CINXE.COM

Search results for: Quaternion Fourier transform

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Quaternion Fourier transform</title> <meta name="description" content="Search results for: Quaternion Fourier transform"> <meta name="keywords" content="Quaternion Fourier transform"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Quaternion Fourier transform" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Quaternion Fourier transform"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1694</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Quaternion Fourier transform</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1694</span> Donoho-Stark’s and Hardy’s Uncertainty Principles for the Short-Time Quaternion Offset Linear Canonical Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Younus%20Bhat">Mohammad Younus Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quaternion offset linear canonical transform (QOLCT), which isa time-shifted and frequency-modulated version of the quaternion linear canonical transform (QLCT), provides a more general framework of most existing signal processing tools. For the generalized QOLCT, the classical Heisenberg’s and Lieb’s uncertainty principles have been studied recently. In this paper, we first define the short-time quaternion offset linear canonical transform (ST-QOLCT) and drive its relationship with the quaternion Fourier transform (QFT). The crux of the paper lies in the generalization of several well-known uncertainty principles for the ST-QOLCT, including Donoho-Stark’s uncertainty principle, Hardy’s uncertainty principle, Beurling’s uncertainty principle, and the logarithmic uncertainty principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform" title="Quaternion Fourier transform">Quaternion Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Quaternion%20offset%20linear%20canonical%20transform" title=" Quaternion offset linear canonical transform"> Quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20quaternion%20offset%20linear%20canonical%20transform" title=" short-time quaternion offset linear canonical transform"> short-time quaternion offset linear canonical transform</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20principle" title=" uncertainty principle"> uncertainty principle</a> </p> <a href="https://publications.waset.org/abstracts/142375/donoho-starks-and-hardys-uncertainty-principles-for-the-short-time-quaternion-offset-linear-canonical-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1693</span> The Optical OFDM Equalization Based on the Fractional Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cherifi">A. Cherifi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Bouazza"> B. S. Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Dahman"> A. O. Dahman</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yagoubi"> B. Yagoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20fourier%20transform" title=" fractional fourier transform"> fractional fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20and%20information%20technology" title=" internet and information technology"> internet and information technology</a> </p> <a href="https://publications.waset.org/abstracts/27211/the-optical-ofdm-equalization-based-on-the-fractional-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1692</span> Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ben%20Youssef">Nadia Ben Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bouzid"> Aicha Bouzid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gradient" title="gradient">gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20image" title=" color image"> color image</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion" title=" quaternion"> quaternion</a> </p> <a href="https://publications.waset.org/abstracts/141138/review-on-quaternion-gradient-operator-with-marginal-and-vector-approaches-for-colour-edge-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1691</span> Equalization Algorithm for the Optical OFDM System Based on the Fractional Fourier Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Cherifi">A. Cherifi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouazza"> B. Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Dahmane"> A. O. Dahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yagoubi"> B. Yagoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transmission over Optical channels will introduce inter-symbol interference (ISI) as well as inter-channel (or inter-carrier) interference (ICI). To decrease the effects of ICI, this paper proposes equalizer for the Optical OFDM system based on the fractional Fourier transform (FrFFT). In this FrFT-OFDM system, traditional Fourier transform is replaced by fractional Fourier transform to modulate and demodulate the data symbols. The equalizer proposed consists of sampling the received signal in the different time per time symbol. Theoretical analysis and numerical simulation are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OFDM" title="OFDM">OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=%28FrFT%29%20fractional%20fourier%20transform" title=" (FrFT) fractional fourier transform"> (FrFT) fractional fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20OFDM" title=" optical OFDM"> optical OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=equalization%20algorithm" title=" equalization algorithm"> equalization algorithm</a> </p> <a href="https://publications.waset.org/abstracts/23848/equalization-algorithm-for-the-optical-ofdm-system-based-on-the-fractional-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1690</span> On Fourier Type Integral Transform for a Class of Generalized Quotients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Issa">A. S. Issa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Q.