CINXE.COM

Search results for: molecular weight

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: molecular weight</title> <meta name="description" content="Search results for: molecular weight"> <meta name="keywords" content="molecular weight"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="molecular weight" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="molecular weight"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5660</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: molecular weight</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5660</span> Characterization on Molecular Weight of Polyamic Acids Using GPC Coupled with Multiple Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei%20Hong">Mei Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemin%20Dai"> Xuemin Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanxiong%20Pan"> Yanxiong Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangling%20Ji">Xiangling Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyamic acid (PAA) is the precursor of polyimide (PI) prepared by a two-step method, its molecular weight and molecular weight distribution not only play an important role during the preparation and processing, but also influence the final performance of PI. However, precise characterization on molecular weight of PAA is still a challenge because of the existence of very complicated interactions in the solution system, including the electrostatic interaction, hydrogen bond interaction, dipole-dipole interaction, etc. Thus, it is necessary to establisha suitable strategy which can completely suppress these complex effects and get reasonable data on molecular weight. Herein, the gel permeation chromatography (GPC) coupled with differential refractive index (RI) and multi-angle laser light scattering (MALLS) detectors were applied to measure the molecular weight of (6FDA-DMB) PAA using different mobile phases, LiBr/DMF, LiBr/H3PO4/THF/DMF, LiBr/HAc/THF/DMF, and LiBr/HAc/DMF, respectively. It was found that combination of LiBr with HAc can shield the above-mentioned complex interactions and is more conducive to the separation of PAA than only addition of LiBr in DMF. LiBr/HAc/DMF was employed for the first time as a mild mobile phase to effectively separate PAA and determine its molecular weight. After a series of conditional experiments, 0.02M LiBr/0.2M HAc/DMF was fixed as an optimized mobile phase to measure the relative and absolute molecular weights of (6FDA-DMB) PAA prepared, and the obtained Mw from GPC-MALLS and GPC-RI were 35,300 g/mol and 125,000 g/mol, respectively. Particularly, such a mobile phase is also applicable to other PAA samples with different structures, and the final results on molecular weight are also reproducible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polyamic%20acids" title="Polyamic acids">Polyamic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyelectrolyte%20effects" title=" Polyelectrolyte effects"> Polyelectrolyte effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Gel%20permeation%20chromatography" title=" Gel permeation chromatography"> Gel permeation chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobile%20phase" title=" Mobile phase"> Mobile phase</a>, <a href="https://publications.waset.org/abstracts/search?q=Molecular%20weight" title=" Molecular weight"> Molecular weight</a> </p> <a href="https://publications.waset.org/abstracts/173439/characterization-on-molecular-weight-of-polyamic-acids-using-gpc-coupled-with-multiple-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5659</span> Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Mohsen%20Yavarizadeh">Mohamad Mohsen Yavarizadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20weight%20distribution" title="molecular weight distribution">molecular weight distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=polystyrene" title=" polystyrene"> polystyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=homopolymer" title=" homopolymer"> homopolymer</a> </p> <a href="https://publications.waset.org/abstracts/26248/effect-of-molecular-weight-distribution-on-toughening-performance-of-polybutadiene-in-polystyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5658</span> The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmannan%20Fadel">Abdulmannan Fadel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arabinoxylans" title="arabinoxylans">arabinoxylans</a>, <a href="https://publications.waset.org/abstracts/search?q=extrusion" title=" extrusion"> extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20endosperm%20pentosan" title=" wheat endosperm pentosan"> wheat endosperm pentosan</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a> </p> <a href="https://publications.waset.org/abstracts/31928/the-effect-of-extrusion-processing-on-solubility-and-molecular-weight-of-water-soluble-arabinoxylan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5657</span> The Effect of Molecular Weight on the Cross-Linking of Two Different Molecular Weight LLDPE Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Forootan">Ashkan Forootan</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Rashedi"> Reza Rashedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyethylene has wide usage areas such as blow molding, pipe, film, cable insulation. However, regardless to its growing applications, it has some constraints such as the limited 70C operating temperature. Polyethylene thermo setting procedure whose molecules are knotted and 3D-molecular-network formed , is developed to conquer the above problem and to raise the applicable temperature of the polymer. This paper reports the cross-linking for two different molecular weight grades of LLDPE by adding 0.5, 1, and 2% of DCP (Dicumyl Peroxide). DCP was chosen for its prevalence among various cross-linking agents. Structural parameters such as molecular weight, melt flow index, comonomer, number of branches,etc. were obtained through the use of relative tests as Gel Permeation Chromatography and Fourier Transform Infra Red spectrometer. After calculating the percentage of gel content, properties of the pure and cross-linked samples were compared by thermal and mechanical analysis with DMTA and FTIR and the effects of cross-linking like viscous and elastic modulus were discussed by using various structural paprameters such as MFI, molecular weight, short chain branches, etc. Studies showed that cross-linked polymer, unlike the pure one, had a solid state with thermal mechanical properties in the range of 110 to 120C and this helped overcome the problem of using polyethylene in temperatures near the melting point. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LLDPE" title="LLDPE">LLDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link" title=" cross-link"> cross-link</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20parameters" title=" structural parameters"> structural parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=DCP" title=" DCP"> DCP</a>, <a href="https://publications.waset.org/abstracts/search?q=DMTA" title=" DMTA"> DMTA</a>, <a href="https://publications.waset.org/abstracts/search?q=GPC" title=" GPC"> GPC</a> </p> <a href="https://publications.waset.org/abstracts/51840/the-effect-of-molecular-weight-on-the-cross-linking-of-two-different-molecular-weight-lldpe-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5656</span> In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman">Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=dextran" title=" dextran"> dextran</a>, <a href="https://publications.waset.org/abstracts/search?q=dextransucrase" title=" dextransucrase"> dextransucrase</a>, <a href="https://publications.waset.org/abstracts/search?q=leuconostoc%20mesenteroides" title=" leuconostoc mesenteroides"> leuconostoc mesenteroides</a> </p> <a href="https://publications.waset.org/abstracts/31750/in-vitro-dextran-synthesis-and-characterization-of-an-intracellular-glucosyltransferase-from-leuconostoc-mesenteroides-aa1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5655</span> Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koo-Yeon%20Kim">Koo-Yeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Hye%20Kim"> Eun-Hye Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Il%20Son"> Tae-Il Son</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast(NHDF) 3T3 proliferation at least under 100 ㎍/㎖. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidermal%20growth%20factor%20%28EGF%29" title="epidermal growth factor (EGF)">epidermal growth factor (EGF)</a>, <a href="https://publications.waset.org/abstracts/search?q=low-molecular-weight%20chitosan" title=" low-molecular-weight chitosan"> low-molecular-weight chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a> </p> <a href="https://publications.waset.org/abstracts/21422/preparation-of-low-molecular-weight-6-amino-6-deoxychitosan-lm6a6dc-for-immobilization-of-growth-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5654</span> Low Molecular Weight Heparin during Pregnancy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihana%20Ahmeti%20Lika">Sihana Ahmeti Lika</a>, <a href="https://publications.waset.org/abstracts/search?q=Merita%20Dauti"> Merita Dauti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ledjan%20Malaj"> Ledjan Malaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to analyze the prophylactic usage of low molecular weight heparine (LMWH) along pregnancy and the correlation between their usage and month/week of pregnancy, in the Department of Gynecology and Obstetrics, at Clinical Hospital in Tetovo. A retrospective study was undertaken during 01 January–31 December 2012. Over of one year, the total number of patients was 4636. Among the 1447 (32.21%) pregnant women, 298 (20.59%) of them were prescribed LMWH. The majority of patients given LMWH, 119 (39.93%) were diagnosed hypercoagulable. The age group with the highest attendance was 25-35, 141 patients (47.32%). For 195 (65.44%) patients, this was their first pregnancy. Earliest stage of using LMWH was the second month of pregnancy 4 (1.34%) cases. The most common patients, were 70 women along the seventh month (23.49%), followed by 68 in the ninth month of pregnancy (22.81%). Women in the 28th gestational week, were found to be the most affected, a total of 55 (78.57%) were in that week. Clexane 2000 and Fraxiparine 0.3 were the most common for which low molecular weight heparine was prescribed. The number of patients which received Clexane 2000 was 84 (28.19%), followed by those with Fraxiparine 0.3 81 (27.18%). The administration of LMWH is associated with long hospitalization (median 14,6 days). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypercoagulable%20state" title="hypercoagulable state">hypercoagulable state</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20moleculare%20weight%20heparine" title=" low moleculare weight heparine"> low moleculare weight heparine</a>, <a href="https://publications.waset.org/abstracts/search?q=month%20of%20pregnancy" title=" month of pregnancy"> month of pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnant%20women" title=" pregnant women"> pregnant women</a> </p> <a href="https://publications.waset.org/abstracts/10547/low-molecular-weight-heparin-during-pregnancy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5653</span> Preparation of Melt Electrospun Polylactic Acid Nanofibers with Optimum Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Doustgani">Amir Doustgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Melt electrospinning is a safe and simple technique for the production of micro and nanofibers which can be an alternative to conventional solvent electrospinning. The effects of various melt-electrospinning parameters, including molecular weight, electric field strength, flow rate and temperature on the morphology and