CINXE.COM
Search results for: dolomite
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: dolomite</title> <meta name="description" content="Search results for: dolomite"> <meta name="keywords" content="dolomite"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="dolomite" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="dolomite"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 61</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: dolomite</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farahat">Mohsen Farahat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsuyoshi%20Hirajima"> Tsuyoshi Hirajima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20megaterium" title="Bacillus megaterium">Bacillus megaterium</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20energy" title=" adhesion energy"> adhesion energy</a> </p> <a href="https://publications.waset.org/abstracts/36669/surface-characteristics-of-bacillus-megaterium-and-its-adsorption-behavior-onto-dolomite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> The Effect of Ni/Dolomite Catalyst for Production of Hydrogen from NaBH₄</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Kiren">Burcu Kiren</a>, <a href="https://publications.waset.org/abstracts/search?q=Alattin%20CAkan"> Alattin CAkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nezihe%20Ayas"> Nezihe Ayas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen will be arguably the best fuel in the future as it is the most abundant element in the universe. Hydrogen, as a fuel, is notably environmentally benign, sustainable and has high energy content compared to other sources of energy. It can be generated from both conventional and renewable sources. The hydrolysis reaction of metal hydrides provides an option for hydrogen production in the presence of a catalyst. In this study, Ni/dolomite catalyst was synthesized by the wet impregnation method for hydrogen production by hydrolysis reaction of sodium borohydride (NaBH4). Besides, the synthesized catalysts characterizations were examined by means of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer –Emmett – Teller (BET) and scanning electron microscopy (SEM). The influence of reaction temperature (25-75 °C), reaction time (15-60 min.), amount of catalyst (50-250 mg) and active metal loading ratio (20,30,40 wt.%) were investigated. The catalyst prepared with 30 wt.% Ni was noted as the most suitable catalyst, achieving of 35.18% H₂ and hydrogen production rate of 19.23 mL/gcat.min at 25 °C at reaction conditions of 5 mL of 0.25 M NaOH and 100 mg NaBH₄, 100 mg Ni/dolomite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20borohydride" title="sodium borohydride">sodium borohydride</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ni%2Fdolomite" title=" Ni/dolomite"> Ni/dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/128593/the-effect-of-nidolomite-catalyst-for-production-of-hydrogen-from-nabh4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Distribution, Settings, and Genesis of Burj-Dolomite Shale-Hosted Copper Mineralization in the Central Wadi Araba, Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salem%20Abdullah%20Al-Hwaiti">Mohammad Salem Abdullah Al-Hwaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stratiform copper mineralization of the Burj-Dolomite shale (BDS) formations of deposits shows that the copper mineralization within the BDS occurs as hydrated copper chlorides and carbonates (mainly paratacamite and malachite, respectively), while copper silicates (mainly chrysocolla and planchette) are the major ore minerals in the BDS. Thus, on the basis of the petrographic and field occurrence, three main stages operated during the development of the copper ore in the sandy and shaly lithofacies. During the first stage, amorphous chrysocolla replaced clays, feldspars, and quartz. This stage was followed by the transition from an amorphous phase to a better-crystallized phase, i.e., the formation of planchette and veins from chrysocolla. The third stage was the formation of chrysocolla along fracture planes. Other secondary minerals are pseudomalachite, dioptase, neoticite together with authigenic fluorapatite. Paratacamite and malachite, which are common in the dolomitic lithofacies, are relatively rare in the sandy and silty lithofacies. The Rare Earth Elements (REEs) patterns for the BDS showed three stages in the evolution of the Precambrian–Cambrian copper mineralization system, involving the following: (A) Epigenetic mobilization of Cu-bearing solution with formation Cu-carbonate in dolomite and limestone mineralization and Cu-silicate mineralization in sandstone; (B) Transgression of Cambrian Sea and SSC deposition of Cu-sulphides during dolomite diagenesis in the BDS Formation; continued diagenesis and oxidation leads to the formation of Cu(II) minerals; (C) Erosion and supergene enrichment of Cu in basement rocks. Detrital copper-bearing sediments accumulate in the lower Cambrian clastic sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dolomite%20shale" title="dolomite shale">dolomite shale</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20mineralization" title=" copper mineralization"> copper mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/158155/distribution-settings-and-genesis-of-burj-dolomite-shale-hosted-copper-mineralization-in-the-central-wadi-araba-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Modreck%20Gomo">Modreck Gomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title="acid mine drainage">acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates" title=" carbonates"> carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization" title=" neutralization"> neutralization</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/95133/geochemical-controls-of-salinity-in-a-typical-acid-mine-drainage-neutralized-groundwater-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alzeyadi">A. Alzeyadi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffill"> E. Loffill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Alkhaddar"> R. Alkhaddar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title="filter media">filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20loading%20rate" title=" hydraulic loading rate"> hydraulic loading rate</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution" title=" residence time distribution"> residence time distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer" title=" tracer "> tracer </a> </p> <a href="https://publications.waset.org/abstracts/34275/investigation-into-the-optimum-hydraulic-loading-rate-for-selected-filter-media-packed-in-a-continuous-upflow-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Barclays Bank Zambia: Considerations for Raft Foundation Design on Dolomite Land</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashved%20Serhun">Yashved Serhun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20A.