%20AL-Omari"> S. K. Q. AL-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boehmian" title="Boehmian">Boehmian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20integral" title=" Fourier integral"> Fourier integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20type%20integral" title=" Fourier type integral"> Fourier type integral</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20quotient" title=" generalized quotient"> generalized quotient</a> </p> <a href="https://publications.waset.org/abstracts/45947/on-fourier-type-integral-transform-for-a-class-of-generalized-quotients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1689</span> Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xianwei%20Zheng">Xianwei Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang"> Yuan Yan Tang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20signals" title="graph signals">graph signals</a>, <a href="https://publications.waset.org/abstracts/search?q=windowed%20graph%20Fourier%20transform" title=" windowed graph Fourier transform"> windowed graph Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=windowed%20graph%20Fourier%20frames" title=" windowed graph Fourier frames"> windowed graph Fourier frames</a>, <a href="https://publications.waset.org/abstracts/search?q=vertex%20frequency%20analysis" title=" vertex frequency analysis"> vertex frequency analysis</a> </p> <a href="https://publications.waset.org/abstracts/63133/construction-of-graph-signal-modulations-via-graph-fourier-transform-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1688</span> Chebyshev Wavelets and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuel%20Guariglia">Emanuel Guariglia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20wavelets" title="Chebyshev wavelets">Chebyshev wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title=" Fourier transform"> Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=connection%20coefficients" title=" connection coefficients"> connection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Taylor%20series" title=" Taylor series"> Taylor series</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20fractional%20derivative" title=" local fractional derivative"> local fractional derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=Cantor%20set" title=" Cantor set"> Cantor set</a> </p> <a href="https://publications.waset.org/abstracts/157194/chebyshev-wavelets-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1687</span> A Low-Area Fully-Reconfigurable Hardware Design of Fast Fourier Transform System for 3GPP-LTE Standard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin-Yu%20Shih">Xin-Yu Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue-Qu%20Liu"> Yue-Qu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Ru%20Chou"> Hong-Ru Chou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low-area and fully-reconfigurable Fast Fourier Transform (FFT) hardware design for 3GPP-LTE communication standard. It can fully support 32 different FFT sizes, up to 2048 FFT points. Besides, a special processing element is developed for making reconfigurable computing characteristics possible, while first-in first-out (FIFO) scheduling scheme design technique is proposed for hardware-friendly FIFO resource arranging. In a synthesis chip realization via TSMC 40 nm CMOS technology, the hardware circuit only occupies core area of 0.2325 mm<sup>2</sup> and dissipates 233.5 mW at maximal operating frequency of 250 MHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title="reconfigurable">reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20Fourier%20transform%20%28FFT%29" title=" fast Fourier transform (FFT)"> fast Fourier transform (FFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=single-path%20delay%20feedback%20%28SDF%29" title=" single-path delay feedback (SDF)"> single-path delay feedback (SDF)</a>, <a href="https://publications.waset.org/abstracts/search?q=3GPP-LTE" title=" 3GPP-LTE"> 3GPP-LTE</a> </p> <a href="https://publications.waset.org/abstracts/62069/a-low-area-fully-reconfigurable-hardware-design-of-fast-fourier-transform-system-for-3gpp-lte-standard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1686</span> Improving Axial-Attention Network via Cross-Channel Weight Sharing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazmul%20Shahadat">Nazmul Shahadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20S.%20Maida"> Anthony S. Maida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20attention" title="axial attention">axial attention</a>, <a href="https://publications.waset.org/abstracts/search?q=representational%20networks" title=" representational networks"> representational networks</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20sharing" title=" weight sharing"> weight sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-channel%20correlations" title=" cross-channel correlations"> cross-channel correlations</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternion-enhanced%20axial%20attention" title=" quaternion-enhanced axial attention"> quaternion-enhanced axial attention</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20networks" title=" deep networks"> deep networks</a> </p> <a href="https://publications.waset.org/abstracts/164808/improving-axial-attention-network-via-cross-channel-weight-sharing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1685</span> Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethi%20Soltani">Fethi Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Almarashi"> Adel Almarashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Idir%20Mechai"> Idir Mechai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fourier%20multiplier%20operators" title="fourier multiplier operators">fourier multiplier operators</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Kronrod%20method%20of%20integration" title=" Gauss-Kronrod method of integration"> Gauss-Kronrod method of integration</a>, <a href="https://publications.waset.org/abstracts/search?q=Paley-Wiener%20space" title=" Paley-Wiener space"> Paley-Wiener space</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikhonov%20regularization" title=" Tikhonov regularization"> Tikhonov regularization</a> </p> <a href="https://publications.waset.org/abstracts/38538/numerical-applications-of-tikhonov-regularization-for-the-fourier-multiplier-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1684</span> An Image Enhancement Method Based on Curvelet Transform for CBCT-Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Farzam">Shahriar Farzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Rastgarpour"> Maryam Rastgarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvelet%20transform" title="curvelet transform">curvelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=CBCT" title=" CBCT"> CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20denoising" title=" image denoising"> image denoising</a> </p> <a href="https://publications.waset.org/abstracts/69244/an-image-enhancement-method-based-on-curvelet-transform-for-cbct-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1683</span> Screening Deformed Red Blood Cells Irradiated by Ionizing Radiations Using Windowed Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahi%20Ghareab%20Abdelsalam%20Ibrahim">Dahi Ghareab Abdelsalam Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20H.