CINXE.COM

Search results for: hot and humid climate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hot and humid climate</title> <meta name="description" content="Search results for: hot and humid climate"> <meta name="keywords" content="hot and humid climate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hot and humid climate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hot and humid climate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2823</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hot and humid climate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2823</span> Sustainable Traditional Architecture and Urban Planning in Hot–Humid Climate of Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Nazem">Farnaz Nazem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper concentrates on the sustainable traditional architecture and urban planning in hot-humid regions of Iran. In a vast country such as Iran with different climatic zones traditional builders have presented series of logical solutions for human comfort. The aim of this paper is to demonstrate traditional architecture in hot-humid climate of Iran as a sample of sustainable architecture. Iranian traditional architecture has been able to response to environmental problems for a long period of time. Its features are based on climatic factors, local construction materials of hot-humid regions and culture. This paper concludes that Iranian traditional architecture can be addressed as a sustainable architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot-humid%20climate" title="hot-humid climate">hot-humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20traditional%20architecture" title=" sustainable traditional architecture"> sustainable traditional architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a> </p> <a href="https://publications.waset.org/abstracts/33743/sustainable-traditional-architecture-and-urban-planning-in-hot-humid-climate-of-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">607</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2822</span> Experimental Observation on Air-Conditioning Using Radiant Chilled Ceiling in Hot Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashmin%20Aryal">Ashmin Aryal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipat%20Chaiwiwatworakul"> Pipat Chaiwiwatworakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Surapong%20Chirarattananon"> Surapong Chirarattananon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiant chilled ceiling (RCC) has been perceived to save more energy and provide better thermal comfort than the traditional air conditioning system. However, its application has been rather limited by some reasons e.g., the scarce information about the thermal characteristic in the radiant room and the local climate influence on the system performance, etc. To bridge such gap, an office-like experiment room with a RCC was constructed in the hot and humid climate of Thailand. This paper presents exemplarily results from the RCC experiments to give an insight into the thermal environment in a radiant room and the cooling load associated to maintain the room&#39;s comfort condition. It gave a demonstration of the RCC system operation for its application to achieve thermal comfort in offices in a hot humid climate, as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiant%20chilled%20ceiling" title="radiant chilled ceiling">radiant chilled ceiling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title=" cooling load"> cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20air%20unit" title=" outdoor air unit"> outdoor air unit</a> </p> <a href="https://publications.waset.org/abstracts/134085/experimental-observation-on-air-conditioning-using-radiant-chilled-ceiling-in-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2821</span> Comparison of Soils of Hungarian Dry and Humid Oak Forests Based on Changes in Nutrient Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Istv%C3%A1n%20Fekete">István Fekete</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20Berki"> Imre Berki</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81ron%20B%C3%A9ni"> Áron Béni</a>, <a href="https://publications.waset.org/abstracts/search?q=Katalin%20Juhos"> Katalin Juhos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Mak%C3%A1di"> Marianna Makádi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Kotrocz%C3%B3"> Zsolt Kotroczó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The average annual precipitation significantly influences the moisture content of the soils and, through this, the decomposition of the organic substances in the soils, the leaching of nutrients from the soils, and the pH of the soils. Climate change, together with the lengthening of the vegetation period and the increasing CO₂ level, can increase the amount of biomass that is formed. Degradation processes, which accelerate as the temperature increases and slow down due to the drying climate, and the change in the degree of leaching can cancel out or strengthen each other's effects. In the course of our research, we looked for oak forests with climate-zonal soils where the geological, geographical and ecological background conditions are as similar as possible, apart from the different annual precipitation averages and the differences that can arise from them. We examined 5 dry and 5 humid Hungarian oak soils. Climate change affects the soils of drier and wetter forests differently. The aim of our research was to compare the content of carbon, nitrogen and some other nutrients, as well as the pH of the soils of humid and dry forests. Showing the effects of the drier climate on the tested soil parameters. In the case of the examined forest soils, we found a significant difference between the soils of dry and humid forests: in the case of the annual average precipitation values (p≥ 0.0001, for dry forest soils: 564±5.2 mm; for humid forest soils: 716±3.8 mm) for pH (p= 0.0004, for dry forest soils: 5.49±0.16; for wet forest soils: 5.36±0.21); for C content (p= 0.0054, for dry forest soils: 6.92%±0.59; for humid forest soils 3.09%±0.24), for N content (p= 0.0022, dry forest in the case of soils: 0.44%±0.047; in the case of humid forest soils: 0.23%±0.013), for the K content (p=0.0017, in the case of dry forest soils: 5684±732 (mg/kg); in the case of humid forest soils 2169±196 (mg/kg)), for the Ca content (p= 0.0096, for dry forest soils: 8207±2118 (mg/kg); for wet forest soils 957±320 (mg/kg)). No significant difference was found in the case of Mg. In a wetter environment, especially if the moisture content of the soil is also optimal for the decomposing organisms during the growing season, the decomposition of organic residues accelerates, and the processes of leaching from the soil are also intensified. The different intensity of the leaching processes is also well reflected in the quantitative differences of Ca and K, and in connection with these, it is also reflected in the difference in pH values. The differences in the C and N content can be explained by differences in the intensity of the decomposition processes. In addition to warming, drying is expected in a significant part of Hungary due to climate change. Thus, the comparison of the soils of dry and humid forests allows us to predict the subsequent changes in the case of the examined parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20nutrients" title="soil nutrients">soil nutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20difference" title=" precipitation difference"> precipitation difference</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter%20decomposition" title=" organic matter decomposition"> organic matter decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/161235/comparison-of-soils-of-hungarian-dry-and-humid-oak-forests-based-on-changes-in-nutrient-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2820</span> Insight on Passive Design for Energy Efficiency in Commercial Building for Hot and Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aravind%20J.">Aravind J.