CINXE.COM

Search results for: Regression model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Regression model</title> <meta name="description" content="Search results for: Regression model"> <meta name="keywords" content="Regression model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Regression model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Regression model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7823</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Regression model</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7823</span> A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dursun%20Ayd%C4%B1n">Dursun Ayd谋n</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Partial%20Linear%20Regression%20Model" title="Partial Linear Regression Model">Partial Linear Regression Model</a>, <a href="https://publications.waset.org/search?q=Linear%20RegressionModel" title=" Linear RegressionModel"> Linear RegressionModel</a>, <a href="https://publications.waset.org/search?q=Residuals" title=" Residuals"> Residuals</a>, <a href="https://publications.waset.org/search?q=Deviance" title=" Deviance"> Deviance</a>, <a href="https://publications.waset.org/search?q=Smoothing%20Spline." title=" Smoothing Spline."> Smoothing Spline.</a> </p> <a href="https://publications.waset.org/9806/a-comparison-of-the-sum-of-squares-in-linear-and-partial-linear-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9806/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9806/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9806/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9806/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9806/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9806/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9806/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9806/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9806/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9806/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1872</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7822</span> Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dursun%20Ayd%C4%B1n">Dursun Ayd谋n</a>, <a href="https://publications.waset.org/search?q=Bilgin%20Senel"> Bilgin Senel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Semi-parametric%20regression" title="Semi-parametric regression">Semi-parametric regression</a>, <a href="https://publications.waset.org/search?q=Penalized%20LeastSquares" title=" Penalized LeastSquares"> Penalized LeastSquares</a>, <a href="https://publications.waset.org/search?q=Residuals" title=" Residuals"> Residuals</a>, <a href="https://publications.waset.org/search?q=Deviance" title=" Deviance"> Deviance</a>, <a href="https://publications.waset.org/search?q=Smoothing%20Spline." title=" Smoothing Spline."> Smoothing Spline.</a> </p> <a href="https://publications.waset.org/11034/relationship-between-sums-of-squares-in-linear-regression-and-semi-parametric-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11034/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11034/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11034/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11034/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11034/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11034/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11034/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11034/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11034/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11034/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1854</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7821</span> Stock Market Prediction by Regression Model with Social Moods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Masahiro%20Ohmura">Masahiro Ohmura</a>, <a href="https://publications.waset.org/search?q=Koh%20Kakusho"> Koh Kakusho</a>, <a href="https://publications.waset.org/search?q=Takeshi%20Okadome"> Takeshi Okadome</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Regression%20model" title="Regression model">Regression model</a>, <a href="https://publications.waset.org/search?q=social%20mood" title=" social mood"> social mood</a>, <a href="https://publications.waset.org/search?q=stock%20market%0D%0Aprediction" title=" stock market prediction"> stock market prediction</a>, <a href="https://publications.waset.org/search?q=Twitter." title=" Twitter."> Twitter.</a> </p> <a href="https://publications.waset.org/9999432/stock-market-prediction-by-regression-model-with-social-moods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999432/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999432/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999432/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999432/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999432/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999432/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999432/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999432/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999432/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999432/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2434</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7820</span> Model-Based Software Regression Test Suite Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shiwei%20Deng">Shiwei Deng</a>, <a href="https://publications.waset.org/search?q=Yang%20Bao"> Yang Bao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dependence%20analysis" title="Dependence analysis">Dependence analysis</a>, <a href="https://publications.waset.org/search?q=EFSM%20model" title=" EFSM model"> EFSM model</a>, <a href="https://publications.waset.org/search?q=greedy%0D%0Aalgorithm" title=" greedy algorithm"> greedy algorithm</a>, <a href="https://publications.waset.org/search?q=regression%20test." title=" regression test."> regression test.</a> </p> <a href="https://publications.waset.org/10001782/model-based-software-regression-test-suite-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001782/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001782/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001782/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001782/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001782/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001782/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001782/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001782/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001782/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001782/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1921</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7819</span> Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Suparman">Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Piecewise" title="Piecewise">Piecewise</a>, <a href="https://publications.waset.org/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/search?q=reversible%20jump%20MCMC" title=" reversible jump MCMC"> reversible jump MCMC</a>, <a href="https://publications.waset.org/search?q=segmentation." title=" segmentation."