CINXE.COM
Present value - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Present value - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6b44802d-bb33-4246-97bc-f02fd62c7c6a","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Present_value","wgTitle":"Present value","wgCurRevisionId":1267371082,"wgRevisionId":1267371082,"wgArticleId":63218,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from March 2012","All articles needing additional references","Income","Mathematical finance"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Present_value","wgRelevantArticleId":63218,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1100466","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface", "ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.15"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Present value - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Present_value"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Present_value&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Present_value"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Present_value rootpage-Present_value skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Present+value" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Present+value" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&wmf_medium=sidebar&wmf_campaign=en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Present+value" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Present+value" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Background" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Background"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Background</span> </div> </a> <ul id="toc-Background-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interest_rates" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Interest_rates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Interest rates</span> </div> </a> <ul id="toc-Interest_rates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Calculation"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Calculation</span> </div> </a> <button aria-controls="toc-Calculation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Calculation subsection</span> </button> <ul id="toc-Calculation-sublist" class="vector-toc-list"> <li id="toc-Present_value_of_a_lump_sum" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Present_value_of_a_lump_sum"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Present value of a lump sum</span> </div> </a> <ul id="toc-Present_value_of_a_lump_sum-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Net_present_value_of_a_stream_of_cash_flows" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Net_present_value_of_a_stream_of_cash_flows"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Net present value of a stream of cash flows</span> </div> </a> <ul id="toc-Net_present_value_of_a_stream_of_cash_flows-sublist" class="vector-toc-list"> <li id="toc-Present_value_of_an_annuity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Present_value_of_an_annuity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.1</span> <span>Present value of an annuity</span> </div> </a> <ul id="toc-Present_value_of_an_annuity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-An_approximation_for_annuity_and_loan_calculations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#An_approximation_for_annuity_and_loan_calculations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.2</span> <span>An approximation for annuity and loan calculations</span> </div> </a> <ul id="toc-An_approximation_for_annuity_and_loan_calculations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Present_value_of_a_perpetuity" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Present_value_of_a_perpetuity"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.3</span> <span>Present value of a perpetuity</span> </div> </a> <ul id="toc-Present_value_of_a_perpetuity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-PV_of_a_bond" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#PV_of_a_bond"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.4</span> <span>PV of a bond</span> </div> </a> <ul id="toc-PV_of_a_bond-sublist" class="vector-toc-list"> <li id="toc-Technical_details" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Technical_details"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2.4.1</span> <span>Technical details</span> </div> </a> <ul id="toc-Technical_details-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Variants/approaches" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Variants/approaches"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Variants/approaches</span> </div> </a> <ul id="toc-Variants/approaches-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Choice_of_interest_rate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Choice_of_interest_rate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Choice of interest rate</span> </div> </a> <ul id="toc-Choice_of_interest_rate-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Present_value_method_of_valuation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Present_value_method_of_valuation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Present value method of valuation</span> </div> </a> <ul id="toc-Present_value_method_of_valuation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Years'_purchase" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Years'_purchase"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Years' purchase</span> </div> </a> <ul id="toc-Years'_purchase-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Present value</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 20 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-20" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">20 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%82%D9%8A%D9%85%D8%A9_%D8%AD%D8%A7%D9%84%D9%8A%D8%A9" title="قيمة حالية – Arabic" lang="ar" hreflang="ar" data-title="قيمة حالية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Vahid_m%C9%99bl%C9%99%C4%9Fin_cari_d%C9%99y%C9%99ri" title="Vahid məbləğin cari dəyəri – Azerbaijani" lang="az" hreflang="az" data-title="Vahid məbləğin cari dəyəri" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D0%BE%D0%BD%D1%82%D0%B8%D1%80%D0%B0%D0%BD%D0%B0_%D1%81%D1%82%D0%BE%D0%B9%D0%BD%D0%BE%D1%81%D1%82" title="Дисконтирана стойност – Bulgarian" lang="bg" hreflang="bg" data-title="Дисконтирана стойност" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Barwert" title="Barwert – German" lang="de" hreflang="de" data-title="Barwert" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A0%CE%B1%CF%81%CE%BF%CF%8D%CF%83%CE%B1_%CE%B1%CE%BE%CE%AF%CE%B1" title="Παρούσα αξία – Greek" lang="el" hreflang="el" data-title="Παρούσα αξία" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Balio_eguneratu" title="Balio eguneratu – Basque" lang="eu" hreflang="eu" data-title="Balio eguneratu" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B1%D8%B2%D8%B4_%DA%A9%D9%86%D9%88%D9%86%DB%8C" title="ارزش کنونی – Persian" lang="fa" hreflang="fa" data-title="ارزش کنونی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Valeur_actuelle" title="Valeur actuelle – French" lang="fr" hreflang="fr" data-title="Valeur actuelle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%98%84%EC%9E%AC%EA%B0%80%EC%B9%98" title="현재가치 – Korean" lang="ko" hreflang="ko" data-title="현재가치" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B5%E0%A4%B0%E0%A5%8D%E0%A4%A4%E0%A4%AE%E0%A4%BE%E0%A4%A8_%E0%A4%AE%E0%A5%82%E0%A4%B2%E0%A5%8D%E0%A4%AF" title="वर्तमान मूल्य – Hindi" lang="hi" hreflang="hi" data-title="वर्तमान मूल्य" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Valore_attuale" title="Valore attuale – Italian" lang="it" hreflang="it" data-title="Valore attuale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A2%D7%A8%D7%9A_%D7%A0%D7%95%D7%9B%D7%97%D7%99" title="ערך נוכחי – Hebrew" lang="he" hreflang="he" data-title="ערך נוכחי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Jelen%C3%A9rt%C3%A9k" title="Jelenérték – Hungarian" lang="hu" hreflang="hu" data-title="Jelenérték" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Contante_waarde" title="Contante waarde – Dutch" lang="nl" hreflang="nl" data-title="Contante waarde" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%8F%BE%E5%9C%A8%E4%BE%A1%E5%80%A4" title="現在価値 – Japanese" lang="ja" hreflang="ja" data-title="現在価値" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/N%C3%A5verdi" title="Nåverdi – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Nåverdi" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BA%D0%BE%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D0%BE%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C" title="Дисконтированная стоимость – Russian" lang="ru" hreflang="ru" data-title="Дисконтированная стоимость" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A1%E0%B8%B9%E0%B8%A5%E0%B8%84%E0%B9%88%E0%B8%B2%E0%B8%9B%E0%B8%B1%E0%B8%88%E0%B8%88%E0%B8%B8%E0%B8%9A%E0%B8%B1%E0%B8%99" title="มูลค่าปัจจุบัน – Thai" lang="th" hreflang="th" data-title="มูลค่าปัจจุบัน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%B8%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B0_%D0%B2%D0%B0%D1%80%D1%82%D1%96%D1%81%D1%82%D1%8C" title="Приведена вартість – Ukrainian" lang="uk" hreflang="uk" data-title="Приведена вартість" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%8F%BE%E5%80%BC" title="現值 – Chinese" lang="zh" hreflang="zh" data-title="現值" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1100466#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Present_value" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Present_value" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Present_value"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Present_value&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Present_value&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Present_value"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Present_value&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Present_value&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Present_value" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Present_value" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Present_value&oldid=1267371082" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Present_value&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Present_value&id=1267371082&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPresent_value"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPresent_value"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Present_value&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Present_value&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1100466" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Economic concept</div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Present_value" title="Special:EditPage/Present value">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Present+value%22">"Present value"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Present+value%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Present+value%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Present+value%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Present+value%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Present+value%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">March 2012</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Economics" title="Economics">economics</a> and <a href="/wiki/Finance" title="Finance">finance</a>, <b>present value</b> (<b>PV</b>), also known as <b>present discounted value</b>(<b>PDV</b>), is the value of an expected income stream determined as of the date of valuation. The present value is usually less than the future value because money has <a href="/wiki/Interest" title="Interest">interest</a>-earning potential, a characteristic referred to as the <a href="/wiki/Time_value_of_money" title="Time value of money">time value of money</a>, except during times of negative interest rates, when the present value will be equal or more than the future value.