%20Timm"> Kim A. Timm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Barclays Bank has identified the need for a head office building in Lusaka, Zambia, and construction of a 7200 m2 three-storey reinforced concrete office building with a structural steel roof is currently underway. A unique characteristic of the development is that the building footprint is positioned on dolomitic land. Dolomite rock has the tendency to react with and breakdown in the presence of slightly acidic water, including rainwater. This leads to a potential for subsidence and sinkhole formation. Subsidence and the formation of sinkholes beneath a building can be detrimental during both the construction and operational phases. This paper outlines engineering principles which were considered during the structural design of the raft foundation for the Barclays head office building. In addition, this paper includes multidisciplinary considerations and the impact of these on the structural engineering design of the raft foundation. By ensuring that the design of raft foundations on dolomitic land incorporates the requirements of all disciplines and relevant design codes during the design process, the risk associated with subsidence and sinkhole formation can be effectively mitigated during the operational phase of the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dolomite" title="dolomite">dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomitic%20land" title=" dolomitic land"> dolomitic land</a>, <a href="https://publications.waset.org/abstracts/search?q=raft%20foundation" title=" raft foundation"> raft foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20engineering%20design" title=" structural engineering design"> structural engineering design</a> </p> <a href="https://publications.waset.org/abstracts/108648/barclays-bank-zambia-considerations-for-raft-foundation-design-on-dolomite-land" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> The Engineering Properties of Jordanian Marble</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousa%20Bani%20Baker">Mousa Bani Baker</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20Abendeh"> Raed Abendeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaidoon%20Abu%20Salem"> Zaidoon Abu Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Ahmad"> Hesham Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper was commissioned to discuss the Jordanian marble, which is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Geologists use the term "marble" to refer to metamorphosed limestone; however, stonemasons use the term more broadly to encompass unmetamorphised limestone. Marble is commonly used for sculpture and as a building material. The marble has many uses; one of them is using the white marble that has been prized for its use in sculptures since classical times. This preference has to do with its softness, relative isotropy and homogeneity, and a relative resistance to shattering. Another use of it is the construction marble which is “a stone which is composed of calcite, dolomite or serpentine which is capable of taking a polish” Marble Institute of America. This report focuses most about the marble in Jordan and its properties: rock definition, physical properties, the marble occurrences in Jordan, types of Jordanian marble and their prices and test done on this marble. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marble" title="marble">marble</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphic" title=" metamorphic"> metamorphic</a>, <a href="https://publications.waset.org/abstracts/search?q=non-foliated" title=" non-foliated"> non-foliated</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recrystallized" title=" recrystallized"> recrystallized</a>, <a href="https://publications.waset.org/abstracts/search?q=Moh%E2%80%99s%20hardness" title=" Moh’s hardness"> Moh’s hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=abrasion" title=" abrasion"> abrasion</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a> </p> <a href="https://publications.waset.org/abstracts/30419/the-engineering-properties-of-jordanian-marble" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Effect of Local Steel Slag as a Coarse Aggregate in the Properties of Fly Ash Based-Geopolymer Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Omar">O. M. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Heniegal"> A. M. Heniegal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Abd%20Elhameed"> G. D. Abd Elhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohamadien"> H. A. Mohamadien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitute of crushed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of dolomite. This paper reports the experimental study to investigate the influence of a hundred replacement of dolomite as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=molarity" title=" molarity"> molarity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title=" steel slag"> steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/39829/effect-of-local-steel-slag-as-a-coarse-aggregate-in-the-properties-of-fly-ash-based-geopolymer-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamrd%20Ali%20Alrabib">Mohamrd Ali Alrabib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authigenic%20minerals" title="authigenic minerals">authigenic minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20types" title=" porosity types"> porosity types</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20reduction" title=" porosity reduction"> porosity reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=mamuniyat%20sandstone%20reservoir" title=" mamuniyat sandstone reservoir "> mamuniyat sandstone reservoir </a> </p> <a href="https://publications.waset.org/abstracts/2382/porosity-characterization-and-its-destruction-by-authigenic-minerals-reservoir-sandstones-mamuniyat-formation-murzuq-basin-sw-libya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ninduangdee">P. Ninduangdee</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20I.