> segmentation.</a> </p> <a href="https://publications.waset.org/10004307/segmentation-of-piecewise-polynomial-regression-model-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004307/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004307/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004307/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004307/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004307/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004307/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004307/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004307/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004307/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004307/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1668</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7818</span> Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aly%20Farag">Aly Farag</a>, <a href="https://publications.waset.org/search?q=Ayman%20El-Baz"> Ayman El-Baz</a>, <a href="https://publications.waset.org/search?q=Refaat%20Mohamed"> Refaat Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Logistic%20regression%20model" title="Logistic regression model">Logistic regression model</a>, <a href="https://publications.waset.org/search?q=Expectationmaximization" title=" Expectationmaximization"> Expectationmaximization</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/10994/density-estimation-using-generalized-linear-model-and-a-linear-combination-of-gaussians" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10994/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10994/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10994/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10994/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10994/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10994/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10994/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10994/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10994/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10994/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1733</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7817</span> Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arkady%20Bolotin">Arkady Bolotin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Categorization" title="Categorization">Categorization</a>, <a href="https://publications.waset.org/search?q=Uncertain%20medical%20categories" title=" Uncertain medical categories"> Uncertain medical categories</a>, <a href="https://publications.waset.org/search?q=Binomial%20regression%20model" title=" Binomial regression model"> Binomial regression model</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20dependent%20variable" title=" Fuzzy dependent variable"> Fuzzy dependent variable</a>, <a href="https://publications.waset.org/search?q=Robustness." title=" Robustness."> Robustness.</a> </p> <a href="https://publications.waset.org/11889/fuzzy-logic-approach-to-robust-regression-models-of-uncertain-medical-categories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11889/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11889/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11889/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11889/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11889/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11889/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11889/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11889/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11889/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11889/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1559</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7816</span> A Fuzzy Linear Regression Model Based on Dissemblance Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shih-Pin%20Chen">Shih-Pin Chen</a>, <a href="https://publications.waset.org/search?q=Shih-Syuan%20You"> Shih-Syuan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dissemblance%20index" title="Dissemblance index">Dissemblance index</a>, <a href="https://publications.waset.org/search?q=fuzzy%20linear%20regression" title=" fuzzy linear regression"> fuzzy linear regression</a>, <a href="https://publications.waset.org/search?q=graded%0D%0Amean%20integration" title=" graded mean integration"> graded mean integration</a>, <a href="https://publications.waset.org/search?q=mathematical%20programming." title=" mathematical programming."> mathematical programming.</a> </p> <a href="https://publications.waset.org/10003945/a-fuzzy-linear-regression-model-based-on-dissemblance-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003945/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003945/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003945/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003945/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003945/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003945/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003945/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003945/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003945/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003945/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1442</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7815</span> Research on the Problems of Housing Prices in Qingdao from a Macro Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Liu%20Zhiyuan">Liu Zhiyuan</a>, <a href="https://publications.waset.org/search?q=Sun%20Zongdi"> Sun Zongdi</a>, <a href="https://publications.waset.org/search?q=Liu%20Zhiyuan"> Liu Zhiyuan</a>, <a href="https://publications.waset.org/search?q=Sun%20Zongdi"> Sun Zongdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Qingdao is a seaside city. Taking into account the characteristics of Qingdao, this article established a multiple linear regression model to analyze the impact of macroeconomic factors on housing prices. We used stepwise regression method to make multiple linear regression analysis, and made statistical analysis of F test values and T test values. According to the analysis results, the model is continuously optimized. Finally, this article obtained the multiple linear regression equation and the influencing factors, and the reliability of the model was verified by F test and T test.