fiber diameter of polylactic acid were studied. It was shown that molecular weight was the predominant factor in determining the obtainable fiber diameter of the collected fibers. An orthogonal design was used to examine process parameters. Results showed that molecular weight is the most effective parameter on the average fiber diameter of melt electrospun PLA nanofibers and the flow rate has the less important impact. Mean fiber diameter increased by increasing MW and flow rate, but decreased by increasing electric field strength and temperature. MFD of optimized fibers was below 100 nm and the result of software was in good agreement with the experimental condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20formation" title="fiber formation">fiber formation</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning" title=" spinning"> spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20blowing" title=" melt blowing"> melt blowing</a> </p> <a href="https://publications.waset.org/abstracts/36067/preparation-of-melt-electrospun-polylactic-acid-nanofibers-with-optimum-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5652</span> Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rajabpour">A. Rajabpour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hadizadeh%20Kheirkhah"> A. Hadizadeh Kheirkhah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=specific%20heat%20capacity" title="specific heat capacity">specific heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lysozyme%20protein" title=" lysozyme protein"> lysozyme protein</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a> </p> <a href="https://publications.waset.org/abstracts/73623/heat-capacity-of-a-soluble-in-water-protein-equilibrium-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5651</span> Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ahmed%20Aljohani">Asma Ahmed Aljohani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Orif"> Mohammed Orif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivalves" title="bivalves">bivalves</a>, <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title=" biomonitoring"> biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a> </p> <a href="https://publications.waset.org/abstracts/159285/evaluation-of-hydrocarbons-in-tissues-of-bivalve-mollusks-from-the-red-sea-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5650</span> Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alya%20Harichane">Alya Harichane</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderraouf%20Achour"> Abderraouf Achour</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaki%20Benmounah"> Abdelbaki Benmounah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20weight" title="molecular weight">molecular weight</a>, <a href="https://publications.waset.org/abstracts/search?q=polycarboxylate-ether%20superplasticizer" title=" polycarboxylate-ether superplasticizer"> polycarboxylate-ether superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/160430/influence-of-the-molecular-architecture-of-a-polycarboxylate-based-superplasticizer-on-the-rheological-and-physicomechanical-properties-of-cement-pastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5649</span> DNA and DNA-Complexes Modified with Electromagnetic Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Nowak">Ewelina Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wisla-Swider"> Anna Wisla-Swider</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Danel"> Krzysztof Danel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=deoxyribonucleic%20acid" title=" deoxyribonucleic acid"> deoxyribonucleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=linearly%20polarized%20visible%20light" title=" linearly polarized visible light"> linearly polarized visible light</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet" title=" ultraviolet"> ultraviolet</a> </p> <a href="https://publications.waset.org/abstracts/85130/dna-and-dna-complexes-modified-with-electromagnetic-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5648</span> Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewelina%20Nowak">Ewelina Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wisla-Swider"> Anna Wisla-Swider</a>, <a href="https://publications.waset.org/abstracts/search?q=Gohar%20Khachatryan"> Gohar Khachatryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Danel"> Krzysztof Danel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymers" title="biopolymers">biopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensors" title=" biosensors"> biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20surfactant" title=" cationic surfactant"> cationic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA-gels" title=" DNA-gels"> DNA-gels</a> </p> <a href="https://publications.waset.org/abstracts/85125/comparison-of-physicochemical-properties-of-dna-ionic-liquids-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5647</span> A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20S.%20Jassal">Pyar S. Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonal%20Gupta"> Sonal Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Neema%20Chand"> Neema Chand</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20chitosan%20nanoparticles" title="low molecular weight chitosan nanoparticles">low molecular weight chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=anthraquinone%20dye" title=" anthraquinone dye"> anthraquinone dye</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm" title=" adsorption isotherm"> adsorption isotherm</a> </p> <a href="https://publications.waset.org/abstracts/108974/a-study-of-anthraquinone-dye-removal-by-using-chitosan-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5646</span> Greening the Blue: Enzymatic Degradation of Commercially Important Biopolymer Dextran Using Dextranase from Bacillus Licheniformis KIBGE-IB25 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashida%20Rahmat%20Zohra">Rashida