%20Kuprianov"> V. I. Kuprianov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell" title="palm kernel shell">palm kernel shell</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidized-bed%20combustion" title=" fluidized-bed combustion"> fluidized-bed combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20bed%20materials" title=" alternative bed materials"> alternative bed materials</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20and%20emission%20performance" title=" combustion and emission performance"> combustion and emission performance</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20agglomeration%20prevention" title=" bed agglomeration prevention"> bed agglomeration prevention</a> </p> <a href="https://publications.waset.org/abstracts/3746/fluidized-bed-combustion-of-biomass-with-elevated-alkali-content-a-comparative-study-between-two-alternative-bed-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharminder%20Singh">Dharminder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Yadav"> Sanjeev Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravakar%20Mohanty"> Pravakar Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20bubbling%20fluidized%20bed%20gasifier" title="air bubbling fluidized bed gasifier">air bubbling fluidized bed gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20temperature" title=" bed temperature"> bed temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal%20heating" title=" charcoal heating"> charcoal heating</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20temperature" title=" flame temperature"> flame temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/61151/effect-of-different-factors-on-temperature-profile-and-performance-of-an-air-bubbling-fluidized-bed-gasifier-for-rice-husk-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Development and Evaluation of Economical Self-cleaning Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Saini">Anil Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar%20Ratan"> Jatinder Kumar Ratan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microsized-titanium%20dioxide%20%28m-TiO%E2%82%82%29" title="microsized-titanium dioxide (m-TiO₂)">microsized-titanium dioxide (m-TiO₂)</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning%20cement" title=" self-cleaning cement"> self-cleaning cement</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface-fluorination" title=" surface-fluorination"> surface-fluorination</a> </p> <a href="https://publications.waset.org/abstracts/145238/development-and-evaluation-of-economical-self-cleaning-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Petro-Mineralogical Studies of Phosphorite Deposit of Sallopat Block of Banswara District, Rajasthan, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20F.%20Khan">K. F. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Samsuddin%20Khan"> Samsuddin Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Paleoproterozoic phosphorite deposit of Sallopat block of Banswara district of Rajasthan belongs to kalinjara formation of lunavada group of Aravalli Super Group. The phosphorites are found to occur as massive, brecciated, laminated and stromatolitic associated with calcareous quartzite, interbedded dolomite and multi coloured chert. The phosphorites are showing alternate brown and grey coloured concentric rims which are composed of phosphate, calcite and quartz minerals. Petro-mineralogical studies of phosphorite samples using petrological microscope, XRD, FEG- SEM and EDX reveal that apatite-(CaF) and apatite-(CaOH) are phosphate minerals which are intermixed with minor amount of carbonate materials. Sporadic findings of the uniform tiny granules of partially anisotropic apatite-(CaF) along with dolomite, calcite, quartz, muscovite, zeolite and other gangue minerals have been observed with the replacement of phosphate material by quartz and carbonate. The presence of microbial filaments of organic matter and alternate concentric rims of stromatolitic structure may suggest that the deposition of the phosphate took place in shallow marine oxidizing environmental conditions leading to the formation of phosphorite layers as primary biogenic precipitates by bacterial or algal activities. Different forms and texture of phosphate minerals may be due to environmental vicissitudes at the time of deposition followed by some replacement processes and biogenic activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apatite" title="apatite">apatite</a>, <a href="https://publications.waset.org/abstracts/search?q=petro-mineralogy" title=" petro-mineralogy"> petro-mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorites" title=" phosphorites"> phosphorites</a>, <a href="https://publications.waset.org/abstracts/search?q=sallopat" title=" sallopat"> sallopat</a>, <a href="https://publications.waset.org/abstracts/search?q=stromatolites" title=" stromatolites"> stromatolites</a> </p> <a href="https://publications.waset.org/abstracts/42417/petro-mineralogical-studies-of-phosphorite-deposit-of-sallopat-block-of-banswara-district-rajasthan-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Geochemical and Mineralogical Characters of the Coastal Plain Sediments of the Arabian Gulf, Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ahmed%20Aly%20Elhabab">Adel Ahmed Aly Elhabab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Adsani"> Ibrahim Adsani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with detailed geochemical and mineralogical studies of the coastal plain sediments formed along the shoreline of the Arabian Gulf area, Kuwait. These deposits are mainly fluviomarine and beach sands. The coastal plain deposits of the central Kuwait shoreline zone were found to consist of average medium-grained sand. The sand composed, on average of about 90% sand, and about 10% or less is mud, and has a unimodal distribution with a mode of medium sand (1-2 