%20Bakr"> R. H. Bakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionizing radiation, such as gamma radiation and X-rays, has many applications in medical diagnoses and cancer treatment. In this paper, we used the windowed Fourier transform to extract the complex image of the deformed red blood cells. The real values of the complex image are used to extract the best fitting of the deformed cell boundary. Male albino rats are irradiated by γ-rays from ⁶⁰Co. The male albino rats are anesthetized with ether, and then blood samples are collected from the eye vein by heparinized capillary tubes for studying the radiation-damaging effect in-vivo by the proposed windowed Fourier transform. The peripheral blood films are prepared according to the Brown method. The peripheral blood film is photographed by using an Automatic Image Contour Analysis system (SAMICA) from ELBEK-Bildanalyse GmbH, Siegen, Germany. The SAMICA system is provided with an electronic camera connected to a computer through a built-in interface card, and the image can be magnified up to 1200 times and displayed by the computer. The images of the peripheral blood films are then analyzed by the windowed Fourier transform method to extract the precise deformation from the best fitting. Based on accurate deformation evaluation of the red blood cells, diseases can be diagnosed in their primary stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=windowed%20Fourier%20transform" title="windowed Fourier transform">windowed Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20blood%20cells" title=" red blood cells"> red blood cells</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20wrapping" title=" phase wrapping"> phase wrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Image%20processing" title=" Image processing"> Image processing</a> </p> <a href="https://publications.waset.org/abstracts/161268/screening-deformed-red-blood-cells-irradiated-by-ionizing-radiations-using-windowed-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1682</span> Synchrotron X-Ray Based Investigation of As and Fe Bonding Environment in Collard Green Tissue Samples at Different Growth Stages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dehipawala">Sunil Dehipawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Aregama%20Sirisumana"> Aregama Sirisumana</a>, <a href="https://publications.waset.org/abstracts/search?q=stephan%20Smith"> stephan Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Schneider"> P. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tremberger%20Jr"> G. Tremberger Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lieberman"> D. Lieberman</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Holden"> Todd Holden</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cheung"> T. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The arsenic and iron environments in different growth stages have been studied with EXAFS and XANES using Brookhaven Synchrotron Light Source. Collard Greens plants were grown and tissue samples were harvested. The project studied the EXAFS and XANES of tissue samples using As and Fe K-edges. The Fe absorption and the Fourier transform bond length information were used as a control comparison. The Fourier transform of the XAFS data revealed the coexistence of As (III) and As (V) in the As bonding environment inside the studied plant tissue samples, although the soil only had As (III). The data suggests that Collard Greens has a novel pathway to handle arsenic absorption in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title="EXAFS">EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloproteins" title=" metalloproteins"> metalloproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=XANES" title=" XANES"> XANES</a> </p> <a href="https://publications.waset.org/abstracts/29476/synchrotron-x-ray-based-investigation-of-as-and-fe-bonding-environment-in-collard-green-tissue-samples-at-different-growth-stages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1681</span> Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temidayo%20Otunniyi">Temidayo Otunniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20radio" title="software defined radio">software defined radio</a>, <a href="https://publications.waset.org/abstracts/search?q=channelization" title=" channelization"> channelization</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20sample%20rate" title=" critical sample rate"> critical sample rate</a>, <a href="https://publications.waset.org/abstracts/search?q=over-sample%20rate" title=" over-sample rate"> over-sample rate</a> </p> <a href="https://publications.waset.org/abstracts/154901/critically-sampled-hybrid-trigonometry-generalized-discrete-fourier-transform-for-multistandard-receiver-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1680</span> A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devinder%20Singh">Devinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajneesh%20Kumar"> Rajneesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pulse%20laser" title="pulse laser">pulse laser</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20transform" title=" integral transform"> integral transform</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelastic" title=" thermoelastic"> thermoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20value%20problem" title=" boundary value problem"> boundary value problem</a> </p> <a href="https://publications.waset.org/abstracts/33535/a-two-dimensional-problem-micropolar-thermoelastic-medium-under-the-effect-of-laser-irradiation-and-distributed-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">616</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1679</span> Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinghui%20Peng">Jinghui Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanyu%20Tang"> Shanyu Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li"> Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steganalysis" title="steganalysis">steganalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=Fast%20Fourier%20Transform" title=" Fast