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Housing%20prices" title="Housing prices">Housing prices</a>, <a href="https://publications.waset.org/search?q=multiple%20linear%20regression%20model" title=" multiple linear regression model"> multiple linear regression model</a>, <a href="https://publications.waset.org/search?q=macroeconomic%20factors" title=" macroeconomic factors"> macroeconomic factors</a>, <a href="https://publications.waset.org/search?q=Qingdao%20City." title=" Qingdao City. "> Qingdao City. </a> </p> <a href="https://publications.waset.org/10005830/research-on-the-problems-of-housing-prices-in-qingdao-from-a-macro-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005830/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005830/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005830/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005830/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005830/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005830/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005830/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005830/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005830/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005830/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1179</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7814</span> Quality of Service Evaluation using a Combination of Fuzzy C-Means and Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Aboagela%20Dogman">Aboagela Dogman</a>, <a href="https://publications.waset.org/search?q=Reza%20Saatchi"> Reza Saatchi</a>, <a href="https://publications.waset.org/search?q=Samir%20Al-Khayatt"> Samir Al-Khayatt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a network quality of service (QoS) evaluation system was proposed. The system used a combination of fuzzy C-means (FCM) and regression model to analyse and assess the QoS in a simulated network. Network QoS parameters of multimedia applications were intelligently analysed by FCM clustering algorithm. The QoS parameters for each FCM cluster centre were then inputted to a regression model in order to quantify the overall QoS. The proposed QoS evaluation system provided valuable information about the network-s QoS patterns and based on this information, the overall network-s QoS was effectively quantified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20C-means%3B%20regression%20model" title="Fuzzy C-means; regression model">Fuzzy C-means; regression model</a>, <a href="https://publications.waset.org/search?q=network%20quality%0Aof%20service" title=" network quality of service"> network quality of service</a> </p> <a href="https://publications.waset.org/12298/quality-of-service-evaluation-using-a-combination-of-fuzzy-c-means-and-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12298/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12298/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12298/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12298/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12298/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12298/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12298/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12298/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12298/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12298/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1720</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7813</span> Zero Inflated Strict Arcsine Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Y.%20N.%20Phang">Y. N. Phang</a>, <a href="https://publications.waset.org/search?q=E.%20F.%20Loh"> E. F. Loh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Overdispersed%20count%20data" title="Overdispersed count data">Overdispersed count data</a>, <a href="https://publications.waset.org/search?q=maximum%20likelihood%0Aestimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/search?q=simulated%20annealing." title=" simulated annealing."> simulated annealing.</a> </p> <a href="https://publications.waset.org/3591/zero-inflated-strict-arcsine-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3591/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3591/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3591/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3591/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3591/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3591/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3591/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3591/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3591/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3591/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1755</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7812</span> Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20K.%20Pradhan">M. K. Pradhan</a>, <a href="https://publications.waset.org/search?q=C.%20K.%20Biswas"> C. K. Biswas</a>, <a href="https://publications.waset.org/search?q="></a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electrical%20discharge%20machining" title="Electrical discharge machining">Electrical discharge machining</a>, <a href="https://publications.waset.org/search?q=material%20removal%20rate" title=" material removal rate"> material removal rate</a>, <a href="https://publications.waset.org/search?q=neuro-fuzzy%20model" title=" neuro-fuzzy model"> neuro-fuzzy model</a>, <a href="https://publications.waset.org/search?q=regression%20model" title=" regression model"> regression model</a>, <a href="https://publications.waset.org/search?q=mountain%20clustering." title=" mountain clustering."> mountain clustering.