ф). The sediments consist mainly quartz, Feldspar, clay minerals with carbonate minerals (detritus calcite and dolomite) and rock fragments (chert). The mineralogy of the clay fractions of the sediments is dominated by illite, palygorskite, mixed layer illite-montmorillonite with minor amounts of chlorite and Kaolinite Heavy minerals are concentrated in the very fine sand fraction and are dominated by opaque minerals, and non opaque minerals which represented by amphiboles, pyroxenes, epidotes, dolomite, zircon, tourmaline, rutile, garnet and other which represented by Staurolite, Kyanite, Andalusite and Sillimenite as a trace amounts. The chemical analysis for the detrital amphibole grains from sandstone of coastal plain sediments shows the following features; the grains which have (Na+K) <0.50 its composition ranges from actino hornblende to magnesio hornblende, but the grains which have (Na+K) >0.50 its composition have wide variation and on the (Na+K)-AlIV diagram can be characterized two association: Association 1 which characterized by low amount of AlIV and low amount of (Na+K), by comparing the chemical composition of this association and the chemical composition of amphibole grains from older basement rock, can be say, these association may be derived from metamorphic source rocks and association 2 which characterized by high amount of AlIV and low amount of (Na+K), may be derived from volcanic source rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title="chemical composition">chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20area" title=" coastal area"> coastal area</a>, <a href="https://publications.waset.org/abstracts/search?q=electro%20probe%20micro%20analyzer%20%28EPMA%29" title=" electro probe micro analyzer (EPMA)"> electro probe micro analyzer (EPMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluviomarine%20sediments" title=" fluviomarine sediments"> fluviomarine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20minerals" title=" heavy minerals"> heavy minerals</a> </p> <a href="https://publications.waset.org/abstracts/38146/geochemical-and-mineralogical-characters-of-the-coastal-plain-sediments-of-the-arabian-gulf-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Analyzing the Oil and Gas Exploration Opportunities in Poland: Five Prospective Areas Selected and Dedicated to the Tender</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krystian%20W%C3%B3jcik">Krystian Wójcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Wr%C3%B3blewska"> Sara Wróblewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20%C5%81ojek"> Marcin Łojek</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Sobie%C5%84"> Katarzyna Sobień</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polish Geological Survey selected five of the most prospective areas for oil and gas exploration in Poland. They are dedicated to the 6th international tender round for hydrocarbon concessions, planned in 2022. The main exploration target of these areas is related to conventional and unconventional accumulations of gas and oil in the Carpathian basement, Carpathian Foredeep and Outer Carpathians (Block 413 – 414), as well as in the Carboniferous, Rotliegend, Main Dolomite (Block 208, Cybinka – Torzym, Zielona Góra West), and in the Mesozoic of the Polish Lowlands (Koło). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concession%20policy" title="concession policy">concession policy</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20tender" title=" international tender"> international tender</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20exploration%20horizons" title=" oil and gas exploration horizons"> oil and gas exploration horizons</a>, <a href="https://publications.waset.org/abstracts/search?q=prospective%20areas" title=" prospective areas"> prospective areas</a> </p> <a href="https://publications.waset.org/abstracts/146650/analyzing-the-oil-and-gas-exploration-opportunities-in-poland-five-prospective-areas-selected-and-dedicated-to-the-tender" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Optimization of Gold Mining Parameters by Cyanidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Della%20Saddam%20Housseyn">Della Saddam Housseyn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gold, the quintessential noble metal, is one of the most popular metals today, given its ever-increasing cost in the international market. The Amesmessa gold deposit is one of the gold-producing deposits. The first step in our job is to analyze the ore (considered rich ore). Mineralogical and chemical analysis has shown that the general constitution of the ore is quartz in addition to other phases such as Al2O3, Fe2O3, CaO, dolomite. The second step consists of all the leaching tests carried out in rolling bottles. These tests were carried out on 14 samples to determine the maximum recovery rate and the optimum consumption of reagent (NaCN and CaO). Tests carried out on a pulp density at 50% solid, 500 ppm cyanide concentration and particle size less than 0.6 mm at alkaline pH gave a recovery rate of 94.37%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanide" title="cyanide">cyanide</a>, <a href="https://publications.waset.org/abstracts/search?q=DRX" title=" DRX"> DRX</a>, <a href="https://publications.waset.org/abstracts/search?q=FX" title=" FX"> FX</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20of%20recovery" title=" rate of recovery"> rate of recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=SAA" title=" SAA"> SAA</a> </p> <a href="https://publications.waset.org/abstracts/142021/optimization-of-gold-mining-parameters-by-cyanidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Clay Mineralogy of Mukdadiya Formation in Shewasoor Area: Northeastern Kirkuk City, Iraq</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20R.%20Ali">Abbas R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20A.%20Bayiz"> Diana A. Bayiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 14 mudstone samples were collected within the sedimentary succession of Mukdadiya Formation (Late Miocene – Early Pliocene) from Shewasoor area at Northeastern Iraq. The samples were subjected to laboratory studies including mineralogical analysis (using X-ray Diffraction technique) in order to identify the clay mineralogy of Mukdadiya Formation of both clay and non-clay minerals. The results of non-clay minerals are: quartz, feldspar and carbonate (calcite and dolomite) minerals. The clay minerals are: montmorillonite, kaolinite, palygorskite, chlorite, and illite by the major basal reflections of each mineral. The origins of these minerals are deduced also. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukdadiya%20Formation" title="Mukdadiya Formation">Mukdadiya Formation</a>, <a href="https://publications.waset.org/abstracts/search?q=mudstone" title=" mudstone"> mudstone</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=Shewasoor" title=" Shewasoor"> Shewasoor</a> </p> <a href="https://publications.waset.org/abstracts/45853/clay-mineralogy-of-mukdadiya-formation-in-shewasoor-area-northeastern-kirkuk-city-iraq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Identifying Controlling Factors for the Evolution of Shallow Groundwater Chemistry of Ellala Catchment, Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grmay%20Kassa%20Brhane">Grmay Kassa Brhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailemariam%20Siyum%20Mekonen"> Hailemariam Siyum Mekonen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to identify the hydrogeochemical and anthropogenic processes controlling the evaluation of groundwater chemistry in the Ellala catchment which covers about 296.5 km2 areal extent. The chemical analysis revealed that the major ions in the groundwater are Ca2+, Mg2+, Na+, and K+ (cations) and HCO3-, PO43-, Cl-, NO3-, and SO42-(anions). Most of the groundwater samples (68.42%) revealed that the groundwater in the catchment is non-alkaline. In addition to the contribution of aquifer material, the solid materials and liquid wastes discharged from different sources can be the main sources of pH and EC in the groundwater. It is observed that the EC of the groundwater is fairly correlated with the DTS. This indicates that high mineralized water is more conductor than water with low concentration. The degree of salinity of the groundwater increases along the groundwater flow path from East to West; then, areas surrounding Mekelle City are highly saline due to the liquid and solid wastes discharged from the city and the industries. The groundwater facies in the catchment are predominated with calcium, magnesium, and bicarbonate which are labeled as Ca-Mg-HCO3 and Mg-Ca-HCO3. The main geochemical process controlling the evolution of the groundwater chemistry in the catchment is rock-water interaction, particularly carbonate dissolution. Due to the clay layer in the aquifer, the reverse is ion exchange. Non-significant silicate weathering and halite dissolution also contribute to the evolution of groundwater chemistry in the catchment. The groundwater in the catchment is dominated by the meteoritic origin although it needs further groundwater chemistry study with isotope dating analysis. The groundwater is under-saturated with calcite, dolomite, and aragonite minerals; hence, the more these minerals encounter the groundwater, the more the minerals dissolve. The main source of calcium and magnesium in groundwater is the dissolution of carbonate minerals (calcite and dolomite) since carbonate rocks are the dominant aquifer materials in the catchment. In addition to this, the weathering of dolerite rock is a possible source of magnesium ions. The relatively higher concentration of sodium over chloride indicates that the source of sodium-ion is reverse ion exchange and/or weathering of sodium-bearing materials, such as shale and dolerite rather than halite dissolution. High concentration of phosphate, nitrate, and chloride in the groundwater is the main anthropogenic source that needs treatment, quality control, and management in the catchment. From the Base Exchange Index Analysis, it is possible to understand that, in the catchment, the groundwater is dominated by the meteoritic origin, although it needs further groundwater chemistry study with isotope dating analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellala%20catchment" title="Ellala catchment">Ellala catchment</a>, <a href="https://publications.waset.org/abstracts/search?q=factor" title=" factor"> factor</a>, <a href="https://publications.waset.org/abstracts/search?q=chemistry" title=" chemistry"> chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemical" title=" geochemical"> geochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a> </p> <a href="https://publications.waset.org/abstracts/178488/identifying-controlling-factors-for-the-evolution-of-shallow-groundwater-chemistry-of-ellala-catchment-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Use of Industrial Wastes for Production of Low-Cost Building Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frank%20Aneke">Frank Aneke</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20Theron"> Elizabeth Theron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bricks" title="bricks">bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=dolomite" title=" dolomite"> dolomite</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastes" title=" industrial wastes"> industrial wastes</a> </p> <a href="https://publications.waset.org/abstracts/70662/use-of-industrial-wastes-for-production-of-low-cost-building-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Integrated Geophysical Surveys for Sinkhole and Subsidence Vulnerability Assessment, in the West Rand Area of Johannesburg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramoshweu%20Melvin%20Sethobya">Ramoshweu Melvin Sethobya</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Chirenje"> Emmanuel Chirenje</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihlali%20Hobo"> Mihlali Hobo</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Sebothoma"> Simon Sebothoma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent surge in residential infrastructure development around the metropolitan areas of South Africa has necessitated conditions for thorough geotechnical assessments to be conducted prior to site developments to ensure human and infrastructure safety. This paper appraises the success in the application of multi-method geophysical techniques for the delineation of sinkhole vulnerability in a residential landscape. Geophysical techniques ERT, MASW, VES, Magnetics