<sup id="cite_ref-Moyer_1-0" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Time value can be described with the simplified phrase, "A dollar today is worth more than a dollar tomorrow". Here, 'worth more' means that its value is greater than tomorrow. A dollar today is worth more than a dollar tomorrow because the dollar can be invested and earn a day's worth of interest, making the total accumulate to a value more than a dollar by tomorrow. Interest can be compared to <a href="/wiki/Renting" title="Renting">rent</a>.<sup id="cite_ref-Broverman_2-0" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Just as rent is paid to a landlord by a tenant without the ownership of the asset being transferred, interest is paid to a lender by a borrower who gains access to the money for a time before paying it back. By letting the borrower have access to the money, the lender has sacrificed the exchange value of this money, and is compensated for it in the form of interest. The initial amount of borrowed funds (the present value) is less than the total amount of money paid to the lender. </p><p>Present value calculations, and similarly <a href="/wiki/Future_value" title="Future value">future value</a> calculations, are used to value <a href="/wiki/Loans" class="mw-redirect" title="Loans">loans</a>, <a href="/wiki/Mortgages" class="mw-redirect" title="Mortgages">mortgages</a>, <a href="/wiki/Annuity_(finance_theory)" class="mw-redirect" title="Annuity (finance theory)">annuities</a>, <a href="/wiki/Sinking_fund" title="Sinking fund">sinking funds</a>, <a href="/wiki/Perpetuities" class="mw-redirect" title="Perpetuities">perpetuities</a>, <a href="/wiki/Bond_(finance)" title="Bond (finance)">bonds</a>, and more. These calculations are used to make comparisons between cash flows that don’t occur at simultaneous times,<sup id="cite_ref-Moyer_1-1" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> since time and dates must be consistent in order to make comparisons between values. When deciding between projects in which to invest, the choice can be made by comparing respective present values of such projects by means of discounting the expected income streams at the corresponding project interest rate, or <a href="/wiki/Rate_of_return" title="Rate of return">rate of return</a>. The project with the highest present value, i.e. that is most valuable today, should be chosen. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Background">Background</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=1" title="Edit section: Background"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If offered a choice between $100 today or $100 in one year, and there is a positive real interest rate throughout the year, a rational person will choose $100 today. This is described by economists as <a href="/wiki/Time_preference" title="Time preference">time preference</a>. Time preference can be measured by auctioning off a risk free security—like a US Treasury bill. If a $100 note with a zero coupon, payable in one year, sells for $80 now, then $80 is the present value of the note that will be worth $100 a year from now. This is because money can be put in a bank account or any other (safe) investment that will return interest in the future. </p><p>An investor who has some money has two options: to spend it right now or to save it. But the financial compensation for saving it (and not spending it) is that the money value will accrue through the <a href="/wiki/Compound_interest" title="Compound interest">compound interest</a> that he or she will receive from a borrower (the bank account in which he has the money deposited). </p><p>Therefore, to evaluate the real value of an amount of money today after a given period of time, economic agents compound the amount of money at a given (interest) rate. Most <a href="/wiki/Actuarial_science" title="Actuarial science">actuarial</a> calculations use the <a href="/wiki/Risk-free_interest_rate" class="mw-redirect" title="Risk-free interest rate">risk-free interest rate</a> which corresponds to the minimum guaranteed rate provided by a bank's saving account for example, assuming no risk of default by the bank to return the money to the account holder on time. To compare the change in purchasing power, the <a href="/wiki/Real_interest_rate" title="Real interest rate">real interest rate</a> (<a href="/wiki/Nominal_interest_rate" title="Nominal interest rate">nominal interest rate</a> minus <a href="/wiki/Inflation" title="Inflation">inflation</a> rate) should be used. </p><p>The operation of evaluating a present value into the <a href="/wiki/Future_value" title="Future value">future value</a> is called a capitalization (how much will $100 today be worth in 5 years?). The reverse operation—evaluating the present value of a future amount of money—is called a discounting (how much will $100 received in 5 years—at a lottery for example—be worth today?). </p><p>It follows that if one has to choose between receiving $100 today and $100 in one year, the rational decision is to choose the $100 today. If the money is to be received in one year and assuming the savings account interest rate is 5%, the person has to be offered at least $105 in one year so that the two options are equivalent (either receiving $100 today or receiving $105 in one year). This is because if $100 is deposited in a savings account, the value will be $105 after one year, again assuming no risk of losing the initial amount through bank default. </p> <div class="mw-heading mw-heading2"><h2 id="Interest_rates">Interest rates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=2" title="Edit section: Interest rates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Interest is the additional amount of money gained between the beginning and the end of a time period. Interest represents the <a href="/wiki/Time_value_of_money" title="Time value of money">time value of money</a>, and can be thought of as rent that is required of a borrower in order to use money from a lender.