Rahmat Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsheen%20Aman"> Afsheen Aman</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Ali%20Ul%20Qader"> Shah Ali Ul Qader</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercially important biopolymer, dextran, is enzymatically degraded into lower molecular weight fractions of vast industrial potential. Various organisms are associated with dextranase production, among which fungal, yeast and bacterial origins are used for commercial production. Dextranases are used to remove contaminating dextran in sugar processing industry and also used in oral care products for efficient removal of dental plaque. Among the hydrolytic products of dextran, isomaltooligosaccharides have prebiotic effect in humans and reduces the cariogenic effect of sucrose in oral cavity. Dextran derivatives produced by hydrolysis of high molecular polymer are also conjugated with other chemical and metallic compounds for usage in pharmaceutical, fine chemical industry, cosmetics, and food industry. Owing to the vast application of dextran and dextranases, current study focused on purification and analysis of kinetic parameters of dextranase from a newly isolated strain of Bacillus licheniformis KIBGE-IB25. Dextranase was purified up to 35.75 folds with specific activity of 1405 U/mg and molecular weight of 158 kDa. Analysis of kinetic parameters revealed that dextranase performs optimum cleavage of low molecular weight dextran (5000 Da, 0.5%) at 35ºC in 15 min at pH 4.5 with a Km and Vmax of 0.3738 mg/ml and 182.0 µmol/min, respectively. Thermal stability profiling of dextranase showed that it retained 80% activity up to 6 hours at 30-35ºC and remains 90% active at pH 4.5. In short, the dextranase reported here performs rapid cleavage of substrate at mild operational conditions which makes it an ideal candidate for dextran removal in sugar processing industry and for commercial production of low molecular weight oligosaccharides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis" title="Bacillus licheniformis">Bacillus licheniformis</a>, <a href="https://publications.waset.org/abstracts/search?q=dextranase" title=" dextranase"> dextranase</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20permeation%20chromatograpy" title=" gel permeation chromatograpy"> gel permeation chromatograpy</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20purification" title=" enzyme purification"> enzyme purification</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20kinetics" title=" enzyme kinetics "> enzyme kinetics </a> </p> <a href="https://publications.waset.org/abstracts/18771/greening-the-blue-enzymatic-degradation-of-commercially-important-biopolymer-dextran-using-dextranase-from-bacillus-licheniformis-kibge-ib25" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5645</span> Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Padina boryana Alga Collected from a Contaminated Site at the Red Sea, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huda%20Qari">Huda Qari</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Hassan"> I. A. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The brown alga Padina boryanawas was used for bioassay of polycyclic aromatic hydrocarbons (PAHs) accumulation at the seashore of Jeddah city. PAHs were determined in the coastal water and algal tissues by GC-MS. Acenaphthene (Ace) and dibenzo (a,h) anthracene (dB(a,h)An) were the main PAHs in seawater (50.02 and 46.18) and algal tissues (64.67 and 72.45), respectively. The ratios of low molecular weight/high molecular weight hydrocarbons (1.76 – 1.44), fluoranthene/pyrene (1.57 – 1.52) and phenanthrene/anthracene (0.86 – 0.67) in seawater and algal tissues, respectively, indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using Padina boryanawas as a biomonitor of PAH contamination and bioavailability in the coastal waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title="polycyclic aromatic hydrocarbons">polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=Padina%20boryanawas" title=" Padina boryanawas"> Padina boryanawas</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title=" bioaccumulation"> bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/65936/bioaccumulation-of-polycyclic-aromatic-hydrocarbons-in-padina-boryana-alga-collected-from-a-contaminated-site-at-the-red-sea-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5644</span> Dissolved Black Carbon Accelerates the Photo-Degradation of Polystyrene Microplastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qin%20Ou">Qin Ou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanghui%20Xu"> Yanghui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xintu%20Wang"> Xintu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Maren%20Lompe"> Kim Maren Lompe</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Liu"> Gang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Peter%20Van%20Der%20Hoek"> Jan Peter Van Der Hoek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics (MPs) can undergo the photooxidation process under ultraviolet (UV) exposure, which determines their transformation and fate in environments. The presence of dissolved organic matter (DOM) can interact with MPs and take participate in the photo-degradation of MPs. As an important DOM component, dissolved black carbon (DBC), widely distributed in aquatic environments, can accelerate or inhibit the sunlight-driven photo-transformation of environmental pollutants. However, the role and underlying mechanism of DBC in the photooxidation of MPs are not clear. Herein, the DBC (< 0.45 µm) was extracted from wood biochar and fractionated by molecular weight (i.e., <3 KDa, 3 KDa−30 KDa, 30 KDa−0.45 µm). The effects of DBC chemical composition (i.e., molecular weight and chemical structure) in DBC-mediated photo-transformation of polystyrene (PS) MPs were investigated. The