Fourier Transform"> Fast Fourier Transform</a>, <a href="https://publications.waset.org/abstracts/search?q=streaming%20media" title=" streaming media"> streaming media</a> </p> <a href="https://publications.waset.org/abstracts/108985/fast-fourier-transform-based-steganalysis-of-covert-communications-over-streaming-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1678</span> Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20de%20Luis%20Ruiz">J. M. de Luis Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Sierra%20Garc%C3%ADa"> P. M. Sierra García</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Garc%C3%ADa"> R. P. García</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20%C3%81lvarez"> R. P. Álvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20P.%20Garc%C3%ADa"> F. P. García</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20C.%20L%C3%B3pez"> E. C. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of C&aacute;diz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title="Fourier transform">Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20position%20system" title=" global position system"> global position system</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20modal%20analysis" title=" operational modal analysis"> operational modal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a> </p> <a href="https://publications.waset.org/abstracts/109068/application-of-transform-fourier-for-dynamic-control-of-structures-with-global-positioning-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1677</span> An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Al-Rawi">Mohammed S. Al-Rawi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bastos"> J. Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rodriguez"> J. Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebyshev%20polynomial" title="Chebyshev polynomial">Chebyshev polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20algorithms" title=" fast algorithms"> fast algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20recognition" title=" image recognition"> image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20Zernike%20moments" title=" pseudo Zernike moments"> pseudo Zernike moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Zernike%20moments" title=" Zernike moments"> Zernike moments</a> </p> <a href="https://publications.waset.org/abstracts/58226/an-accurate-computation-of-2d-zernike-moments-via-fast-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1676</span> Fault Detection of Pipeline in Water Distribution Network System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shin%20Je%20Lee">Shin Je Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Go%20Bong%20Choi"> Go Bong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Cheol%20Seo"> Jeong Cheol Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Gibaek%20Lee"> Gibaek Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20detection" title="fault detection">fault detection</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pipeline%20model" title=" water pipeline model"> water pipeline model</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20Fourier%20transform" title=" fast Fourier transform"> fast Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet%20transform" title=" discrete wavelet transform"> discrete wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/5007/fault-detection-of-pipeline-in-water-distribution-network-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1675</span> The Non-Linear Analysis of Brain Response to Visual Stimuli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to visual stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to visual stimuli but provide us with very good recommendations for clinical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20stimuli" title="visual stimuli">visual stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20response" title=" brain response"> brain response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=hurst%20exponent" title=" hurst exponent"> hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=Je%EF%AC%80rey%E2%80%99s%20measure" title=" Jeffrey’s measure"> Jeffrey’s measure</a> </p> <a href="https://publications.waset.org/abstracts/19758/the-non-linear-analysis-of-brain-response-to-visual-stimuli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1674</span> The Analysis of Brain Response to Auditory Stimuli through EEG Signals’ Non-Linear Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Namazi">H. Namazi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20N.%20Kuan"> H. T. N. Kuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain activity can be measured by acquiring and analyzing EEG signals from an individual. In fact, the human brain response to external and internal stimuli is mapped in his EEG signals. During years some methods such as Fourier transform, wavelet transform, empirical mode decomposition, etc. have been used to analyze the EEG signals in order to find the effect of stimuli, especially external stimuli. But each of these methods has some weak points in analysis of EEG signals. For instance, Fourier transform and wavelet transform methods are linear signal analysis methods which are not good to be used for analysis of EEG signals as nonlinear signals. In this research we analyze the brain response to auditory stimuli by extracting information in the form of various measures from EEG signals using a software developed by our research group. The used measures are Jeffrey’s measure, Fractal dimension and Hurst exponent. The results of these analyses are useful not only for fundamental understanding of brain response to auditory stimuli but provide us with very good recommendations for clinical purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20stimuli" title="auditory stimuli">auditory stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20response" title=" brain response"> brain response</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=hurst%20exponent" title=" hurst