<sup id="cite_ref-Broverman_2-1" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Ross_3-0" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> For example, when an individual takes out a bank loan, the individual is charged interest. Alternatively, when an individual deposits money into a bank, the money earns interest. In this case, the bank is the borrower of the funds and is responsible for crediting interest to the account holder. Similarly, when an individual invests in a company (through <a href="/wiki/Corporate_bond" title="Corporate bond">corporate bonds</a>, or through <a href="/wiki/Stock" title="Stock">stock</a>), the company is borrowing funds, and must pay interest to the individual (in the form of coupon payments, <a href="/wiki/Dividend" title="Dividend">dividends</a>, or stock price appreciation).<sup id="cite_ref-Moyer_1-2" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The interest rate is the change, expressed as a percentage, in the amount of money during one compounding period. A compounding period is the length of time that must transpire before interest is credited, or added to the total.<sup id="cite_ref-Broverman_2-2" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> For example, interest that is compounded annually is credited once a year, and the compounding period is one year. Interest that is compounded quarterly is credited four times a year, and the compounding period is three months. A compounding period can be any length of time, but some common periods are annually, semiannually, quarterly, monthly, daily, and even continuously. </p><p>There are several types and terms associated with <a href="/wiki/Interest" title="Interest">interest</a> rates: </p> <ul><li><a href="/wiki/Compound_interest" title="Compound interest">Compound interest</a>, interest that increases exponentially over subsequent periods,</li> <li><a href="/wiki/Simple_interest" class="mw-redirect" title="Simple interest">Simple interest</a>, additive interest that does not increase</li> <li><a href="/wiki/Effective_interest_rate" title="Effective interest rate">Effective interest rate</a>, the effective equivalent compared to multiple compound interest periods</li> <li><a href="/wiki/Nominal_annual_interest" class="mw-redirect" title="Nominal annual interest">Nominal annual interest</a>, the simple annual interest rate of multiple interest periods</li> <li><a href="/wiki/Discount_window" title="Discount window">Discount rate</a>, an inverse interest rate when performing calculations in reverse</li> <li><a href="/wiki/Continuously_compounded_interest" class="mw-redirect" title="Continuously compounded interest">Continuously compounded interest</a>, the <a href="/wiki/Mathematical_limit" class="mw-redirect" title="Mathematical limit">mathematical limit</a> of an interest rate with a period of zero time.</li> <li><a href="/wiki/Real_interest_rate" title="Real interest rate">Real interest rate</a>, which accounts for inflation.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Calculation">Calculation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=3" title="Edit section: Calculation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The operation of evaluating a present sum of money some time in the future is called a capitalization (how much will 100 today be worth in five years?). The reverse operation—evaluating the present value of a future amount of money—is called discounting (how much will 100 received in five years be worth today?).<sup id="cite_ref-Ross_3-1" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Spreadsheets commonly offer functions to compute present value. In Microsoft Excel, there are present value functions for single payments - "=NPV(...)", and series of equal, periodic payments - "=PV(...)". Programs will calculate present value flexibly for any cash flow and interest rate, or for a schedule of different interest rates at different times. </p> <div class="mw-heading mw-heading3"><h3 id="Present_value_of_a_lump_sum">Present value of a lump sum</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=4" title="Edit section: Present value of a lump sum"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The most commonly applied model of present valuation uses <a href="/wiki/Compound_interest" title="Compound interest">compound interest</a>. The standard formula is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV={\frac {C}{(1+i)^{n}}}\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV={\frac {C}{(1+i)^{n}}}\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/819ceb93d458fe973cb5a75d7b4d887f76cf6145" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:15.687ex; height:6.176ex;" alt="{\displaystyle PV={\frac {C}{(1+i)^{n}}}\,}"></span></dd></dl> <p>Where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163a8873285c2bf583c476bc5d2a1f7c3b3ecd17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.541ex; height:2.176ex;" alt="{\displaystyle \,C\,}"></span> is the future amount of money that must be discounted, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span> is the number of compounding periods between the present date and the date where the sum is worth <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163a8873285c2bf583c476bc5d2a1f7c3b3ecd17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.541ex; height:2.176ex;" alt="{\displaystyle \,C\,}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dfa34ed54903418203bfcbb8b9b292d4572c8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.577ex; height:2.176ex;" alt="{\displaystyle \,i\,}"></span> is the interest rate for one compounding period (the end of a compounding period is when interest is applied, for