</a> </p> <a href="https://publications.waset.org/4879/neuro-fuzzy-model-and-regression-model-a-comparison-study-of-mrr-in-electrical-discharge-machining-of-d2-tool-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4879/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4879/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4879/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4879/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4879/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4879/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4879/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4879/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4879/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4879/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1389</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7811</span> Robust Regression and its Application in Financial Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mansoor%20Momeni">Mansoor Momeni</a>, <a href="https://publications.waset.org/search?q=Mahmoud%20Dehghan%20Nayeri"> Mahmoud Dehghan Nayeri</a>, <a href="https://publications.waset.org/search?q=Ali%20Faal%20Ghayoumi"> Ali Faal Ghayoumi</a>, <a href="https://publications.waset.org/search?q=Hoda%20Ghorbani"> Hoda Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Financial%20data%20analysis" title="Financial data analysis">Financial data analysis</a>, <a href="https://publications.waset.org/search?q=Influential%20data" title=" Influential data"> Influential data</a>, <a href="https://publications.waset.org/search?q=Outliers" title=" Outliers"> Outliers</a>, <a href="https://publications.waset.org/search?q=Robust%20regression." title=" Robust regression."> Robust regression.</a> </p> <a href="https://publications.waset.org/15069/robust-regression-and-its-application-in-financial-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15069/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15069/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15069/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15069/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15069/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15069/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15069/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15069/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15069/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15069/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1932</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7810</span> A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amir%20Azizi">Amir Azizi</a>, <a href="https://publications.waset.org/search?q=Amir%20Yazid%20b.%20Ali"> Amir Yazid b. Ali</a>, <a href="https://publications.waset.org/search?q=Loh%20Wei%20Ping"> Loh Wei Ping</a>, <a href="https://publications.waset.org/search?q=Mohsen%20Mohammadzadeh"> Mohsen Mohammadzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=ARIMA" title="ARIMA">ARIMA</a>, <a href="https://publications.waset.org/search?q=multiple%20polynomial%20regression" title=" multiple polynomial regression"> multiple polynomial regression</a>, <a href="https://publications.waset.org/search?q=production%0Athroughput" title=" production throughput"> production throughput</a>, <a href="https://publications.waset.org/search?q=uncertainties" title=" uncertainties"> uncertainties</a> </p> <a href="https://publications.waset.org/7902/a-hybrid-model-of-arima-and-multiple-polynomial-regression-for-uncertainties-modeling-of-a-serial-production-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7902/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7902/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7902/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7902/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7902/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7902/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7902/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7902/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7902/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7902/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2199</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7809</span> The Relative Efficiency of Parameter Estimation in Linear Weighted Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Baoguang%20Tian">Baoguang Tian</a>, <a href="https://publications.waset.org/search?q=Nan%20Chen"> Nan Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Linear%20weighted%20regression" title="Linear weighted regression">Linear weighted regression</a>, <a href="https://publications.waset.org/search?q=Relative%20efficiency" title=" Relative efficiency"> Relative efficiency</a>, <a href="https://publications.waset.org/search?q=Mean%20matrix" title=" Mean matrix"> Mean matrix</a>, <a href="https://publications.waset.org/search?q=Trace." title=" Trace."> Trace.</a> </p> <a href="https://publications.waset.org/9999966/the-relative-efficiency-of-parameter-estimation-in-linear-weighted-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999966/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999966/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999966/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999966/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999966/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999966/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999966/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999966/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999966/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999966/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2473</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7808</span> Empirical Statistical Modeling of Rainfall Prediction over Myanmar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wint%20Thida%20Zaw">Wint Thida Zaw</a>, <a href="https://publications.waset.org/search?q=Thinn%20Thu%20Naing"> Thinn Thu Naing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Polynomial%20Regression" title="Polynomial Regression">Polynomial Regression</a>, <a href="https://publications.waset.org/search?q=Rainfall%20Forecasting" title=" Rainfall Forecasting"> Rainfall Forecasting</a>, <a href="https://publications.waset.org/search?q=Statistical%20forecasting." title="Statistical forecasting.">Statistical forecasting.</a> </p> <a href="https://publications.waset.org/15031/empirical-statistical-modeling-of-rainfall-prediction-over-myanmar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15031/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15031/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15031/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15031/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15031/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15031/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15031/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15031/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15031/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15031/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2634</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7807</span> Optimized Calculation of Hourly Price Forward Curve (HPFC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmed%20Abdolkhalig">Ahmed Abdolkhalig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Forward%20curve" title="Forward curve">Forward curve</a>, <a href="https://publications.waset.org/search?q=furrier%20series" title=" furrier series"> furrier series</a>, <a href="https://publications.waset.org/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/search?q=radial%20basic%0Afunction%20neural%20networks." title=" radial basic function neural networks."