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive design can be referred to a way of designing buildings that takes advantage of the prevailing climate and natural energy resources. Which will be a key to reduce the increasing energy usage in commercial buildings. Most of the small scale commercial buildings made are merely a thermal mass inbuilt with active systems to bring lively conditions. By bringing the passive design strategies for energy efficiency in commercial buildings will reduce the usage of active systems. Thus the energy usage can be controlled through analysis of daylighting and improved living conditions in the indoor spaces by using passive techniques. And comparative study on different passive design systems and conventional methods will be approached for commercial buildings in hot and humid region. Possible effects of existing risks implied with solution for those problems is also a part of the paper. The result will be carried on with the design programme to prove the workability of the strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20design" title="passive design">passive design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial%20buildings" title=" commercial buildings"> commercial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a> </p> <a href="https://publications.waset.org/abstracts/82003/insight-on-passive-design-for-energy-efficiency-in-commercial-building-for-hot-and-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2819</span> Impact of Climate Change on Water Resources in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Qadem">Abdelghani Qadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouhair%20Qadem"> Zouhair Qadem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Like the countries of the Mediterranean region, Morocco is likely to be at high risk of water scarcity due to climate change. Morocco, which is the subject of this study, is located between two climatic zones, temperate in the North tropical in the South, Morocco is distinguished by four types of climate: humid, sub-humid, semi-arid, and arid. The last decades attest to the progression of the semi-arid climate towards the North of the country. The IPCC projections, which have been made in this direction, show that there is an overall downward trend in rainfall contributions varying on average between 10% and 30% depending on the scenario selected and the region considered, they also show an upward trend in average annual temperatures. These trends will have a real impact on water resources, which will result in a drop in the volume of water resources varying between 7.6% and 40.6%. The present study aims to describe the meteorological conditions of Morocco in order to answer the problem dealing with the effect of climatic fluctuations on water resources and to assess water vulnerability in the face of climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morocco" title="morocco">morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a> </p> <a href="https://publications.waset.org/abstracts/157877/impact-of-climate-change-on-water-resources-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2818</span> Effect of Climate Change on Aridity Index in South Bihar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aayush%20Anant">Aayush Anant</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshni%20Thendiyath"> Roshni Thendiyath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aridity impacts on agriculture, as well as ecological, human health, and economic activities. In the present study, the effect of climate change on aridity index has been analysed in South Bihar for the past 30 year period by five types of aridity indices as Lang AI, De-Martonne AI, Erinc AI, Pinna combinative AI and UNEP AI. For the study of aridity index, the analysis of rainfall and temperature is significant. Rainfall was analysed for 30 year period from data of 23 gridded stations in for the period 1991-2020. The results show that rainfall pattern was decreasing with respect to previous decades for majority of stations. Trend of maximum, minimum and mean annual temperature has been observed, which shows increasing trend. Structural breakpoint was observed for mean annual temperature data series in year 2004. In period 1991-2004 mean annual temperature was 25.25 ºC, and in period 2005-2020, mean annual temperature was 25.7 ºC. Average aridity index has been calculated by all the above mentioned methods for whole 30 period. Lang AI shows that eastern part of study area is Humid type, and rest all is semi arid. De-Martonne AI also reveals that east part is humid, but rest of the study area is moist sub humid. According to Erinc AI and Pinna, combinative AI shows that whole south Bihar is dry sub humid and semi dry, respectively. UNEP AI shows most of the part as sub humid, and very small part in west is semi arid, while small part of east is humid. Temporal distribution of all the aridity indices shows a decreasing trend. This indicates a decrease in the humid areas in south Bihar for the selected time period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=aridity%20index" title=" aridity index"> aridity index</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/174900/effect-of-climate-change-on-aridity-index-in-south-bihar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monica%20Anumula">Monica Anumula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioclimatic%20design" title="bioclimatic design">bioclimatic design</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climates" title=" hot and humid climates"> hot and humid climates</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/82625/passive-retrofitting-strategies-for-windows-in-hot-and-humid-climate-vijayawada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Early Formation of Adipocere in Subtropical Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asit%20K.