results showed that DBC initially inhibited the photo-degradation of MPs due to light shielding. Under UV exposure for 6−24 h, the presence of 5 mg/L DBC decreased the carbonyl index of MPs compared to the control. This inhibitory effect of DBC was found to decrease with increasing irradiation time. Notably, DBC initially decreased but then increased the hydroxyl index with aging time, suggesting that the role of DBC may shift from inhibition to acceleration. In terms of the different DBC fractions, the results showed that the smallest fraction of DBC (<3 KDa) significantly accelerated the photooxidation of PS MPs since it acted as reactive oxygen species (ROS) generators, especially in promoting the production of ¹O₂ and ³DBC* and •OH. With the increase in molecular weight, the acceleration effect of DBC on the degradation of MPs was decreased due to the increase of light shielding and possible decrease of photosensitization ability. This study thoroughly investigated the critical role of DBC chemical composition in the photooxidation process, which helps to assess the duration of aging and transformation of MPs during long-term weathering in natural waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-degradation" title=" photo-degradation"> photo-degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20black%20carbon" title=" dissolved black carbon"> dissolved black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20weight" title=" molecular weight"> molecular weight</a>, <a href="https://publications.waset.org/abstracts/search?q=photosensitization" title=" photosensitization"> photosensitization</a> </p> <a href="https://publications.waset.org/abstracts/165341/dissolved-black-carbon-accelerates-the-photo-degradation-of-polystyrene-microplastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5643</span> Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad">Naveed Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Farooq%20Ahmad"> Farooq Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aal"> Abdul Aal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plateau%20modulus" title="plateau modulus">plateau modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20lenght" title=" packing lenght"> packing lenght</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%2Firon%20composites" title=" polymer/iron composites"> polymer/iron composites</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=entanglement%20molecular%20weight" title=" entanglement molecular weight"> entanglement molecular weight</a> </p> <a href="https://publications.waset.org/abstracts/163841/effect-of-iron-contents-on-rheological-properties-of-syndiotactic-polypropyleneiron-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5642</span> Impact of Wastewater from Outfalls of River Ganga on Germination Percentage and Growth Parameters of Bitter Gourd (Momordica charantia L.) with Antioxidant Activity Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayanti%20Kar">Sayanti Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitava%20Ghosh"> Amitava Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pritam%20Aitch"> Pritam Aitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Gupinath%20Bhandari"> Gupinath Bhandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An extensive seasonal analysis of wastewater had been done from outfalls of river Ganga in Howrah, Hooghly, 24 PGS (N) District, West Bengal, India during 2017. The morphological parameters of Bitter gourd (Momordica charantia L.) were estimated under wastewater treatment. An approach to study the activity within the range of low molecular weight peptide 3-0.5 kDa were taken through its extraction and purification by ion exchange resin column, cation, and anion exchanger. HPLC analysis had been done for both in wastewater treated and untreated plants. The antioxidant activity by using DPPH and germination percentage in control and treated plants were also determined in relation to wastewater effect. The inhibition of growth and its parameters were maximum in pre-monsoon in comparing to post-monsoon and monsoon season. The study also helped to explore the effect of wastewater on the peptidome of Bitter gourd (Momordica charantia L.). Some of these low molecular weight peptide(s) (3-0.5 kDa) also inhibited during wastewater treatment. Expression of particular peptide(s) or absence of some peptide(s) in chromatogram indicated the adverse effects on plants which may be the indication of stressful condition. Pre monsoon waste water was found to create more impact than other two. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitter%20gourd%20%28Momordica%20charantia%20l.%29" title="bitter gourd (Momordica charantia l.)">bitter gourd (Momordica charantia l.)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20peptide" title=" low molecular weight peptide"> low molecular weight peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20ganga" title=" river ganga"> river ganga</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/101111/impact-of-wastewater-from-outfalls-of-river-ganga-on-germination-percentage-and-growth-parameters-of-bitter-gourd-momordica-charantia-l-with-antioxidant-activity-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5641</span> Evaluation of the UV Stability of Unidirectional Crossply Ultrahigh-Molecular-Weight-Polyethylene Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonmichael%20Weaver">Jonmichael Weaver</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Miller"> David Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber created by DSM. This fiber has many applications due to the high tensile strength, low weight, and inability to absorb water. DSM manufactures a non-woven unidirectional cross-ply [0,90]2 lamina, using the Dyneema fiber. Using this lamina system, various thickness panels are created for a 40% lighter weight alternative to Kevlar for the same ballistics