exponent"> hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=Je%EF%AC%80rey%E2%80%99s%20measure" title=" Jeffrey’s measure"> Jeffrey’s measure</a> </p> <a href="https://publications.waset.org/abstracts/18990/the-analysis-of-brain-response-to-auditory-stimuli-through-eeg-signals-non-linear-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1673</span> Deconvolution of Anomalous Fast Fourier Transform Patterns for Tin Sulfide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Shuro">I. Shuro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal structure of Tin Sulfide prepared by certain chemical methods is investigated using High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), and X-ray diffraction (XRD) methods. An anomalous HRTEM Fast Fourier Transform (FFT) exhibited a central scatter of diffraction spots, which is surrounded by secondary clusters of spots arranged in a hexagonal pattern around the central cluster was observed. FFT analysis has revealed a long lattice parameter and mostly viewed along a hexagonal axis where there many columns of atoms slightly displaced from one another. This FFT analysis has revealed that the metal sulfide has a long-range order interwoven chain of atoms in its crystal structure. The observed crystalline structure is inconsistent with commonly observed FFT patterns of chemically synthesized Tin Sulfide nanocrystals and thin films. SEM analysis showed the morphology of a myriad of multi-shaped crystals ranging from hexagonal, cubic, and spherical micro to nanostructured crystals. This study also investigates the presence of quasi-crystals as reflected by the presence of mixed local symmetries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20fourier%20transform" title="fast fourier transform">fast fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20resolution%20transmission%20electron%20microscopy" title=" high resolution transmission electron microscopy"> high resolution transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20sulfide" title=" tin sulfide"> tin sulfide</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20structure" title=" crystalline structure"> crystalline structure</a> </p> <a href="https://publications.waset.org/abstracts/124851/deconvolution-of-anomalous-fast-fourier-transform-patterns-for-tin-sulfide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1672</span> A Fast GPS Satellites Signals Detection Algorithm Based on Simplified Fast Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beldjilali%20Bilal">Beldjilali Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Benadda%20Belkacem"> Benadda Belkacem</a>, <a href="https://publications.waset.org/abstracts/search?q=Kahlouche%20Salem"> Kahlouche Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the Doppler effect caused by the high velocity of satellite and in some case receivers, the frequency of the Global Positioning System (GPS) signals are transformed into a new ones. Several acquisition algorithms frequency of the Global Positioning System (GPS) signals are transformed can be used to estimate the new frequency and phase shifts values. Numerous algorithms are based on the frequencies domain calculation. Our developed algorithm is a new approach dedicated to the Global Positioning System signal acquisition based on the fast Fourier transform. Our proposed new algorithm is easier to implement and has fast execution time compared with elder ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20positioning%20system" title="global positioning system">global positioning system</a>, <a href="https://publications.waset.org/abstracts/search?q=acquisition" title=" acquisition"> acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%2FL1" title=" GPS/L1"> GPS/L1</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20receiver" title=" software receiver"> software receiver</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20signal" title=" weak signal"> weak signal</a> </p> <a href="https://publications.waset.org/abstracts/84390/a-fast-gps-satellites-signals-detection-algorithm-based-on-simplified-fast-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1671</span> A Generalization of Option Pricing with Discrete Dividends to Markets with Daily Price Limits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahau%20Guo">Jiahau Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yihe%20Zhang"> Yihe Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes solutions for pricing options on stocks paying discrete dividends in markets with daily price limits. We first extend the intraday density function of Guo and Chang (2020) to a multi-day one and use the framework of Haug et al. (2003) to value European options on stocks paying discrete dividends. Next, we adopt the fast Fourier transform (FFT) to derive accurate and efficient formulae for American options and further employ the three-point Richardson extrapolation to accelerate the computation. Finally, the accuracy of our proposed methods is verified by simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=daily%20price%20limit" title="daily price limit">daily price limit</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20dividend" title=" discrete dividend"> discrete dividend</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20exercise" title=" early exercise"> early exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20Fourier%20transform" title=" fast Fourier transform"> fast Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-day%20density%20function" title=" multi-day density function"> multi-day density function</a>, <a href="https://publications.waset.org/abstracts/search?q=Richardson%20extrapolation" title=" Richardson extrapolation"> Richardson extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/129710/a-generalization-of-option-pricing-with-discrete-dividends-to-markets-with-daily-price-limits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1670</span> Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdy%20M.