. Studies carried out in the past have shown a significant improvement in the strength of CBEM’s prepared with the replacement of natural aggregate with industrial waste materials such as fly ash and ground granulated blast furnace slag. In this study, effect of modified mix which is mixes prepared with steel slag compared with the control mix and the mixes prepared with OPC. Experimental work was carried out on the sample of control mix, OPC mix, and modified mix. For modified mix, aggregate was replaced with steel slag by 10%, 20%, 30% and 40% of weight of aggregate of same size as of steel slag in aggregate gradation. For OPC mix, filler was replaced by 1%, 2% and 3% of weight of total aggregate with OPC. Optimum emulsion content of each mix obtained by using Marshall stability test and comparison of stability values were carried out. Marshall stability, indirect tensile strength test, and retained stability tests are performed on control mixes, OPC mixes and modified mixes. Significant improvement in Marshall stability retained stability and indirect tensile strength of modified mix compared to control mix and OPC mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBEM" title="CBEM">CBEM</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20tensile%20strength%20test" title=" indirect tensile strength test"> indirect tensile strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20stability%20test" title=" Marshall stability test"> Marshall stability test</a>, <a href="https://publications.waset.org/abstracts/search?q=OPC" title=" OPC"> OPC</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20emulsion%20content" title=" optimum emulsion content"> optimum emulsion content</a>, <a href="https://publications.waset.org/abstracts/search?q=retained%20stability%20test" title=" retained stability test"> retained stability test</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a> </p> <a href="https://publications.waset.org/abstracts/97573/effect-of-steel-slag-on-cold-bituminous-emulsion-mix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10114</span> Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazin%20Mohammed%20S.%20Sarhan">Mazin Mohammed S. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title="concrete beam">concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=plate" title=" plate"> plate</a> </p> <a href="https://publications.waset.org/abstracts/114584/structural-performance-of-concrete-beams-reinforced-with-steel-plates-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10113</span> Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siqi%20Lin">Siqi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangang%20Zhao"> Yangang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube" title="concrete-filled steel tube">concrete-filled steel tube</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20compression" title=" axial compression"> axial compression</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20stress" title=" ultimate stress"> ultimate stress</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization%20efficiency" title=" utilization efficiency"> utilization efficiency</a> </p> <a href="https://publications.waset.org/abstracts/71468/ultimate-stress-of-the-steel-tube-in-circular-concrete-filled-steel-tube-stub-columns-subjected-to-axial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10112</span> Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=factsage" title=" factsage"> factsage</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a> </p> <a href="https://publications.waset.org/abstracts/137291/development-of-a-thermodynamic-model-for-ladle-metallurgy-steel-making-processes-using-factsage-and-its-macro-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10111</span> Architectural Strategies for Designing Durable Steel Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Taghdiri">Alireza Taghdiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Ghanbarzade%20Ghomi"> Sara Ghanbarzade Ghomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, steel structures are used for not only common buildings but also high-rise construction and wide span covering. The advanced methods of construction as well as the advanced structural connections have a great effect on architecture. However a better use of steel structural systems will be achieved with the deep understanding of steel structures specifications and their substantial advantages. On the other hand, the steel structures face to the different environmental factors such as air flow which cause erosion and corrosion. With the time passing, the amount of these steel mass damages and also the imposed stress will be increased. In other words, the position of erosion in steel structures related to existing stresses indicates that effective environmental conditions will gradually decrease the structural resistance of steel components and result in decreasing the durability of steel components. In this paper, the durability of different steel structural components is evaluated and on the basis of these stress, architectural strategies for designing the system and the components of steel structures is recognized in order to achieve an optimum life cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=durability" title="durability">durability</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20stress" title=" bending stress"> bending stress</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20in%20steel%20structure" title=" erosion in steel structure"> erosion in steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a> </p> <a href="https://publications.waset.org/abstracts/18159/architectural-strategies-for-designing-durable-steel-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10110</span> Strength and Permeability Characteristics of Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amrit%20Pal%20Singh%20Arora">Amrit Pal Singh Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports the results of a study undertaken to study the effects of addition of steel fibres of different aspect ratios on the permeability and strength characteristics of steel fiber reinforced fly ash concrete (SFRC). Corrugated steel fibres having a diameter of 0.6 mm and lengths of 12.5 mm, 30 mm and 50 mm were used in this study. Cube samples of 100 mm x 100 mm x 100 mm were cast from mixes replacing 0%, 10%, 20% and 30% cement content by fly ash with and without fibres and tested for the determination of coefficient of water permeability, compressive and split tensile strengths after 7 and 28 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly for all concrete mixes with the addition of steel fibers as compared to plain concrete. The replacement of cement content by fly ash results in an increase in the coefficient of water permeability. With the addition of fly ash to the plain mix the7 day compressive and split tensile strengths decreased, however both the compressive and split tensile strengths increased with increase in curing age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20age" title="curing age">curing age</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20shape" title=" fiber shape"> fiber shape</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=Darcy%E2%80%99s%20law" title=" Darcy’s law"> Darcy’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=Ppermeability" title=" Ppermeability"> Ppermeability</a> </p> <a href="https://publications.waset.org/abstracts/57483/strength-and-permeability-characteristics-of-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10109</span> Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Demirta%C5%9F">H. Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0.%20H.%20Kara"> İ. H. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahlatc%C4%B1"> H. Ahlatcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SA%20210%20Gr.%20C%20steel%20pipes" title="SA 210 Gr. C steel pipes">SA 210 Gr. C steel pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=HAZ%20region" title=" HAZ region"> HAZ region</a>, <a href="https://publications.waset.org/abstracts/search?q=Widmanstatten%20ferrite" title=" Widmanstatten ferrite"> Widmanstatten ferrite</a> </p> <a href="https://publications.waset.org/abstracts/62986/mechanical-and-microstructural-properties-of-sa-210-gr-c-pipes-welded-by-tungsten-inert-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10108</span> The Effect of Austenitization Conditioning on the Mechanical Properties of Cr-Mo-V Hot Work Tool Steel with Different Nitrogen Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iting%20Chiang">Iting Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yu%20Wei"> Cheng-Yu Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Teng%20Kuo"> Chin-Teng Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Sheng%20Hsu"> Po-Sheng Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yo-Lun%20Yang"> Yo-Lun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Chang%20Kang"> Yung-Chang Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chon%20Chen"> Chien-Chon Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Yuan%20Chen"> Chih-Yuan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, it is reported that microalloying of nitrogen atoms within traditional Cr-Mo-V hot work tool steels can achieve better high temperature mechanical properties, which thus leads to such metallurgical approach widely utilized in the several commercial advanced hot work tool steels. Although the performance of hot work tool steel can be improved better by alloy composition design strategy, the influence of processing parameters on the mechanical property, especially on the service life of hot work tool steel, is still not fully understood yet. A longer service life of hot work tool steel can decrease the manufacturing cost effectively and thus become a research hot spot. According to several previous studies, it is generally acknowledged the service life of hot work tool steels can be increased effectively as the steels possessing higher hardness and toughness due to the formation and propagation of microcracks within the steel can be inhibited effectively. Therefore, in the present research, the designed experiments are primarily to explore the synergistic effect of nitrogen content and austenitization conditioning on the mechanical properties of hot work tool steels has been conducted and analyzed. No matter the nitrogen content, the results indicated the hardness of hot work tool steels increased as the austenitization treatment executed at higher temperature. On the other hand, an optimum toughness of hot work tool steel can be achieved as the austenitization treatment performed at a suitable temperature range. The possible explanation of such metallurgical phenomenon has been also proposed and analyzed in the present research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20work%20tool%20steel" title="hot work tool steel">hot work tool steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr-Mo-V" title=" Cr-Mo-V"> Cr-Mo-V</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/176209/the-effect-of-austenitization-conditioning-on-the-mechanical-properties-of-cr-mo-v-hot-work-tool-steel-with-different-nitrogen-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10107</span> Behaviour of Beam Reinforced with Longitudinal Steel-CFRP Composite Reinforcement under Static Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faris%20A.%20Uriayer">Faris A. Uriayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehtab%20Alam"> Mehtab Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of using a hybrid composite by combining two or more different materials to produce bilinear stress–strain behaviour has become a subject of interest. Having studied the mechanical properties of steel-CFRP specimens (CFRP Laminate Sandwiched between Mild Steel Strips), full size steel-CFRP composite reinforcement were fabricated and used as a new reinforcing material inside beams in lieu of traditional steel bars. Four beams, three beams reinforced with steel-CFRP composite reinforcement and one beam reinforced with traditional steel bars were cast, cured and tested under quasi-static loading. The flexural test results of the beams reinforced with this composite reinforcement showed that the beams with steel-CFRP composite reinforcement had comparable flexural strength and flexural ductility with beams reinforced with traditional steel bars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20laminate" title="CFRP laminate">CFRP laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20strip" title=" steel strip"> steel strip</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behaviour" title=" flexural behaviour"> flexural behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20model" title=" modified model"> modified model</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a> </p> <a href="https://publications.waset.org/abstracts/23469/behaviour-of-beam-reinforced-with-longitudinal-steel-cfrp-composite-reinforcement-under-static-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10106</span> Investigation of the Corroded Steel Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesamaddin%20Khoshnoodi">Hesamaddin Khoshnoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rahbar%20Ranji"> Ahmad Rahbar Ranji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abaqus" title="Abaqus">Abaqus</a>, <a href="https://publications.waset.org/abstracts/search?q=Corrosion" title=" Corrosion"> Corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Steel%20Beam" title=" Steel Beam"> Steel Beam</a> </p> <a href="https://publications.waset.org/abstracts/55152/investigation-of-the-corroded-steel-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10105</span> Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Su%20Park">Jun Su Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwan%20Oh"> Byung Kwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Woo%20Hwang"> Jin Woo Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousok%20Kim"> Yousok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo%20Seon%20Park"> Hyo Seon Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20sensing" title=" optimal sensing"> optimal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20sensor%20placements" title=" optimizing sensor placements"> optimizing sensor placements</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20frame%20structure" title=" steel frame structure"> steel frame structure</a> </p> <a href="https://publications.waset.org/abstracts/25426/optimal-sensing-technique-for-estimating-stress-distribution-of-2-d-steel-frame-structure-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10104</span> Using Recyclable Steel Material in Tall Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eren">O. Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zakar"> L. Zakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20material" title=" recycled material"> recycled material</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/2796/using-recyclable-steel-material-in-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=337">337</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=338">338</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=steel%20content%20measurement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>