%20Sikary">Asit K. Sikary</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Murty"> O. P. Murty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adipocere formation is a modification of the process of putrefaction. It consists mainly of saturated fatty acids, formed by the post-mortem hydrolysis and hydrogenation of body fats with the help of bacterial enzymes in the presence of warmth, moisture and anaerobic bacteria. In temperate climate, it takes weeks to develop while in India it starts to begin within 4-5 days. In this study, we have collected cases with adipocere formation, which were from the South Delhi region (average room temperature 27-390C) and autopsied at our centre. Details of the circumstances of the death, cause and time of death, surrounding environment and demographic profile of the deceased were taken into account. Total 16 cases were included in this study. Adipocere formation was predominantly present over cheeks, shoulder, breast, flanks, buttocks, and thighs. Out of 16, 11 cases were found in a dry atmosphere, 5 cases were brought from the water. There were 5 cases in which adipocere formation was seen in less than 2 days, and among them, in 1 case, as early as one day. This study showed that adipocere formation can be seen as early as 1 day in a hot and humid environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adipocere" title="adipocere">adipocere</a>, <a href="https://publications.waset.org/abstracts/search?q=drowning" title=" drowning"> drowning</a>, <a href="https://publications.waset.org/abstracts/search?q=hanging" title=" hanging"> hanging</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20environment" title=" humid environment"> humid environment</a>, <a href="https://publications.waset.org/abstracts/search?q=strangulation" title=" strangulation"> strangulation</a>, <a href="https://publications.waset.org/abstracts/search?q=subtropical%20climate" title=" subtropical climate"> subtropical climate</a> </p> <a href="https://publications.waset.org/abstracts/27971/early-formation-of-adipocere-in-subtropical-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suraj%20Jena">Suraj Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabindra%20Kumar%20Panda"> Rabindra Kumar Panda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Groundwater%20recharge" title="Groundwater recharge">Groundwater recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20variability" title=" climate variability"> climate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=Land%20use%2Fcover" title=" Land use/cover"> Land use/cover</a>, <a href="https://publications.waset.org/abstracts/search?q=GCM" title=" GCM"> GCM</a> </p> <a href="https://publications.waset.org/abstracts/47139/effect-of-climate-change-on-groundwater-recharge-in-a-sub-humid-sub-tropical-region-of-eastern-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Yu%20%20Huang">Yi-Yu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20%20Wang"> Chien-Kuo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreerag%20%20Chota%20Veettil"> Sreerag Chota Veettil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20%20Zhang"> Hang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20%20Yike"> Hu Yike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title="thermal performance">thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=extensive%20wetland%20green%20roof" title=" extensive wetland green roof"> extensive wetland green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=Aquatic%20plant" title=" Aquatic plant"> Aquatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Winter" title=" Winter "> Winter </a>, <a href="https://publications.waset.org/abstracts/search?q=Humid%20subtropical%20climate" title=" Humid subtropical climate"> Humid subtropical climate</a> </p> <a href="https://publications.waset.org/abstracts/136841/thermal-performance-of-the-extensive-wetland-green-roofs-in-winter-in-humid-subtropical-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hankun%20Lin">Hankun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqiang%20Xiao"> Yiqiang Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaosheng%20Zhan"> Qiaosheng Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building fa&ccedil;ade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building fa&ccedil;ade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs&rsquo; effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the fa&ccedil;ade on 2<sup>nd</sup>-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the fa&ccedil;ade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=outdoor%20shading%20devices" title="outdoor shading devices">outdoor shading devices</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-humid%20area" title=" hot-humid area"> hot-humid area</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/71054/research-on-the-impact-on-building-temperature-and-ventilation-by-outdoor-shading-devices-in-hot-humid-area-through-measurement-and-simulation-on-an-office-building-in-guangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Persian Garden Design and Climate Case Studies: Shahzadeh-Mahan and Shah Garden</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raheleh%20Saifiabolhassan">Raheleh Saifiabolhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gardens symbolize human effort to bring Eden to earth and are defined as the purest pleasures and the greatest inspiration for men. According to Persian mythology, a garden called "Paris" is a magical, perfumed place populated by beautiful and angelic creatures. "Pardis" comes from the word "paridaiza," which means "walled garden." Gardening has always been a worldwide attraction due to the abundance of green space, and desert gardens are no exception. Because most historical garden designs use a similar pattern, such as Chahar-Bagh, climate effects have not been considered. The purpose of studying these general designs was to determine whether location and weather conditions are affecting them. So, two gardens were chosen for comparison: a desert (Shahzadeh-Mahan) and a humid garden (Shah) and compared their geometry, irrigation system, entrances, and pavilions. The findings of the study revealed that there are several notable differences among their architectural principles. For example, the desert garden design is introverted with transparent surfaces and a single focal point, while the moderate garden is extraverted with high complexity and multiple perspectives. In conclusion, the study recognizes the richness and significance of the Persian garden concept, which can be applied in many different contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardis" title="Pardis">Pardis</a>, <a href="https://publications.waset.org/abstracts/search?q=Chahar-bagh" title=" Chahar-bagh"> Chahar-bagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20garden" title=" Persian garden"> Persian garden</a>, <a href="https://publications.waset.org/abstracts/search?q=temperate" title=" temperate"> temperate</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20climate" title=" humid climate"> humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=pavilion" title=" pavilion"> pavilion</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigations" title=" irrigations"> irrigations</a>, <a href="https://publications.waset.org/abstracts/search?q=culture" title=" culture"> culture</a> </p> <a href="https://publications.waset.org/abstracts/138857/persian-garden-design-and-climate-case-studies-shahzadeh-mahan-and-shah-garden" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Re-Analyzing