%20Youssef">Hamdy M. Youssef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeam" title="nanobeam">nanobeam</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20magnetic%20field" title=" constant magnetic field"> constant magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp-type%20thermal%20loading" title=" ramp-type thermal loading"> ramp-type thermal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Fourier%20heat%20conduction%20law" title=" non-Fourier heat conduction law"> non-Fourier heat conduction law</a> </p> <a href="https://publications.waset.org/abstracts/155279/vibration-of-nanobeam-subjected-to-constant-magnetic-field-and-ramp-type-thermal-loading-under-non-fourier-heat-conduction-law-of-lord-shulman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1669</span> Vibration Imaging Method for Vibrating Objects with Translation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohei%20Shimasaki">Kohei Shimasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Okamura"> Tomoaki Okamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Idaku%20Ishii"> Idaku Ishii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFR%20video%20analysis" title="HFR video analysis">HFR video analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=pixel-level%20vibration%20source%20localization" title=" pixel-level vibration source localization"> pixel-level vibration source localization</a>, <a href="https://publications.waset.org/abstracts/search?q=short-time%20Fourier%20transform" title=" short-time Fourier transform"> short-time Fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20translation" title=" virtual translation"> virtual translation</a> </p> <a href="https://publications.waset.org/abstracts/160120/vibration-imaging-method-for-vibrating-objects-with-translation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1668</span> Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Najafi">N. Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ink-jet%20printing" title="ink-jet printing">ink-jet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title=" carbon nanotube"> carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20ink" title=" fabric ink"> fabric ink</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title=" cotton fabric"> cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=raman%20spectroscopy" title=" raman spectroscopy"> raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform%20infrared%20spectroscopy" title=" fourier transform infrared spectroscopy"> fourier transform infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=dozen%20printings" title=" dozen printings"> dozen printings</a> </p> <a href="https://publications.waset.org/abstracts/35339/characterization-of-inkjet-printed-carbon-nanotube-electrode-patterns-on-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1667</span> Theory and Practice of Wavelets in Signal Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Karam">Jalal Karam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20wavelet%20transform" title="continuous wavelet transform">continuous wavelet transform</a>, <a href="https://publications.waset.org/abstracts/search?q=biorthogonal%20wavelets" title=" biorthogonal wavelets"> biorthogonal wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20perception" title=" speech perception"> speech perception</a>, <a href="https://publications.waset.org/abstracts/search?q=recognition%20and%20compression" title=" recognition and compression"> recognition and compression</a> </p> <a href="https://publications.waset.org/abstracts/5822/theory-and-practice-of-wavelets-in-signal-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1666</span> Digital Material Characterization Using the Quantum Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Felix%20Givois">Felix Givois</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20R.%20Gauger"> Nicolas R. Gauger</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Kabel"> Matthias Kabel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=most%20likelihood%20amplitude%20estimation%20%28MLQAE%29" title="most likelihood amplitude estimation (MLQAE)">most likelihood amplitude estimation (MLQAE)</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20homogenization" title=" numerical homogenization"> numerical homogenization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20Fourier%20transformation%20%28QFT%29" title=" quantum Fourier transformation (QFT)"> quantum Fourier transformation (QFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=NISQ%20devises" title=" NISQ devises"> NISQ devises</a> </p> <a href="https://publications.waset.org/abstracts/163241/digital-material-characterization-using-the-quantum-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1665</span> A High Performance Piano Note Recognition Scheme via Precise Onset Detection and Segmented Short-Time Fourier Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Banrjee">Sonali Banrjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Swarup%20Kumar%20Mitra"> Swarup Kumar Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Aritra%20Acharyya"> Aritra Acharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A piano note recognition method has been proposed by the authors in this paper. The authors have used a comprehensive method for onset detection of each note present in a piano piece followed by segmented short-time Fourier transform (STFT) for the identification of piano notes. The performance evaluation of the proposed method has been carried out in different harsh noisy environments by adding different levels of additive white Gaussian noise (AWGN) having different signal-to-noise ratio (SNR) in the original signal and evaluating the note detection error rate (NDER) of different piano pieces consisting of different number of notes at different SNR levels. The NDER is found to be remained within 15% for all piano pieces under consideration when the SNR is kept above 8 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AWGN" title="AWGN">AWGN</a>, <a href="https://publications.waset.org/abstracts/search?q=onset%20detection" title=" onset detection"> onset detection</a>, <a href="https://publications.waset.org/abstracts/search?q=piano%20note" title=" piano note"> piano note</a>, <a href="https://publications.waset.org/abstracts/search?q=STFT" title=" STFT"> STFT</a> </p> <a href="https://publications.waset.org/abstracts/96023/a-high-performance-piano-note-recognition-scheme-via-precise-onset-detection-and-segmented-short-time-fourier-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=56">56</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Quaternion%20Fourier%20transform&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10