> radial basic function neural networks.</a> </p> <a href="https://publications.waset.org/3000/optimized-calculation-of-hourly-price-forward-curve-hpfc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3000/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3000/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3000/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3000/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3000/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3000/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3000/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3000/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3000/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3000/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4228</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7806</span> The Maximum Likelihood Method of Random Coefficient Dynamic Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Autcha%20Araveeporn">Autcha Araveeporn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Random Coefficient Dynamic Regression (RCDR) model is to developed from Random Coefficient Autoregressive (RCA) model and Autoregressive (AR) model. The RCDR model is considered by adding exogenous variables to RCA model. In this paper, the concept of the Maximum Likelihood (ML) method is used to estimate the parameter of RCDR(1,1) model. Simulation results have shown the AIC and BIC criterion to compare the performance of the the RCDR(1,1) model. The variables as the stationary and weakly stationary data are good estimates where the exogenous variables are weakly stationary. However, the model selection indicated that variables are nonstationarity data based on the stationary data of the exogenous variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Autoregressive" title="Autoregressive">Autoregressive</a>, <a href="https://publications.waset.org/search?q=Maximum%20Likelihood%20Method" title=" Maximum Likelihood Method"> Maximum Likelihood Method</a>, <a href="https://publications.waset.org/search?q=Nonstationarity" title=" Nonstationarity"> Nonstationarity</a>, <a href="https://publications.waset.org/search?q=Random%20Coefficient%20Dynamic%20Regression" title=" Random Coefficient Dynamic Regression"> Random Coefficient Dynamic Regression</a>, <a href="https://publications.waset.org/search?q=Stationary." title=" Stationary."> Stationary.</a> </p> <a href="https://publications.waset.org/5080/the-maximum-likelihood-method-of-random-coefficient-dynamic-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5080/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5080/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5080/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5080/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5080/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5080/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5080/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5080/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5080/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5080/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1647</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7805</span> The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Edlira%20Donefski">Edlira Donefski</a>, <a href="https://publications.waset.org/search?q=Lorenc%20Ekonomi"> Lorenc Ekonomi</a>, <a href="https://publications.waset.org/search?q=Tina%20Donefski"> Tina Donefski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables&rsquo; coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bootstrap" title="Bootstrap">Bootstrap</a>, <a href="https://publications.waset.org/search?q=Edgeworth%20approximation" title=" Edgeworth approximation"> Edgeworth approximation</a>, <a href="https://publications.waset.org/search?q=independent%20and%20Identical%20distributed" title=" independent and Identical distributed"> independent and Identical distributed</a>, <a href="https://publications.waset.org/search?q=quantile." title=" quantile."> quantile.</a> </p> <a href="https://publications.waset.org/10012050/the-profit-trend-of-cosmetics-products-using-bootstrap-edgeworth-approximation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012050/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012050/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012050/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012050/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012050/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012050/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012050/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012050/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012050/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012050/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7804</span> Computational Aspects of Regression Analysis of Interval Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Michal%20Cerny">Michal Cerny</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We consider linear regression models where both input data (the values of independent variables) and output data (the observations of the dependent variable) are interval-censored. We introduce a possibilistic generalization of the least squares estimator, so called OLS-set for the interval model. This set captures the impact of the loss of information on the OLS estimator caused by interval censoring and provides a tool for quantification of this effect. We study complexity-theoretic properties of the OLS-set. We also deal with restricted versions of the general interval linear regression model, in particular the crisp input &ndash; interval output model. We give an argument that natural descriptions of the OLS-set in the crisp input &ndash; interval output cannot be computed in polynomial time. Then we derive easily computable approximations for the OLS-set which can be used instead of the exact description. We illustrate the approach by an example.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Linear%20regression" title="Linear regression">Linear regression</a>, <a href="https://publications.waset.org/search?q=interval-censored%20data" title=" interval-censored data"> interval-censored data</a>, <a href="https://publications.waset.org/search?q=computational%20complexity." title=" computational complexity."