and gravity surveys were conducted to assist in mapping sinkhole vulnerability, using an existing sinkhole as a constraint at Venterspost town, West of Johannesburg city. A combination of different geophysical techniques and results integration from those proved to be useful in the delineation of the lithologic succession around sinkhole locality, and determining the geotechnical characteristics of each layer for its contribution to the development of sinkholes, subsidence and cavities at the vicinity of the site. Study results have also assisted in the determination of the possible depth extension of the currently existing sinkhole and the location of sites where other similar karstic features and sinkholes could form. Results of the ERT, VES and MASW surveys have uncovered dolomitic bedrock at varying depths around the sites, which exhibits high resistivity values in the range 2500-8000ohm.m and corresponding high velocities in the range 1000-2400 m/s. The dolomite layer was found to be overlain by a weathered chert-poor dolomite layer, which has resistivities between the range 250-2400ohm.m, and velocities ranging from 500-600m/s, from which the large sinkhole has been found to collapse/ cave in. A compiled 2.5D high resolution Shear Wave Velocity (Vs) map of the study area was created using 2D profiles of MASW data, offering insights into the prevailing lithological setup conducive for formation various types of karstic features around the site. 3D magnetic models of the site highlighted the regions of possible subsurface interconnections between the currently existing large sinkhole and the other subsidence feature at the site. A number of depth slices were used to detail the conditions near the sinkhole as depth increases. Gravity surveys results mapped the possible formational pathways for development of new karstic features around the site. Combination and correlation of different geophysical techniques proved useful in delineation of the site geotechnical characteristics and mapping the possible depth extend of the currently existing sinkhole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistivity" title="resistivity">resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetics" title=" magnetics"> magnetics</a>, <a href="https://publications.waset.org/abstracts/search?q=sinkhole" title=" sinkhole"> sinkhole</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=karst" title=" karst"> karst</a>, <a href="https://publications.waset.org/abstracts/search?q=delineation" title=" delineation"> delineation</a>, <a href="https://publications.waset.org/abstracts/search?q=VES" title=" VES"> VES</a> </p> <a href="https://publications.waset.org/abstracts/170792/integrated-geophysical-surveys-for-sinkhole-and-subsidence-vulnerability-assessment-in-the-west-rand-area-of-johannesburg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoheng%20Liu">Guoheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhilong%20Huang"> Zhilong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithofacies%20classification" title="lithofacies classification">lithofacies classification</a>, <a href="https://publications.waset.org/abstracts/search?q=tuffaceous%20shale" title=" tuffaceous shale"> tuffaceous shale</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20enrichment" title=" oil enrichment"> oil enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucaogou%20formation" title=" Lucaogou formation"> Lucaogou formation</a> </p> <a href="https://publications.waset.org/abstracts/79989/the-effects-of-lithofacies-on-oil-enrichment-in-lucaogou-formation-fine-grained-sedimentary-rocks-in-santanghu-basin-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Thermal, Chemical, and Mineralogical Properties of Soil Building Blocks Reinforced with Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Ammari">Abdelmalek Ammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents an experimental study to determine the effect between thermal conductivity of Compressed Earth Block Stabilized (CEBs) by cement and the mineralogical and chemical analyses of soil, all the samples of CEB in the dry state and with different content of cement, the samples made by soil stabilized by Portland Cement. The soil used collected from fez city in Morocco. That determination of the thermal conductivity of CEBs plays an important role when considering its suitability for energy saving insulation. The measurement technique used to determine thermal conductivity is called hot ring method, the thermal conductivity of the tested samples is strongly affected by the quantity of the cement added. The soil of Fez, mainly composed of calcite, quartz, and dolomite, improved the behaviour of the material by the addition of cement. The findings suggest that to manufacture lightweight samples with high thermal insulation properties, it is advisable to use clays that contain quartz. . In addition, quartz has high thermal conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20earth%20blocks" title="compressed earth blocks">compressed earth blocks</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical" title=" mineralogical"> mineralogical</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical" title=" chemical"> chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/145690/thermal-chemical-and-mineralogical-properties-of-soil-building-blocks-reinforced-with-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Stratigraghy and Identifying Boundaries of Mozduran Formation with Magnetite Method in East Kopet-Dagh Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kadivar">Z. Kadivar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vahidinia"> M. Vahidinia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavinia"> A. Mousavinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kopet-Dagh Mountain Range is located in the north and northeast of Iran. Mozduran Formation in the east of Kopet-Dagh is mainly composed of limestone, dolomite, with shale and sandstone interbedded. Mozduran Formation is reservoir rock of the Khangiran gas field. The location of the study was east Kopet-Dagh basin (Northeast Iran) where the deliberate thickness of formation is 418 meters. In the present study, a total of 57 samples were gathered. Moreover, 100 thin sections were made out of 52 samples. According to the findings of the thin section study, 18 genera and nine species of foraminifera and algae were identified. Based on the index fossils, the age of the Mozduran Formation was identified as Upper Jurassic (Kimmerdgian-Tithonian) in the east of Kopet-Dagh basin. According to the magnetite data (total intensity and RTP map), there is a disconformity (low intensity) between the Kashaf-Rood Formation and Mozduran Formation. At the top, where among Mozduran Formation and Shurijeh Formation, is high intensity and a widespread disconformity (high intensity). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upper%20jurassic" title="upper jurassic">upper jurassic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetometre" title=" magnetometre"> magnetometre</a>, <a href="https://publications.waset.org/abstracts/search?q=mozduran%20formation" title=" mozduran formation"> mozduran formation</a>, <a href="https://publications.waset.org/abstracts/search?q=stratigraphy" title=" stratigraphy"> stratigraphy</a> </p> <a href="https://publications.waset.org/abstracts/64008/stratigraghy-and-identifying-boundaries-of-mozduran-formation-with-magnetite-method-in-east-kopet-dagh-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sifan">Mohamed Sifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Brabha%20Nagaratnam"> Brabha Nagaratnam</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Thamboo"> Julian Thamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=Keerthan%20Poologanathan"> Keerthan Poologanathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost-effective" title="cost-effective">cost-effective</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20powder" title=" limestone powder"> limestone powder</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20packing%20model" title=" particle packing model"> particle packing model</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20performance%20concrete" title=" ultra high performance concrete"> ultra high performance concrete</a> </p> <a href="https://publications.waset.org/abstracts/167177/development-of-cost-effective-ultra-high-performance-concrete-by-using-locally-available-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Omar">O. M. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Abd%20Elhameed"> G. D. Abd Elhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Heniegal"> A. M. Heniegal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohamadien"> H. A. Mohamadien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=molarity" title=" molarity"> molarity</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/38420/effect-of-crashed-stone-on-properties-of-fly-ash-based-geopolymer-concrete-with-local-alkaline-activator-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> 3D Seismic Acquisition Challenges in the NW Ghadames Basin Libya, an Integrated Geophysical Sedimentological and Subsurface Studies Approach as a Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharma">S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaballa%20Aqeelah"> Gaballa Aqeelah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfig%20Alghbaili"> Tawfig Alghbaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Elmessmari"> Ali Elmessmari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There were abrupt discontinuities in the Brute Stack in the northernmost locations during the acquisition of 2D (2007) and 3D (2021) seismic data in the northwest region of the Ghadames Basin, Libya. In both campaigns, complete fluid circulation loss was seen in these regions during up-hole drilling. Geophysics, sedimentology and shallow subsurface geology were all integrated to look into what was causing the seismic signal to disappear at shallow depths. The Upper Cretaceous Nalut Formation is the near-surface or surface formation in the studied area. It is distinguished by abnormally high resistivity in all the neighboring wells. The Nalut Formation in all the nearby wells from the present study and previous outcrop study suggests lithology of dolomite and chert/flint in nodular or layered forms. There are also reports of karstic caverns, vugs, and thick cracks, which all work together to produce the high resistivity. Four up-hole samples that were analyzed for microfacies revealed a near-coastal to tidal environment. Algal (Chara) infested deposits up to 30 feet thick and monotonous, very porous, are seen in two up-hole sediments; these deposits are interpreted to be scattered, continental algal travertine mounds. Chert/flint, dolomite, and calcite in varying amounts are confirmed by XRD analysis. Regional tracking of the high resistivity of the Nalut Formation, which is thought to be connected to the sea level drop that created the paleokarst layer, is possible. It is abruptly overlain by a blanket marine transgressive deposit caused by rapid sea level rise, which is a regional, relatively high radioactive layer of argillaceous limestone. The examined area's close proximity to the mountainous, E-W trending ridges of northern Libya made it easier for recent freshwater circulation, which later enhanced cavern development and mineralization in the paleokarst layer. Seismic signal loss at shallow depth is caused by extremely heterogeneous mineralogy of pore- filling or lack thereof. Scattering effect of shallow karstic layer on seismic signal has been well documented. Higher velocity inflection points at shallower depths in the northern part and deeper intervals in the southern part, in both cases at Nalut level, demonstrate the layer's influence on the seismic signal. During the Permian-Carboniferous, the Ghadames Basin underwent uplift and extensive erosion, which resulted in this karstic layer of the Nalut Formation uplifted to a shallow depth in the northern part of the studied area weakening the acoustic signal, whereas in the southern part of the 3D acquisition area the Nalut Formation remained at the deeper interval without affecting the seismic signal. Results from actions taken during seismic processing to deal with this signal loss are visible and have improved. This study recommends using denser spacing or dynamite to circumvent the karst layer in a comparable geographic area in order to prevent signal loss at lesser depths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=well%20logging" title="well