Energy-Conscious Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Pushkar">Svetlana Pushkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Verbitsky"> Oleg Verbitsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An energy-conscious design for a classroom in a hot-humid climate is reanalyzed. The hypothesis of this study is that use of photovoltaic (PV) electricity generation in building operation energy consumption will lead to re-analysis of the energy-conscious design. Therefore, the objective of this study is to reanalyze the energy-conscious design by evaluating the environmental impact of operational energy with PV electrical generation. Using the hierarchical design structure of Eco-indicator 99, the alternatives for energy-conscious variables are statistically evaluated by applying a two-stage nested (hierarchical) ANOVA. The recommendations for the preferred solutions for application of glazing types, wall insulation, roof insulation, window size, roof mass, and window shading design alternatives were changed (for example, glazing type recommendations were changed from low-emissivity glazing, green, and double- glazed windows to low-emissivity glazing only), whereas the applications for the lighting control system and infiltration are not changed. Such analysis of operational energy can be defined as environment-conscious analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=Eco-Indicator%2099" title=" Eco-Indicator 99"> Eco-Indicator 99</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-conscious%20design" title=" energy-conscious design"> energy-conscious design</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%E2%80%93humid%20climate" title=" hot–humid climate"> hot–humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a> </p> <a href="https://publications.waset.org/abstracts/79830/re-analyzing-energy-conscious-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> Energy Saving Potential of a Desiccant-Based Indirect-Direct Evaporative Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Heidari">Amirreza Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Avami"> Akram Avami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Heidari"> Ehsan Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaporative cooling systems are known as energy efficient cooling systems, with much lower electricity consumption than conventional vapor compression systems. A serious limitation of these systems, however, is that they are not applicable in humid regions. Combining a desiccant wheel with these systems, known as desiccant-based evaporative cooling systems, makes it possible to use evaporative cooling in humid climates. This paper evaluates the performane of a cooling system combining desiccant wheel, direct and indirect evaporative coolers (called desiccant-based indirect-direct evaporative cooling (DIDE) system) and then evaluates the energy saving potential of this system over the conventional vapor compression cooling and drying system. To illustrate the system ability of providing comfort conditions, a dynamic hourly simulation of this system is performed for a typical 60 m² building in Sydney, Australia. To evaluate the energy saving potential of this system, a conventional cooling and drying system is also simulated for the same cooling capacity. It has been found that the DIE system is able to provide comfort temperature and relative humidity in a subtropical humid climate like Sydney. The electricity and natural gas consumption of this system are respectively 39.2% and 2.6% lower than that of conventional system over a week. As the research has demonstrated, the innovative DIDE system is an energy efficient cooling system for subtropical humid regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desiccant" title="desiccant">desiccant</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20evaporative%20cooler" title=" indirect evaporative cooler"> indirect evaporative cooler</a> </p> <a href="https://publications.waset.org/abstracts/102350/energy-saving-potential-of-a-desiccant-based-indirect-direct-evaporative-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2809</span> Improving Comfort and Energy Mastery: Application of a Method Based on Indicators Morpho-Energetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadidja%20Rahmani">Khadidja Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahla%20Bouaziz"> Nahla Bouaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The climate change and the economic crisis, which are currently running, are the origin of the emergence of many issues and problems, which are related to the domain of energy and environment in à direct or indirect manner. Since the urban space is the core element and the key to solve the current problem, particular attention is given to it in this study. For this reason, we rented to the later a very particular attention; this is for the opportunities that it provides and that can be invested to attenuate a little this situation, which is disastrous and worried, especially in the face of the requirements of sustainable development. Indeed, the purpose of this work is to develop a method, which will allow us to guide designers towards projects with a certain degree of thermo-aeraulic comfort while requiring a minimum energy consumption. In this context, the architects, the urban planners and the engineers (energeticians) have to collaborate jointly to establish a method based on indicators for the improvement of the urban environmental quality (aeraulic-thermo comfort), correlated with a reduction in the energy demand of the entities that make up this environment, in areas with a sub-humid climate. In order to test the feasibility and to validate the method developed in this work, we carried out a series of simulations using computer-based simulation. This research allows us to evaluate the impact of the use of the indicators in the design of the urban sets, on the economic and ecological plan. Using this method, we prove that an urban design, which carefully considered energetically, can contribute significantly to the preservation of the environment and the reduction of the consumption of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comfort" title="comfort">comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20mastery" title=" energy mastery"> energy mastery</a>, <a href="https://publications.waset.org/abstracts/search?q=morpho-energetic%20indicators" title=" morpho-energetic indicators"> morpho-energetic indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-humid%20climate" title=" sub-humid climate"> sub-humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20sets" title=" urban sets"> urban sets</a> </p> <a href="https://publications.waset.org/abstracts/88143/improving-comfort-and-energy-mastery-application-of-a-method-based-on-indicators-morpho-energetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2808</span> The Potential Effect of Climate Changes on Food and Water Associated Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Alhoot">Mohammed A. Alhoot</a>, <a href="https://publications.waset.org/abstracts/search?q=Rathika%20A%2FP%20Nagarajan"> Rathika A/P