> computational complexity.</a> </p> <a href="https://publications.waset.org/6479/computational-aspects-of-regression-analysis-of-interval-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6479/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6479/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6479/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6479/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6479/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6479/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6479/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6479/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6479/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6479/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1470</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7803</span> Internet Purchases in European Union Countries: Multiple Linear Regression Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ksenija%20Dumi%C4%8Di%C4%87">Ksenija Dumi膷i膰</a>, <a href="https://publications.waset.org/search?q=Anita%20%C4%8Ceh%20%C4%8Casni"> Anita 膶eh 膶asni</a>, <a href="https://publications.waset.org/search?q=Irena%20Pali%C4%87"> Irena Pali膰</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analyzed EU countries is positively correlated with statistically significant variable Gross Domestic Product <em>per capita </em>(GDPpc). Also, analyzed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=European%20Union" title="European Union">European Union</a>, <a href="https://publications.waset.org/search?q=Internet%20purchases" title=" Internet purchases"> Internet purchases</a>, <a href="https://publications.waset.org/search?q=multiple%20linear%20regression%20model" title=" multiple linear regression model"> multiple linear regression model</a>, <a href="https://publications.waset.org/search?q=outlier" title=" outlier"> outlier</a> </p> <a href="https://publications.waset.org/9998011/internet-purchases-in-european-union-countries-multiple-linear-regression-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998011/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998011/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998011/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998011/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998011/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998011/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998011/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998011/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998011/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998011/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2955</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7802</span> Estimating Regression Parameters in Linear Regression Model with a Censored Response Variable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jesus%20Orbe">Jesus Orbe</a>, <a href="https://publications.waset.org/search?q=Vicente%20Nunez-Anton"> Vicente Nunez-Anton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this work we study the effect of several covariates X on a censored response variable T with unknown probability distribution. In this context, most of the studies in the literature can be located in two possible general classes of regression models: models that study the effect the covariates have on the hazard function; and models that study the effect the covariates have on the censored response variable. Proposals in this paper are in the second class of models and, more specifically, on least squares based model approach. Thus, using the bootstrap estimate of the bias, we try to improve the estimation of the regression parameters by reducing their bias, for small sample sizes. Simulation results presented in the paper show that, for reasonable sample sizes and censoring levels, the bias is always smaller for the new proposals.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Censored%20response%20variable" title="Censored response variable">Censored response variable</a>, <a href="https://publications.waset.org/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/search?q=bias." title=" bias."> bias.</a> </p> <a href="https://publications.waset.org/13785/estimating-regression-parameters-in-linear-regression-model-with-a-censored-response-variable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13785/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13785/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13785/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13785/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13785/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13785/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13785/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13785/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13785/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13785/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1475</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7801</span> Defect Cause Modeling with Decision Tree and Regression Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Bak%C4%B1r">B. Bak谋r</a>, <a href="https://publications.waset.org/search?q=%C4%B0.%20Batmaz"> 陌. Batmaz</a>, <a href="https://publications.waset.org/search?q=F.%20A.%20G%C3%BCnt%C3%BCrk%C3%BCn"> F. A. G眉nt眉rk眉n</a>, <a href="https://publications.waset.org/search?q=%C4%B0.%20A.%20%C4%B0pek%C3%A7i"> 陌. A. 陌pek莽i</a>, <a href="https://publications.waset.org/search?q=G.%20K%C3%B6ksal"> G. K枚ksal</a>, <a href="https://publications.waset.org/search?q=N.%20E.%20%C3%96zdemirel"> N. E. 脰zdemirel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this study is to identify the most influential variables that cause defects on the items produced by a casting company located in Turkey. To this end, one of the items produced by the company with high defective percentage rates is selected. Two approaches-the regression analysis and decision treesare used to model the relationship between process parameters and defect types. Although logistic regression models failed, decision tree model gives meaningful results. Based on these results, it can be claimed that the decision tree approach is a promising technique for determining the most important process variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Casting%20industry" title="Casting industry">Casting industry</a>, <a href="https://publications.waset.org/search?q=decision%20tree%20algorithm%20C5.0" title=" decision tree algorithm C5.0"> decision tree algorithm C5.0</a>, <a href="https://publications.waset.org/search?q=logistic%20regression" title="logistic regression">logistic regression</a>, <a href="https://publications.waset.org/search?q=quality%20improvement." title=" quality improvement."