example, annually, semiannually, quarterly, monthly, daily). The interest rate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dfa34ed54903418203bfcbb8b9b292d4572c8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.577ex; height:2.176ex;" alt="{\displaystyle \,i\,}"></span>, is given as a percentage, but expressed as a decimal in this formula. </p><p>Often, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{n}=\,(1+i)^{-n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{n}=\,(1+i)^{-n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b325bd4392504f0e60dd9c665e8d945f69125c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.943ex; height:3.009ex;" alt="{\displaystyle v^{n}=\,(1+i)^{-n}}"></span> is referred to as the Present Value Factor <sup id="cite_ref-Broverman_2-3" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p><p>This is also found from the <a href="/wiki/Future_value#Compound_interest" title="Future value">formula for the future value</a> with negative time. </p><p>For example, if you are to receive $1000 in five years, and the effective annual interest rate during this period is 10% (or 0.10), then the present value of this amount is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV={\frac {\$1000}{(1+0.10)^{5}}}=\$620.92\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">$<!-- $ --></mi> <mn>1000</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>0.10</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>620.92</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV={\frac {\$1000}{(1+0.10)^{5}}}=\$620.92\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bbb40a4888fbf6e94e84fba784955c2684f7c86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.575ex; height:6.176ex;" alt="{\displaystyle PV={\frac {\$1000}{(1+0.10)^{5}}}=\$620.92\,}"></span></dd></dl> <p>The interpretation is that for an effective annual interest rate of 10%, an individual would be indifferent to receiving $1000 in five years, or $620.92 today.<sup id="cite_ref-Moyer_1-3" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Purchasing_power" title="Purchasing power">purchasing power</a> in today's money of an amount <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163a8873285c2bf583c476bc5d2a1f7c3b3ecd17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.541ex; height:2.176ex;" alt="{\displaystyle \,C\,}"></span> of money, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span> years into the future, can be computed with the same formula, where in this case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dfa34ed54903418203bfcbb8b9b292d4572c8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.577ex; height:2.176ex;" alt="{\displaystyle \,i\,}"></span> is an assumed future <a href="/wiki/Inflation_rate" class="mw-redirect" title="Inflation rate">inflation rate</a>. </p><p>If we are using lower discount rate(<i>i</i> ), then it allows the present values in the discount future to have higher values. </p> <div class="mw-heading mw-heading3"><h3 id="Net_present_value_of_a_stream_of_cash_flows">Net present value of a stream of cash flows</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=5" title="Edit section: Net present value of a stream of cash flows"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A cash flow is an amount of money that is either paid out or received, differentiated by a negative or positive sign, at the end of a period. Conventionally, cash flows that are received are denoted with a positive sign (total cash has increased) and cash flows that are paid out are denoted with a negative sign (total cash has decreased). The cash flow for a period represents the net change in money of that period.<sup id="cite_ref-Ross_3-2" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> Calculating the net present value, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,NPV\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>N</mi> <mi>P</mi> <mi>V</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,NPV\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a84e1ab00ce3f24156d5a87349f2ad3ab4dd659" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.37ex; height:2.176ex;" alt="{\displaystyle \,NPV\,}"></span>, of a stream of cash flows consists of discounting each cash flow to the present, using the present value factor and the appropriate number of compounding periods, and combining these values.<sup id="cite_ref-Moyer_1-4" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>For example, if a stream of cash flows consists of +$100 at the end of period one, -$50 at the end of period two, and +$35 at the end of period three, and the interest rate per compounding period is 5% (0.05) then the present value of these three Cash Flows are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV_{1}={\frac {\$100}{(1.05)^{1}}}=\$95.24\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">$<!-- $ --></mi> <mn>100</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>95.24</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV_{1}={\frac {\$100}{(1.05)^{1}}}=\$95.24\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ecd1e43e83886a6c84d57c4668d21fee957a894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.032ex; height:6.176ex;" alt="{\displaystyle PV_{1}={\frac {\$100}{(1.05)^{1}}}=\$95.24\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV_{2}={\frac {-\$50}{(1.05)^{2}}}=-\$45.35\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>50</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>45.35</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV_{2}={\frac {-\$50}{(1.05)^{2}}}=-\$45.35\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bff833c09d79a5d44faf1349b5c2860003b803ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.84ex; height:6.176ex;" alt="{\displaystyle PV_{2}={\frac {-\$50}{(1.05)^{2}}}=-\$45.35\,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV_{3}={\frac {\$35}{(1.05)^{3}}}=\$30.23\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">$<!