Nagarajan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and variability are affecting human health and diseases direct or indirectly through many mechanisms. Change in rain pattern, an increase of temperature and humidity are showing an increased trend in Malaysia. This will affect the biological, physical and chemical component of water through different pathways and will enhance the risk of waterborne diseases. Besides, the warm temperature and humid climate provide very suitable conditions for the growth of pathogenic bacteria. This study is intended to highlight the relationship between the climate changes and the incidence food and water associated infections. Incidences of food and water associated infection and climate data were collected from Malaysian Ministry of health and Malaysian Metrological Department respectively. Maximum and minimum temperature showed high correlation with incidence of typhoid, hepatitis A, dysentery, food poisoning (P value <0.05 significant with 2 tailed / 0.5<[r]). Heavy rainfall does not associated with any outbreaks. Climate change brings out new challenges in controlling food and water associated infections. Adaptation strategies should involve all key stakeholders with a strong regional cooperation to prevent and deal with cross-boundary health crises. Moreover, the role of health care personnel at local, state and national levels is important to ensure the success of these programmes. As has been shown herein, climate variability is an important element influencing the food and water associated epidemiology in Malaysia. The results of this study are crucial to implementing climate changes as a factor to reduce any future outbreaks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=typhoid" title=" typhoid"> typhoid</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatitis%20A" title=" hepatitis A"> hepatitis A</a>, <a href="https://publications.waset.org/abstracts/search?q=dysentery" title=" dysentery"> dysentery</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20poisoning" title=" food poisoning"> food poisoning</a> </p> <a href="https://publications.waset.org/abstracts/48898/the-potential-effect-of-climate-changes-on-food-and-water-associated-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2807</span> Reduction of Cooling Demands in a Subtropical Humid Climate Zone: A Study on Roofs of Existing Residential Building Using Passive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Megha%20Jain">Megha Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Pathak"> K. K. Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In sub-tropical humid climates, it is estimated most of the urban peak load of energy consumption is used to satisfy air-conditioning or air-coolers cooling demand in summer time. As the urbanization rate in developing nation – like the case in India is rising rapidly, the pressure placed on energy resources to satisfy inhabitants’ indoor comfort requirements is consequently increasing too. This paper introduces passive cooling through roof as a means of reducing energy cooling loads for satisfying human comfort requirements in a sub-tropical climate. Experiments were performed by applying different insulators which are locally available solar reflective materials to insulate the roofs of five rooms of 4 case buildings; three rooms having RCC (Reinforced Cement Concrete) roof and two having Asbestos sheet roof of existing buildings. The results are verified by computer simulation using Computational Fluid Dynamics tools with FLUENT software. The result of using solar reflective paint with high albedo coating shows a fall of 4.8⁰C in peak hours and saves 303 kWh considering energy load with air conditioner during the summer season in comparison to non insulated flat roof energy load of residential buildings in Bhopal. An optimum solution of insulator for both types of roofs is presented. It is recommended that the selected cool roof solution be combined with insulation on other elements of envelope, to increase the indoor thermal comfort. The application is intended for low cost residential buildings in composite and warm climate like Bhopal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cool%20roof" title="cool roof">cool roof</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20loads" title=" energy loads"> energy loads</a>, <a href="https://publications.waset.org/abstracts/search?q=insulators" title=" insulators"> insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=subtropical%20climate" title=" subtropical climate"> subtropical climate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20performance" title=" thermal performance"> thermal performance</a> </p> <a href="https://publications.waset.org/abstracts/92736/reduction-of-cooling-demands-in-a-subtropical-humid-climate-zone-a-study-on-roofs-of-existing-residential-building-using-passive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2806</span> Hygrothermal Performance of Sheep Wool in Cold and Humid Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen">Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li"> Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bin%20Li"> Bin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool" title="sheep wool">sheep wool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20content" title=" water content"> water content</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20performance" title=" hygrothermal performance"> hygrothermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=mould%20growth%20risk" title=" mould growth risk"> mould growth risk</a> </p> <a href="https://publications.waset.org/abstracts/164606/hygrothermal-performance-of-sheep-wool-in-cold-and-humid-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2805</span> Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedomid%20Fatemi">Seyedomid Fatemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimum%20materials" title="optimum materials">optimum materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20walls" title=" building walls"> building walls</a>, <a href="https://publications.waset.org/abstracts/search?q=moderate%20and%20humid%20climate" title=" moderate and humid climate"> moderate and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20architecture" title=" sustainable architecture"> sustainable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP-TOPSIS%20technique" title=" AHP-TOPSIS technique"> AHP-TOPSIS technique</a> </p> <a href="https://publications.waset.org/abstracts/165462/ranking-of-optimal-materials-for-building-walls-from-the-perspective-of-cost-and-waste-of-electricity-and-gas-energy-using-ahp-topsis-1-technique-study-example-sari-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2804</span> A Conceptual Analysis of Teams’ Climate Role in the Intrapreneurial Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgia%20C.%20Kosta">Georgia C. Kosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20S.