> quality improvement.</a> </p> <a href="https://publications.waset.org/9221/defect-cause-modeling-with-decision-tree-and-regression-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9221/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9221/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9221/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9221/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9221/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9221/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9221/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9221/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9221/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9221/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2518</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7800</span> On the outlier Detection in Nonlinear Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hossein%20Riazoshams">Hossein Riazoshams</a>, <a href="https://publications.waset.org/search?q=Midi%20Habshah"> Midi Habshah</a>, <a href="https://publications.waset.org/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/search?q=Mohamad%20Bakri%20Adam"> Mohamad Bakri Adam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nonlinear%20Regression" title="Nonlinear Regression">Nonlinear Regression</a>, <a href="https://publications.waset.org/search?q=outliers" title=" outliers"> outliers</a>, <a href="https://publications.waset.org/search?q=Gradient" title=" Gradient"> Gradient</a>, <a href="https://publications.waset.org/search?q=LeastSquare" title=" LeastSquare"> LeastSquare</a>, <a href="https://publications.waset.org/search?q=M-estimate" title=" M-estimate"> M-estimate</a>, <a href="https://publications.waset.org/search?q=MM-estimate." title=" MM-estimate."> MM-estimate.</a> </p> <a href="https://publications.waset.org/9291/on-the-outlier-detection-in-nonlinear-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9291/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9291/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9291/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9291/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9291/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9291/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9291/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9291/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9291/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9291/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3179</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7799</span> Multiple Regression based Graphical Modeling for Images </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pavan%20S.">Pavan S.</a>, <a href="https://publications.waset.org/search?q=Sridhar%20G."> Sridhar G.</a>, <a href="https://publications.waset.org/search?q=Sridhar%20V."> Sridhar V.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Belief%20propagation" title="Belief propagation">Belief propagation</a>, <a href="https://publications.waset.org/search?q=Graphical%20model" title=" Graphical model"> Graphical model</a>, <a href="https://publications.waset.org/search?q=Regression" title=" Regression"> Regression</a>, <a href="https://publications.waset.org/search?q=Super%20resolution." title="Super resolution.">Super resolution.</a> </p> <a href="https://publications.waset.org/2586/multiple-regression-based-graphical-modeling-for-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2586/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2586/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2586/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2586/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2586/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2586/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2586/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2586/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2586/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2586/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1547</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7798</span> Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Benchelha">S. Benchelha</a>, <a href="https://publications.waset.org/search?q=H.%20C.%20Aoudjehane"> H. C. Aoudjehane</a>, <a href="https://publications.waset.org/search?q=M.%20Hakdaoui"> M. Hakdaoui</a>, <a href="https://publications.waset.org/search?q=R.%20El%20Hamdouni"> R. El Hamdouni</a>, <a href="https://publications.waset.org/search?q=H.%20Mansouri"> H. Mansouri</a>, <a href="https://publications.waset.org/search?q=T.%20Benchelha"> T. Benchelha</a>, <a href="https://publications.waset.org/search?q=M.%20Layelmam"> M. Layelmam</a>, <a href="https://publications.waset.org/search?q=M.%20Alaoui"> M. Alaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Landslide%20susceptibility%20mapping" title="Landslide susceptibility mapping">Landslide susceptibility mapping</a>, <a href="https://publications.waset.org/search?q=regression%20logistic" title=" regression logistic"> regression logistic</a>, <a href="https://publications.waset.org/search?q=multivariate%20adaptive%20regression%20spline" title=" multivariate adaptive regression spline"> multivariate adaptive regression spline</a>, <a href="https://publications.waset.org/search?q=Oudka" title=" Oudka"> Oudka</a>, <a href="https://publications.waset.org/search?q=Taounate" title=" Taounate"> Taounate</a>, <a href="https://publications.waset.org/search?q=Morocco." title=" Morocco."> Morocco.</a> </p> <a href="https://publications.waset.org/10010395/landslide-susceptibility-mapping-a-comparison-between-logistic-regression-and-multivariate-adaptive-regression-spline-models-in-the-municipality-of-oudka-northern-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010395/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010395/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010395/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010395/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010395/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010395/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010395/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010395/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010395/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010395/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">989</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7797</span> Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elena%20Ezhova">Elena Ezhova</a>, <a href="https://publications.waset.org/search?q=Vadim%20Mottl"> Vadim Mottl</a>, <a href="https://publications.waset.org/search?q=Olga%20Krasotkina"> Olga Krasotkina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Time%20varying%20regression" title="Time varying regression">Time varying regression</a>, <a href="https://publications.waset.org/search?q=time-volatility%20of%20regression%0Acoefficients" title=" time-volatility of regression coefficients"> time-volatility of regression coefficients</a>, <a href="https://publications.waset.org/search?q=Akaike%20Information%20Criterion%20%28AIC%29" title=" Akaike Information Criterion (AIC)"> Akaike Information Criterion (AIC)</a>, <a href="https://publications.waset.org/search?q=Kullback%20information%0Amaximization%20principle." title=" Kullback information maximization principle."