-- $ --></mi> <mn>35</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>30.23</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV_{3}={\frac {\$35}{(1.05)^{3}}}=\$30.23\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4ae61434ddfa463867d30d2f1b00920ca54f2ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.032ex; height:6.176ex;" alt="{\displaystyle PV_{3}={\frac {\$35}{(1.05)^{3}}}=\$30.23\,}"></span> respectively</dd></dl> <p>Thus the net present value would be: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle NPV=PV_{1}+PV_{2}+PV_{3}={\frac {100}{(1.05)^{1}}}+{\frac {-50}{(1.05)^{2}}}+{\frac {35}{(1.05)^{3}}}=95.24-45.35+30.23=80.12,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>100</mn> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mn>50</mn> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>35</mn> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>95.24</mn> <mo>−<!-- − --></mo> <mn>45.35</mn> <mo>+</mo> <mn>30.23</mn> <mo>=</mo> <mn>80.12</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle NPV=PV_{1}+PV_{2}+PV_{3}={\frac {100}{(1.05)^{1}}}+{\frac {-50}{(1.05)^{2}}}+{\frac {35}{(1.05)^{3}}}=95.24-45.35+30.23=80.12,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ead044820d8c8672a988dc776f8c4df99f887b6d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:92.832ex; height:6.009ex;" alt="{\displaystyle NPV=PV_{1}+PV_{2}+PV_{3}={\frac {100}{(1.05)^{1}}}+{\frac {-50}{(1.05)^{2}}}+{\frac {35}{(1.05)^{3}}}=95.24-45.35+30.23=80.12,}"></span></dd></dl> <p>There are a few considerations to be made. </p> <ul><li>The periods might not be consecutive. If this is the case, the exponents will change to reflect the appropriate number of periods</li> <li>The interest rates per period might not be the same. The cash flow must be discounted using the interest rate for the appropriate period: if the interest rate changes, the sum must be discounted to the period where the change occurs using the second interest rate, then discounted back to the present using the first interest rate.<sup id="cite_ref-Broverman_2-4" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> For example, if the cash flow for period one is $100, and $200 for period two, and the interest rate for the first period is 5%, and 10% for the second, then the net present value would be:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle NPV=100\,(1.05)^{-1}+200\,(1.10)^{-1}\,(1.05)^{-1}={\frac {100}{(1.05)^{1}}}+{\frac {200}{(1.10)^{1}(1.05)^{1}}}=\$95.24+\$173.16=\$268.40}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mn>100</mn> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mn>200</mn> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1.10</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>100</mn> <mrow> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>200</mn> <mrow> <mo stretchy="false">(</mo> <mn>1.10</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1.05</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>95.24</mn> <mo>+</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>173.16</mn> <mo>=</mo> <mi mathvariant="normal">$<!-- $ --></mi> <mn>268.40</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle NPV=100\,(1.05)^{-1}+200\,(1.10)^{-1}\,(1.05)^{-1}={\frac {100}{(1.05)^{1}}}+{\frac {200}{(1.10)^{1}(1.05)^{1}}}=\$95.24+\$173.16=\$268.40}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/294a6ea2695bc9e4eb500b74b88a9a61734ed6fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:103.844ex; height:6.009ex;" alt="{\displaystyle NPV=100\,(1.05)^{-1}+200\,(1.10)^{-1}\,(1.05)^{-1}={\frac {100}{(1.05)^{1}}}+{\frac {200}{(1.10)^{1}(1.05)^{1}}}=\$95.24+\$173.16=\$268.40}"></span></dd></dl> <ul><li>The interest rate must necessarily coincide with the payment period. If not, either the payment period or the interest rate must be modified. For example, if the interest rate given is the effective annual interest rate, but cash flows are received (and/or paid) quarterly, the interest rate per quarter must be computed. This can be done by converting effective annual interest rate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dfa34ed54903418203bfcbb8b9b292d4572c8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.577ex; height:2.176ex;" alt="{\displaystyle \,i\,}"></span>, to nominal annual interest rate compounded quarterly:</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+i)=\left(1+{\frac {i^{4}}{4}}\right)^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>4</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+i)=\left(1+{\frac {i^{4}}{4}}\right)^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fef73ee24338b658ee394d05cc4078c31139d78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.884ex; height:6.843ex;" alt="{\displaystyle (1+i)=\left(1+{\frac {i^{4}}{4}}\right)^{4}}"></span><sup id="cite_ref-Broverman_2-5" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd></dl> <p>Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a90eb8e58919af648c6f053ba36053f842d394b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.857ex; height:2.676ex;" alt="{\displaystyle i^{4}}"></span> is the nominal annual interest rate, compounded quarterly, and the interest rate per quarter is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {i^{4}}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {i^{4}}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/064db3f2275d3e2b7e1fbca04d25aeac13bb1263" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.693ex; height:5.676ex;" alt="{\displaystyle {\frac {i^{4}}{4}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Present_value_of_an_annuity">Present value of an annuity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=6" title="Edit section: Present value of an annuity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Annuity#Valuation" title="Annuity">Annuity § Valuation</a></div> <p>Many financial arrangements (including bonds, other loans, leases, salaries, membership dues, annuities including annuity-immediate and annuity-due, straight-line