protection. Environmental effects on the ply/laminate system alter the material properties, resulting in diminished ultimate performance. Understanding the specific environmental parameters and characterizing the resulting material property degradation is essential for determining the safety and reliability of Dyneema in service. Two laminas were contrasted for their response to accelerated aging by UV, humidity, and temperature cycling. Both lamina contain the same fiber, SK-99, but differ in matrix composition, Dyneema HB-210 employs a polyurethane (PUR) based matrix, and HB-212 contains a rubber-based matrix. Each system was inspected using a scanning electron microscope (SEM) and evaluated by dynamic mechanical analysis (DMA) to characterize the material property changes alongside the corresponding composite damage and matrix failure mode over the aging parameters. Overall, resulting in the HB-212 degrading faster compared with the HB-210. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyneema" title="dyneema">dyneema</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20aging" title=" accelerated aging"> accelerated aging</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistics%20protection" title=" ballistics protection"> ballistics protection</a>, <a href="https://publications.waset.org/abstracts/search?q=armor" title=" armor"> armor</a>, <a href="https://publications.waset.org/abstracts/search?q=DSM" title=" DSM"> DSM</a>, <a href="https://publications.waset.org/abstracts/search?q=kevlar" title=" kevlar"> kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/143682/evaluation-of-the-uv-stability-of-unidirectional-crossply-ultrahigh-molecular-weight-polyethylene-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5640</span> A Two-Stage Process for the Sustainable Production of Aliphatic Polyesters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Douka">A. Douka</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vouyiouka"> S. Vouyiouka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Papaspyridi"> L. M. Papaspyridi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Korres"> D. Korres</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Papaspyrides"> C. Papaspyrides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A "green" process was studied for the preparation of partially renewable aliphatic polyesters based on 1,4-butanediol and 1,8-octanediol with various diacids and derivatives, namely diethyl succinate, adipic acid, sebacic acid, 1,12-dodecanedioic acid and 1,14-tetradecanedioic acid. A first step of enzymatic prepolymerization was carried out in the presence of two different solvents, toluene and diphenylether, applying molecular sieves and vacuum, respectively, to remove polycondensation by-products. Poly(octylene adipate) (PE 8.6), poly(octylene dodecanate)(PE 8.12) and poly(octylene tetradecanate) (PE 8.14) were firstly enzymatically produced in toluene using molecular sieves giving however, low-molecular-weight products. Thereafter, the synthesis of PE 8.12 and PE 8.14 was examined under optimized conditions using diphenylether as solvent and a more vigorous by-product removal step, such as application of vacuum. Apart from these polyesters, the optimized process was also implemented for the production of another long-chain polyester-poly(octylene sebacate) (PE 8.10) and a short-chain polyester-poly(butylene succinate) (PE 4.4). Subsequently, bulk post-polymerization in the melt or solid state was performed. SSP runs involved absence of biocatalyst and reaction temperatures (T) in the vicinity of the prepolymer melting point (Tm-T varied between 15.5 up to 4oC). Focusing on PE 4.4 and PE 8.12, SSP took place under vacuum or flowing nitrogen leading to increase of the molecular weight and improvement of the end product physical appearance and thermal properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aliphatic%20polyester" title="aliphatic polyester">aliphatic polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20polymerization" title=" enzymatic polymerization"> enzymatic polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20polymerization" title=" solid state polymerization"> solid state polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=Novozym%20435" title=" Novozym 435"> Novozym 435</a> </p> <a href="https://publications.waset.org/abstracts/18710/a-two-stage-process-for-the-sustainable-production-of-aliphatic-polyesters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5639</span> Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20B.%20R.%20Prado">Samira B. R. Prado</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20R.%20Melfi"> Paulo R. Melfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20T.%20Minguzzi"> Beatriz T. Minguzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20P.%20Fabi"> João P. Fabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carica%20papaya" title="carica papaya">carica papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20ripening" title=" fruit ripening"> fruit ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=galactosidases" title=" galactosidases"> galactosidases</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cell%20wall" title=" plant cell wall"> plant cell wall</a>, <a href="https://publications.waset.org/abstracts/search?q=polygalacturonases" title=" polygalacturonases"> polygalacturonases</a> </p> <a href="https://publications.waset.org/abstracts/25521/correlation-between-polysaccharides-molecular-weight-changes-and-pectinases-gene-expression-during-papaya-ripening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5638</span> Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Mohammed">Emad A. Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MMP" title="MMP">MMP</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20flooding" title=" gas flooding"> gas flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/123862/artificial-intelligence-methods-in-estimating-the-minimum-miscibility-pressure-required-for-gas-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5637</span> γ-Irradiation of Oat β- Glucan: Effect on Antioxidant and Antiproliferative Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asima%20Shah">Asima Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Masoodi"> F. A. Masoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Gani"> Adil Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ahmad%20Ashwar"> Bilal Ahmad Ashwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to evaluate the effect of γ-rays on the antioxidant and antiproliferative potential of β-glucan isolated from oats. The β-glucan was irradiated with 0, 2, 6, and 10 kGy by gamma ray. The samples were characterized by FT-IR, GPC, and quantitative estimation by Megazyme β-glucan assay kit. The average molecular weight of non-irradiated β-glucan was 199 kDa that decreased to 70 kDa at 10 kGy. Both FT-IR spectrum and chemical analysis revealed that the extracted β-glucan was pure having minor impurities. Antioxidant activity was evaluated by DPPH, lipid peroxidation, reducing power, metal chelating ability and oxidative DNA damage assays. Results revealed that the antioxidant activity of β-glucan increased with the increase in irradiation dose. Irradiated β-glucan also exhibited dose dependent cancer cell growth inhibition with irradiation doses. The study revealed that low molecular weight β-glucan with enhanced antioxidant and antiproliferative activities can be produced by a simple irradiation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-irradiation" title="γ-irradiation">γ-irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20activity" title=" antiproliferative activity"> antiproliferative activity</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucan" title=" β-glucan"> β-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=oats" title=" oats"> oats</a> </p> <a href="https://publications.waset.org/abstracts/17343/gh-irradiation-of-oat-v-glucan-effect-on-antioxidant-and-antiproliferative-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5636</span> Investigation of Acidizing Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Theoretical and Experimental Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambrish%20Singh">Ambrish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The corrosion inhibition performance of pyran derivatives (AP) on mild steel in 15% HCl was investigated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, weight loss, contact angle, and scanning electron microscopy (SEM) measurements, DFT and molecular dynamic simulation. The adsorption of APs on the surface of mild steel obeyed Langmuir isotherm. The potentiodynamic polarization study confirmed that inhibitors are mixed type with cathodic predominance. Molecular dynamic simulation was applied to search for the most stable configuration and adsorption energies for the interaction of the inhibitors with Fe (110) surface. The theoretical data obtained are, in most cases, in agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidizing%20inhibitor" title="acidizing inhibitor">acidizing inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=pyran%20derivatives" title=" pyran derivatives"> pyran derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20simulation" title=" molecular simulation"> molecular simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20steel" title=" mild steel"> mild steel</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a> </p> <a href="https://publications.waset.org/abstracts/115084/investigation-of-acidizing-corrosion-inhibitors-for-mild-steel-in-hydrochloric-acid-theoretical-and-experimental-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5635</span> Thick Disc Molecular Gas Fraction in NGC 6946</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Nath%20Patra">Narendra Nath Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consists of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cube and spectral width profile. We find that the simulated spectral width profiles distinguishably differs for different assumed thick disc molecular gas fraction. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 +/- 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find 60% of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ~ 35% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20kinematics%20and%20dynamic" title="galaxies: kinematics and dynamic">galaxies: kinematics and dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20spiral" title=" galaxies: spiral"> galaxies: spiral</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20structure" title=" galaxies: structure "> galaxies: structure </a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%3A%20molecules" title=" ISM: molecules"> ISM: molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20data" title=" molecular data"> molecular data</a> </p> <a href="https://publications.waset.org/abstracts/123278/thick-disc-molecular-gas-fraction-in-ngc-6946" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5634</span> Ultradrawing and Ultimate Tensile Properties of Ultrahigh Molecular Weight Polyethylene Composite Fibers Filled with Activated Nanocarbon Particles with Varying Specific Surface Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang-Xi%20Fan">Wang-Xi Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Ding"> Yi Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong-Dan%20Tu"> Zhong-Dan Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Shien%20Huang"> Kuo-Shien Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Huang"> Chao-Ming Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Taut%20%20Yeh"> Jen-Taut Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Original and/or functionalized activated nanocarbon particles with a quoted specific surface area of 100, 500, 1000 and 1400 