> Kullback information maximization principle.</a> </p> <a href="https://publications.waset.org/3083/estimation-of-time-varying-linear-regression-with-unknown-time-volatility-via-continuous-generalization-of-the-akaike-information-criterion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3083/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3083/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3083/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3083/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3083/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3083/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3083/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3083/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3083/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3083/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1534</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7796</span> Time Series Regression with Meta-Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Monika%20Chuchro">Monika Chuchro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=Data%20analysis" title=" Data analysis"> Data analysis</a>, <a href="https://publications.waset.org/search?q=Data%20mining" title=" Data mining"> Data mining</a>, <a href="https://publications.waset.org/search?q=Predictive%20models." title=" Predictive models."> Predictive models.</a> </p> <a href="https://publications.waset.org/9996979/time-series-regression-with-meta-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996979/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996979/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996979/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996979/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996979/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996979/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996979/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996979/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996979/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996979/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996979.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1951</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7795</span> A Martingale Residual Diagnostic for Logistic Regression Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Entisar%20A.%20Elgmati">Entisar A. Elgmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Martingale model diagnostic for assessing the fit of logistic regression model to recurrent events data are studied. One way of assessing the fit is by plotting the empirical standard deviation of the standardized martingale residual processes. Here we used another diagnostic plot based on martingale residual covariance. We investigated the plot performance under several types of model misspecification. Clearly the method has correctly picked up the wrong model. Also we present a test statistic that supplement the inspection of the two diagnostic. The test statistic power agrees with what we have seen in the plots of the estimated martingale covariance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Covariance" title="Covariance">Covariance</a>, <a href="https://publications.waset.org/search?q=logistic%20model" title=" logistic model"> logistic model</a>, <a href="https://publications.waset.org/search?q=misspecification" title=" misspecification"> misspecification</a>, <a href="https://publications.waset.org/search?q=recurrent%20events." title=" recurrent events."> recurrent events.</a> </p> <a href="https://publications.waset.org/5284/a-martingale-residual-diagnostic-for-logistic-regression-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5284/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5284/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5284/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5284/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5284/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5284/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5284/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5284/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5284/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5284/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1878</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7794</span> Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=R.%20Behmanesh">R. Behmanesh</a>, <a href="https://publications.waset.org/search?q=I.%20Rahimi"> I. Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=RNN" title="RNN">RNN</a>, <a href="https://publications.waset.org/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/search?q=control%20chart." title=" control chart."> control chart.</a> </p> <a href="https://publications.waset.org/12417/using-combination-of-optimized-recurrent-neural-network-with-design-of-experiments-and-regression-for-control-chart-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12417/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12417/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12417/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12417/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12417/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12417/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12417/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12417/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12417/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12417/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1659</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=260">260</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=261">261</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Regression%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10