depreciation charges) stipulate structured payment schedules; payments of the same amount at regular time intervals. Such an arrangement is called an <a href="/wiki/Annuity" title="Annuity">annuity</a>. The expressions for the present value of such payments are <a href="/wiki/Summation" title="Summation">summations</a> of <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a>. </p><p>There are two types of annuities: an annuity-immediate and annuity-due. For an annuity immediate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span> payments are received (or paid) at the end of each period, at times 1 through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span>, while for an annuity due, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span> payments are received (or paid) at the beginning of each period, at times 0 through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n-1\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n-1\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/126730022f3ef45a5d266d05bb3ea9b22b158b60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.172ex; height:2.343ex;" alt="{\displaystyle \,n-1\,}"></span>.<sup id="cite_ref-Ross_3-3" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> This subtle difference must be accounted for when calculating the present value. </p><p>An annuity due is an annuity immediate with one more interest-earning period. Thus, the two present values differ by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9d2bfc42b817305b63a47f9d107143c60d5e8dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.615ex; height:2.843ex;" alt="{\displaystyle (1+i)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV_{\text{annuity due}}=PV_{\text{annuity immediate}}(1+i)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>annuity due</mtext> </mrow> </msub> <mo>=</mo> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>annuity immediate</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV_{\text{annuity due}}=PV_{\text{annuity immediate}}(1+i)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/795cc01c821a318c11408447221dc0e76f84c7b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-right: -0.387ex; width:39.031ex; height:3.009ex;" alt="{\displaystyle PV_{\text{annuity due}}=PV_{\text{annuity immediate}}(1+i)\,\!}"></span><sup id="cite_ref-Broverman_2-6" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd></dl> <p>The present value of an annuity immediate is the value at time 0 of the stream of cash flows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV=\sum _{k=1}^{n}{\frac {C}{(1+i)^{k}}}=C\left[{\frac {1-(1+i)^{-n}}{i}}\right],\qquad (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>C</mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mrow> <mi>i</mi> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV=\sum _{k=1}^{n}{\frac {C}{(1+i)^{k}}}=C\left[{\frac {1-(1+i)^{-n}}{i}}\right],\qquad (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a066ae37c39918d2d70ded42d528b3fdd4d62f56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:49.608ex; height:6.843ex;" alt="{\displaystyle PV=\sum _{k=1}^{n}{\frac {C}{(1+i)^{k}}}=C\left[{\frac {1-(1+i)^{-n}}{i}}\right],\qquad (1)}"></span></dd></dl> <p>where: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,n\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>n</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,n\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02eddd77b7db39f9b6b421a243dd9fc15832874b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.169ex; height:1.676ex;" alt="{\displaystyle \,n\,}"></span> = number of periods,</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,C\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>C</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,C\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/163a8873285c2bf583c476bc5d2a1f7c3b3ecd17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.541ex; height:2.176ex;" alt="{\displaystyle \,C\,}"></span> = amount of cash flows,</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,i\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,i\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dfa34ed54903418203bfcbb8b9b292d4572c8fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.577ex; height:2.176ex;" alt="{\displaystyle \,i\,}"></span> = effective periodic interest rate or rate of return.</dd></dl> <div class="mw-heading mw-heading4"><h4 id="An_approximation_for_annuity_and_loan_calculations">An approximation for annuity and loan calculations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=7" title="Edit section: An approximation for annuity and loan calculations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The above formula (1) for annuity immediate calculations offers little insight for the average user and requires the use of some form of computing machinery. There is an approximation which is less intimidating, easier to compute and offers some insight for the non-specialist. It is given by <sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\approx PV\left({\frac {1}{n}}+{\frac {2}{3}}i\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>≈<!-- ≈ --></mo> <mi>P</mi> <mi>V</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> </mrow> <mi>i</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\approx PV\left({\frac {1}{n}}+{\frac {2}{3}}i\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef55cb61a94701cee969e8a1bc28071f6488434a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.078ex; height:6.176ex;" alt="{\displaystyle C\approx PV\left({\frac {1}{n}}+{\frac {2}{3}}i\right)}"></span></dd></dl></dd></dl> <p>Where, as above, C is annuity payment, PV is principal, n is number of payments, starting at end of first period, and i is interest rate per period. Equivalently C is the periodic loan repayment for a loan of PV extending over n periods at interest rate, i. The formula is valid (for positive n, i) for ni≤3. For completeness, for ni≥3 the approximation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C\approx PVi}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>≈<!