m2/g, respectively, were used to investigate the influence of specific surface areas of activated nanocarbon on ultra drawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE), UHMWPE/activated nanocarbon and UHMWPE/ functionalized activated nanocarbon fibers. The specific surface areas of well dispersed functionalized activated nanocarbon in UHMWPE/functionalized activated nanocarbon fibers can positively affect their ultra drawing, orientation, ultimate tensile properties and “micro-fibril” characteristics. Excellent orientation and ultimate tensile properties of UHMWPE/nanofiller fibers can be prepared by ultra drawing the UHMWPE/functionalized activated nanocarbon as-prepared fibers with optimal contents and compositions of functionalized activated nanocarbon. The ultimate tensile strength value of the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber reached 8.0 GPa, which was about 2.86 times of that of the best-prepared UHMWPE drawn fiber prepared in this study. Specific surface area, morphological and Fourier transform infrared analyses of original and functionalized activated nanocarbon and/or investigations of thermal, orientation factor and ultimate tensile properties of as-prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers were performed to understand the above-improved ultra drawing and ultimate tensile properties of the UHMWPE/functionalized activated nanocarbon fibers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20nanocarbon" title="activated nanocarbon">activated nanocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20areas" title=" specific surface areas"> specific surface areas</a>, <a href="https://publications.waset.org/abstracts/search?q=ultradrawing" title=" ultradrawing"> ultradrawing</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrahigh%20molecular%20weight%20polyethylene" title=" ultrahigh molecular weight polyethylene"> ultrahigh molecular weight polyethylene</a> </p> <a href="https://publications.waset.org/abstracts/56276/ultradrawing-and-ultimate-tensile-properties-of-ultrahigh-molecular-weight-polyethylene-composite-fibers-filled-with-activated-nanocarbon-particles-with-varying-specific-surface-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5633</span> Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20Gomes">L. P. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Ara%C3%BAjo"> G. F. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20L.%20Cordeiro"> Y. M. L. Cordeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Andrade"> C. T. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Del%20Aguila"> E. M. Del Aguila</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20F.%20Paschoalin"> V. M. F. Paschoalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title="antimicrobial agent">antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20production" title=" green production"> green production</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/34476/green-production-of-chitosan-nanoparticles-and-their-potential-as-antimicrobial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5632</span> Body Weight Variation in Indian Heterogeneous Group-An Analytical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Srivastva">A. K. Srivastva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body weight is considered as an important factor in health and fitness. It is an index of one's health. Considering significance of body weight and its wider application in various fields in general and sports in particular, it is made a point of enquiry in the present study. The purpose of the study to observe over all weight pattern of Indian youths in the age group of 15 through 20 years. Total 7500 samples pooled from ten Indian states ranging in their age 15 to 20 years were examined in six age categories. Conclusion: 1. The period between 15 to 20 year of age is a growing period and that body weight is gained during this period. 2. Statewise difference is observed in body-weight during the period, which is significant. 3. PRG indicated by higher rate of weight gain varies from state to state. 4. Sportsman possess comparatively higer level of body-weight than other student of same age group. 5. Tribal youths show comparatively better status in their weight gain than the untrained uraban dwellers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PRG%20%28period%20of%20rapid%20growth%29" title="PRG (period of rapid growth)">PRG (period of rapid growth)</a>, <a href="https://publications.waset.org/abstracts/search?q=HG%20%28heterogeneous%20group%29" title=" HG (heterogeneous group)"> HG (heterogeneous group)</a>, <a href="https://publications.waset.org/abstracts/search?q=WP%20%28weight%20pattern%29" title=" WP (weight pattern)"> WP (weight pattern)</a>, <a href="https://publications.waset.org/abstracts/search?q=MBW%20%28mean%20body%20weight%29" title=" MBW (mean body weight)"> MBW (mean body weight)</a> </p> <a href="https://publications.waset.org/abstracts/39375/body-weight-variation-in-indian-heterogeneous-group-an-analytical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5631</span> Libyan Crude Oil Composition Analysis and Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hussein%20El%20Ayadi">Omar Hussein El Ayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=EmadY.%20El-Mansouri"> EmadY. El-Mansouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20B.%20Dozan"> Mohamed B. Dozan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVT" title="PVT">PVT</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20behavior" title=" phase behavior"> phase behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/37446/libyan-crude-oil-composition-analysis-and-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=188">188</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=189">189</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular%20weight&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10