%20Nicolaidis"> Christos S. Nicolaidis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper discusses the role of teams&rsquo; climate in the intrapreneurial process. Intrapreneurship, which corresponds for entrepreneurship in existing organizations, puts special emphasis on climate as an influential factor of the intrapreneurial behavior. Although climate exists at every level and in every subgroup of the organizational structure, research focuses mainly on the study of climate that characterizes organization as a whole. However, the climate of a work team may differ radically from the organizational climate, and in fact it can be far more influential. The paper provides a conceptual analysis of organizational climate from the intrapreneurial point of view, and sheds light upon teams&rsquo; climate role in the intrapreneurial posture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship" title="entrepreneurship">entrepreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=intrapreneurship" title=" intrapreneurship"> intrapreneurship</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20climate" title=" organizational climate"> organizational climate</a>, <a href="https://publications.waset.org/abstracts/search?q=teams%E2%80%99%20climate" title=" teams’ climate"> teams’ climate</a> </p> <a href="https://publications.waset.org/abstracts/78834/a-conceptual-analysis-of-teams-climate-role-in-the-intrapreneurial-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2803</span> Influence of Litter Materials on Organs&#039; Relative Weights, Meat Quality, Breast and Footpad Dermatitis of Broiler Chickens under Hot Humid Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyegunle%20Oke">Oyegunle Oke</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Daramola"> James Daramola</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwaseun%20Iyasere"> Oluwaseun Iyasere</a>, <a href="https://publications.waset.org/abstracts/search?q=Babatunde%20Modinat"> Babatunde Modinat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood shavings are the most common materials used as litter in commercial broiler production in many areas in Nigeria. A study was conducted to determine the effects of litter materials on organ weights, meat quality, footpad, and breast dermatitis of broiler chickens under hot humid climate. One hundred and eighty broiler chicks of marshal strains were randomly assigned to three treatments of wood shavings, maize cobs and chopped Panicum maximum as litter materials replicated four (4) times with 15 birds each in a completely randomized design. Data were collected on the relative body weights, meat quality, breast and foot pad dermatitis. The result showed that birds reared on chopped Panicum maximum had higher relative weight on the liver than those reared on wood shavings and maize cobs. Spleen and bursa of Fabricius were not significantly affected by litter materials. There was no significant effect of litter materials on meat quality. The relative weight of thigh of birds reared on chopped Panicum maximum, and Maize cobs were similar but higher than those reared on Wood shavings. Fresh breast weight of birds reared on wood shavings was higher than those reared on chopped Panicum maximum and maize cobs. It was concluded that chopped Panicum maximum could serve as a replacement for wood shavings as a litter material for broiler chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickens" title="chickens">chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatitis" title=" dermatitis"> dermatitis</a>, <a href="https://publications.waset.org/abstracts/search?q=organs" title=" organs"> organs</a>, <a href="https://publications.waset.org/abstracts/search?q=litter%20materials" title=" litter materials"> litter materials</a> </p> <a href="https://publications.waset.org/abstracts/71809/influence-of-litter-materials-on-organs-relative-weights-meat-quality-breast-and-footpad-dermatitis-of-broiler-chickens-under-hot-humid-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2802</span> Resilience in the Face of Environmental Extremes through Networking and Resource Mobilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al%20Mohiuddin">Abdullah Al Mohiuddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is one of the poorest countries in the world, and ranks low on almost all measures of economic development, thus leaving the population extremely vulnerable to natural disasters and climate events. 20% of GDP come from agriculture but more than 60% of the population relies on agriculture as their main source of income making the entire economy vulnerable to climate change and natural disasters. High population density exacerbates the exposure to and effect of climate events, and increases the levels of vulnerability, as does the poor institutional development of the country. The most vulnerable sectors to climate change impacts in Bangladesh are agriculture, coastal zones, water resources, forestry, fishery, health, biomass, and energy. High temperatures, heavy rainfall, high humidity and fairly marked seasonal variations characterize the climate in Bangladesh: Mild winter, hot humid summer and humid, warm rainy monsoon. Much of the country is flooded during the summer monsoon. The Department of Environment (DOE) under the Ministry of Environment and Forestry (MoEF) is the focal point for the United Nations Framework Convention on Climate Change (UNFCCC) and coordinates climate related activities in the country. Recently, a Climate Change Cell (CCC) has been established to address several issues including adaptation to climate change. The climate change focus started with The National Environmental Management Action Plan (NEMAP) which was prepared in 1995 in order to initiate the process to address environmental and climate change issues as long-term environmental problems for Bangladesh. Bangladesh was one of the first countries to finalise a NAPA (Preparation of a National Adaptation Plan of Action) which addresses climate change issues. The NAPA was completed in 2005, and is the first official initiative for mainstreaming adaptation to national policies and actions to cope with climate change and vulnerability. The NAPA suggests a number of adaptation strategies, for example: - Providing drinking water to coastal communities to fight the enhanced salinity caused by sea level rise, - Integrating climate change in planning and design of infrastructure, - Including climate change issues in education, - Supporting adaptation of agricultural systems to new weather extremes, - Mainstreaming CCA into policies and programmes in different sectors, e.g. disaster management, water and health, - Dissemination of CCA information and awareness raising on enhanced climate disasters, especially in vulnerable communities. Bangladesh has geared up its environment conservation steps to save the world’s poorest countries from the adverse effects of global warming. Now it is turning towards green economy policies to save the degrading ecosystem. Bangladesh is a developing country and always fights against Natural Disaster. At the same time we also fight for establishing ecological environment through promoting Green Economy/Energy by Youth Networking. ANTAR is coordinating a big Youth Network in the southern part of Bangladesh where 30 Youth group involved. It can be explained as the economic development based on sustainable development which generates growth and improvement in human’s lives while significantly reducing environmental risks and ecological scarcities. Green economy in Bangladesh promotes three bottom lines – sustaining economic, environment and social well-being. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=networking" title=" networking"> networking</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilizing" title=" mobilizing"> mobilizing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource" title=" resource"> resource</a> </p> <a href="https://publications.waset.org/abstracts/55025/resilience-in-the-face-of-environmental-extremes-through-networking-and-resource-mobilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2801</span> Silviculture for Climate Change: Future Scenarios for Nigeria Forests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeez%20O.%20Ganiyu">Azeez O. Ganiyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is expected to lead to substantial changes in rainfall patterns in southwest Nigeria, and this may have substantial consequence for forest management and for conservation outcomes throughout the region. We examine three different forest types across an environmental spectrum from semi-arid to humid subtropical and consider their response to water shortages and other environmental stresses; we also explore the potential consequence for conservation and timber production by considering impacts on forest structure and limiting stand density. Analysis of a series of scenarios provides the basis for a critique of existing management practices and suggests practical alternatives to develop resilient forests with minimal diminution of production and environmental services. We specifically discuss practical silviculture interventions that are feasible at the landscape-scale, that are economically viable, and that have the potential to enhance resilience of forest stands. We also discuss incentives to encourage adoption of these approaches by private forest owners. We draw on these case studies in southwestern Nigeria to offer generic principle to assist forest researchers and managers faced with similar challenges elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a>, <a href="https://publications.waset.org/abstracts/search?q=future" title=" future"> future</a>, <a href="https://publications.waset.org/abstracts/search?q=silviculture" title=" silviculture"> silviculture</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/111257/silviculture-for-climate-change-future-scenarios-for-nigeria-forests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2800</span> Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orkan%20Ozcan">Orkan Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nebiye%20Musaoglu"> Nebiye Musaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Turkes"> Murat Turkes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystem" title="forest ecosystem">forest ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20climate" title=" Mediterranean climate"> Mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=RCP%20scenarios" title=" RCP scenarios"> RCP scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20analysis" title=" vulnerability analysis"> vulnerability analysis</a> </p> <a href="https://publications.waset.org/abstracts/63742/impacts-of-present-and-future-climate-variability-on-forest-ecosystem-in-mediterranean-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2799</span> Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thet%20Su%20Hlaing">Thet Su Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Kojima"> Shoichi Kojima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20house" title="bamboo house">bamboo house</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20indigenous%20roofing%20material" title=" local indigenous roofing material"> local indigenous roofing material</a> </p> <a href="https://publications.waset.org/abstracts/117485/influence-of-roofing-material-on-indoor-thermal-comfort-of-bamboo-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2798</span> The Effect of Climate on Noble Houses of Siraf in the Early Islamic Centuries (Case Study: House N)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohadese%20Sukhtesaraii">Mohadese Sukhtesaraii</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Esmail%20Esmaili%20Jelodar"> Mohammad Esmail Esmaili Jelodar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosar%20Sookhtesaraii"> Kosar Sookhtesaraii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Throughout history, humans have always wanted to have a shelter to live in, and this need and desire became the beginning of building and architecture. It was necessary to build a shelter and a building, dealing with the surrounding nature. The design and construction of architectural spaces are always influenced by nature, climate, and geographical location, and It is believed clearly see this influence even in the use of materials used in the construction of architectural buildings. The historical port of Siraf is located on the northern coast of the Persian Gulf in Bushehr province and 38 km from Kangan port. Geographically and climatically, Siraf is considered one of the hot and humid areas. The Zagros mountains, which continue from the Iranian plateau to the sea, end at Bandar Siraf; As a result, it creates a strip one kilometer wide by the sea. The location of Siraf in the restrictive conditions of the mountains and the sea has made it impossible to expand the city. The main goal of the current research is to investigate the climate of Siraf and the influence of the region's climate on the architecture and design of residential buildings in Siraf, known as noble houses, in the early Islamic centuries. In this research, it is looking for an answer to the question of how the climatic and geographical conditions have affected the architecture of Siraf buildings. The theoretical framework of this research can be expressed based on the influence of climate on the historical architecture of Bandar Seraf and the spatial analysis of archeology. Also, the research method will be analytical-descriptive and using field and library studies. The authors of the article believe that the architectural spaces of the early Islamic centuries of Siraf city were affected by the climate and geographical location, and the architects started building buildings by considering factors such as the sun's radiation, wind direction, and the position of the mountains and the sea. To use the regional and environmental potential for buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hose%20N" title="hose N">hose N</a>, <a href="https://publications.waset.org/abstracts/search?q=noble%20hose" title=" noble hose"> noble hose</a>, <a href="https://publications.waset.org/abstracts/search?q=islamic%20era" title=" islamic era"> islamic era</a>, <a href="https://publications.waset.org/abstracts/search?q=siraf" title=" siraf"> siraf</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a> </p> <a href="https://publications.waset.org/abstracts/174879/the-effect-of-climate-on-noble-houses-of-siraf-in-the-early-islamic-centuries-case-study-house-n" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2797</span> The