logging">well logging</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20data%20acquisition" title=" seismic data acquisition"> seismic data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=sesimic%20data%20processing" title=" sesimic data processing"> sesimic data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=up-holes" title=" up-holes"> up-holes</a> </p> <a href="https://publications.waset.org/abstracts/172457/3d-seismic-acquisition-challenges-in-the-nw-ghadames-basin-libya-an-integrated-geophysical-sedimentological-and-subsurface-studies-approach-as-a-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Mineralogy and Classification of Altered Host Rocks in the Zaghia Iron Oxide Deposit, East of Bafq, Central Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azat%20Eslamizadeh">Azat Eslamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neda%20Akbarian"> Neda Akbarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Zaghia Iron ore, in 15 km east of a town named Bafq, is located in Precambrian formation of Central Iran in form of a small local deposit. The Volcano-sedimentary rocks of Precambrian-Cambrian age, belonging to Rizu series have spread through the region. Substantial portion of the deposit is covered by alluvial deposits. The rocks hosting the Zaghia iron ore have a main combination of rhyolitic tuffs along with clastic sediments, carbonate include sandstone, limestone, dolomite, conglomerate and is somewhat metamorphed causing them to have appeared as slate and phyllite. Moreover, carbonate rocks are in existence as skarn compound of marble bearing tremolite with mineralization of magnetite-hematite. The basic igneous rocks have dramatically altered into green rocks consist of actinolite-tremolite and chlorite along with amount of iron (magnetite + Martite). The youngest units of ore-bearing rocks in the area are found as dolerite - diabase dikes. The dikes are cutting the rhyolitic tuffs and carbonate rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaghia" title="Zaghia">Zaghia</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20ore%20deposite" title=" iron ore deposite"> iron ore deposite</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=petrography%20%20Bafq" title=" petrography Bafq"> petrography Bafq</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran "> Iran </a> </p> <a href="https://publications.waset.org/abstracts/28000/mineralogy-and-classification-of-altered-host-rocks-in-the-zaghia-iron-oxide-deposit-east-of-bafq-central-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samad%20Alipour">Samad Alipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khadije%20Mosavi%20Onlaghi"> Khadije Mosavi Onlaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urmia%20Lake" title="Urmia Lake">Urmia Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=weathering" title=" weathering"> weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=augite" title=" augite"> augite</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/54597/effect-of-weathering-on-the-mineralogy-and-geochemistry-of-sediments-of-the-hyper-saline-urmia-salt-lake-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pravat%20Ranjan%20Pati">Pravat Ranjan Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Satapathy"> Alok Satapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-epoxy%20composites" title=" glass-epoxy composites"> glass-epoxy composites</a>, <a href="https://publications.waset.org/abstracts/search?q=LD%20slag" title=" LD slag"> LD slag</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization "> waste utilization </a> </p> <a href="https://publications.waset.org/abstracts/9085/processing-and-characterization-of-glass-epoxy-composites-filled-with-linz-donawitz-ld-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Heavy Metals of Natural Phosphate Ore and the Way They Affect the Various Mineralurgic Modes of Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bezzi%20Nacer">Bezzi Nacer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study focused on the qualitative and quantitative study of Trace elements contained in the natural phosphate ore of Djebel Onk layer and their behaviour to the various mineralurgic modes of treatment. The main objective is to locate the importance of these contents according to granulometry and their association with the existing mineralogical species and to define how the most appropriate treatment. The raw ore is in first submitted to a prior mechanical treatment consisting of homogenization operations, of grinding and of sifting, in order to separate it into three particle-size classes: fine <100 µm (F); medium 100-500 µm (I) and coarse > 500 µm (G), and then treated by calcination, washing and floatation. The identification of the different mineralogical phases, the chemical composition and the thermal behaviour of these samples were realized by various techniques: MEB, DRX, ATG-ATD, etc. The study of Trace elements, carried out by ICP-MS, identified thirty items, consisting mainly of rare earths and of transition metals. A close relation between trace elements and various minerals phases (apatite, dolomite and silicates), through operations of substitution. These elements are distributed between several mineralogical phases, in particular apatite (strontium, uranium, chrome, barium, cadmium) and silicates (strontium, sodium, nickel, zinc and copper). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valorization%20of%20natural%20phosphate%20ore" title="valorization of natural phosphate ore">valorization of natural phosphate ore</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20and%20quantitative%20analysis" title=" qualitative and quantitative analysis"> qualitative and quantitative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=various%20mineralurgic" title=" various mineralurgic"> various mineralurgic</a> </p> <a href="https://publications.waset.org/abstracts/60272/heavy-metals-of-natural-phosphate-ore-and-the-way-they-affect-the-various-mineralurgic-modes-of-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dolomite&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dolomite&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=dolomite&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>