Effect of Sago Supplementation on Physiology and Performance in a Hot and Humid Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Che%20Jusoh">Che Jusoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rahimi"> Mohd Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Mundel"> Toby Mundel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to investigate the physiological and performance effects of a local Malaysian native starch (Metroxylin sago) on cycling in a hot (30°C) and humid (78% RH) environment. Eight male, non-heat acclimated, well-trained club cyclists (VO2max 65 ± 10 ml kg-1 min-1, peak aerobic power 397 ± 71 W) completed one familiarization and three experimental trials in our laboratory simulating cycling in environmental conditions of heat and humidity. Each trial consisted of 45 minutes at a fixed workload (55% VO2max) followed by a 15 minute time-trial (~75% VO2max). Sago in porridge form was consumed 1h before exercise (Pre), in gel form during exercise (Dur) and compared to a control trial (Con), using a random, cross-over design. Plasma glucose concentration did not differ between trials (P = 0.06) with an increase from 4.1 ± 0.6 to 6.1 ± 1.6 mmol-1 (Con), 4.8 ± 1.7 to 5.7 ± 0.4 mmol-1 (Pre) and 4.7 ± 0.8 to 6.9 ± 1.4 mmol-1 (Dur) from start to end of exercise. Plasma lactate increased (P = 0.02) from 1.6 ± 0.3 to 7.6 ± 2.2 mmol-1 (Con), 1.7 ± 0.5 to 7.3 ± 2.9 mmol-1 (Pre) and 1.6 ± 0.2 to 7.3 ± 1.8 mmol-1 (Dur) with no effect of trial (P = 0.74). No differences were found between trials for RER (P = 0.328) with values of 0.93 ± 0.05 (Con), 0.94 ± 0.04 (Pre) and 0.92 ± 0.04 (Dur). There were no differences between trials in rectal (P = 0.64) and skin (P = 0.56) temperatures; values reaching 39.1 ± 0.5°C (Con), 38.9 ± 0.4°C (Pre) and 39.1 ± 0.4°C (Dur) for rectal and 32.7 ± 1.2°C (Con), 32.8 ± 1.4°C (Pre) and 32.8 ± 1.8°C (Dur) for skin temperature, respectively. Heart rate (P = 0.07) also did not differ between trials but reached maximal values by the end of time-trial for all trials. Performance was unaffected by trial (P = 0.98) with the average work completed in 15 minutes being 221 ± 33 kJ (Con), 222 ± 31 kJ (Pre) and 219 ± 32 kJ (Dur), respectively. Therefore, the results of this investigation do not support consumption of sago, either before or during exercise, in altering the thermoregulatory, metabolic or performance responses in a hot and humid environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid" title="hot and humid">hot and humid</a>, <a href="https://publications.waset.org/abstracts/search?q=physiology" title=" physiology"> physiology</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20trial%20performance" title=" time trial performance"> time trial performance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoregulatory" title=" thermoregulatory"> thermoregulatory</a> </p> <a href="https://publications.waset.org/abstracts/11406/the-effect-of-sago-supplementation-on-physiology-and-performance-in-a-hot-and-humid-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2796</span> Effect of Humidity on In-Process Crystallization of Lactose During Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirali%20Ebrahimi">Amirali Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20G.%20Langrish"> T. A. G. Langrish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactose" title="lactose">lactose</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=humid%20air" title=" humid air"> humid air</a> </p> <a href="https://publications.waset.org/abstracts/7244/effect-of-humidity-on-in-process-crystallization-of-lactose-during-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2795</span> CFD Modelling and Thermal Performance Analysis of Ventilated Double Skin Roof Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Idris">A. O. Idris</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Virgone"> J. Virgone</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20David"> D. David</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vergnault"> E. Vergnault</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hot countries, the major challenge is the air conditioning. The increase in energy consumption by air conditioning stems from the need to live in more comfortable buildings, which is understandable. But in Djibouti, one of the countries with the most expensive electricity in the world, this need is exacerbated by an architecture that is inappropriate and unsuitable for climatic conditions. This paper discusses the design of the roof which is the surface receiving the most solar radiation. The roof determines the general behavior of the building. The study presents Computational Fluid Dynamics (CFD) modeling and analysis of the energy performance of a double skin ventilated roof. The particularity of this study is that it considers the climate of Djibouti characterized by hot and humid conditions in winter and very hot and humid in summer. Roof simulations are carried out using the Ansys Fluent software to characterize the flow and the heat transfer induced in the ventilated roof in steady state. This modeling is carried out by comparing the influence of several parameters such as the internal emissivity of the upper surface, the thickness of the insulation of the roof and the thickness of the ventilated channel on heat gain through the roof. The energy saving potential compared to the current construction in Djibouti is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20skin%20roof" title=" double skin roof"> double skin roof</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-fluid%20analysis" title=" thermo-fluid analysis"> thermo-fluid analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a> </p> <a href="https://publications.waset.org/abstracts/76124/cfd-modelling-and-thermal-performance-analysis-of-ventilated-double-skin-roof-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2794</span> Shovadan; A Historical Heritage in the Architecture of the South West of Iran (Case Study: Dezfoul City)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Nazem">Farnaz Nazem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iranian architects had creative ways for constructing the buildings in each climate. Some of these architectural elements were made under the ground. Shovadan is one of these underground spaces in hot- humid regions in Dezfoul and Shoushtar city that had special functions and characteristics. In this paper some subjects such as the history of Shovadan, its elements and effective factors in the formation of Shovadan in Dezfool city are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=dezfoul%20city" title=" dezfoul city"> dezfoul city</a>, <a href="https://publications.waset.org/abstracts/search?q=Shovadan" title=" Shovadan"> Shovadan</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20west%20of%20Iran" title=" south west of Iran"> south west of Iran</a> </p> <a href="https://publications.waset.org/abstracts/33744/shovadan-a-historical-heritage-in-the-architecture-of-the-south-west-of-iran-case-study-dezfoul-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=95">95</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10