-- ≈ --></mo> <mi>P</mi> <mi>V</mi> <mi>i</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C\approx PVi}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8c803c00d6ef9b88665bba3cd31a6ddf7f4809e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.2ex; height:2.176ex;" alt="{\displaystyle C\approx PVi}"></span>. </p><p>The formula can, under some circumstances, reduce the calculation to one of mental arithmetic alone. For example, what are the (approximate) loan repayments for a loan of PV = $10,000 repaid annually for n = ten years at 15% interest (i = 0.15)? The applicable approximate formula is C ≈ 10,000*(1/10 + (2/3) 0.15) = 10,000*(0.1+0.1) = 10,000*0.2 = $2000 pa by mental arithmetic alone. The true answer is $1993, very close. </p><p>The overall approximation is accurate to within ±6% (for all n≥1) for interest rates 0≤i≤0.20 and within ±10% for interest rates 0.20≤i≤0.40. It is, however, intended only for "rough" calculations. </p> <div class="mw-heading mw-heading4"><h4 id="Present_value_of_a_perpetuity">Present value of a perpetuity</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=8" title="Edit section: Present value of a perpetuity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Perpetuity" title="Perpetuity">perpetuity</a> refers to periodic payments, receivable indefinitely, although few such instruments exist. The present value of a perpetuity can be calculated by taking the limit of the above formula as <i>n</i> approaches infinity. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV\,=\,{\frac {C}{i}}.\qquad (2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mspace width="thinmathspace" /> <mo>=</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mi>i</mi> </mfrac> </mrow> <mo>.</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV\,=\,{\frac {C}{i}}.\qquad (2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32f14a1db535814b94e4c1f0e86fa34387ddcb17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.659ex; height:5.343ex;" alt="{\displaystyle PV\,=\,{\frac {C}{i}}.\qquad (2)}"></span></dd></dl> <p>Formula (2) can also be found by subtracting from (1) the present value of a perpetuity delayed n periods, or directly by summing the present value of the payments </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV=\sum _{k=1}^{\infty }{\frac {C}{(1+i)^{k}}}={\frac {C}{i}},\qquad i>0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>C</mi> <mi>i</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>i</mi> <mo>></mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV=\sum _{k=1}^{\infty }{\frac {C}{(1+i)^{k}}}={\frac {C}{i}},\qquad i>0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32cffdd41609c26d42609f2917ccec3c84759f93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:36.003ex; height:6.843ex;" alt="{\displaystyle PV=\sum _{k=1}^{\infty }{\frac {C}{(1+i)^{k}}}={\frac {C}{i}},\qquad i>0,}"></span></dd></dl> <p>which form a <a href="/wiki/Geometric_series" title="Geometric series">geometric series</a>. </p><p>Again there is a distinction between a perpetuity immediate – when payments received at the end of the period – and a perpetuity due – payment received at the beginning of a period. And similarly to annuity calculations, a perpetuity due and a perpetuity immediate differ by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+i)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+i)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9d2bfc42b817305b63a47f9d107143c60d5e8dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.615ex; height:2.843ex;" alt="{\displaystyle (1+i)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV_{\text{perpetuity due}}=PV_{\text{perpetuity immediate}}(1+i)\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>perpetuity due</mtext> </mrow> </msub> <mo>=</mo> <mi>P</mi> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>perpetuity immediate</mtext> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV_{\text{perpetuity due}}=PV_{\text{perpetuity immediate}}(1+i)\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cb9d04dc53f9e073d54e745727db461ad24eee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; margin-right: -0.387ex; width:42.876ex; height:3.009ex;" alt="{\displaystyle PV_{\text{perpetuity due}}=PV_{\text{perpetuity immediate}}(1+i)\,\!}"></span><sup id="cite_ref-Broverman_2-7" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></dd></dl> <div class="mw-heading mw-heading4"><h4 id="PV_of_a_bond">PV of a bond</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=9" title="Edit section: PV of a bond"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>See: <a href="/wiki/Bond_valuation#Present_value_approach" title="Bond valuation">Bond valuation#Present value approach</a></i></dd></dl> <p>A corporation issues a <a href="/wiki/Bond_(finance)" title="Bond (finance)">bond</a>, an interest earning debt security, to an investor to raise funds.<sup id="cite_ref-Ross_3-4" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> The bond has a face value, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span>, coupon rate, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span>, and maturity date which in turn yields the number of periods until the debt matures and must be repaid. A bondholder will receive coupon payments semiannually (unless otherwise specified) in the amount of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Fr}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Fr}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee418eba0739c49e861e127d14d63c54d1dab50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.789ex; height:2.176ex;" alt="{\displaystyle Fr}"></span>, until the bond matures, at which point the bondholder will receive the final coupon payment and the face value of a bond, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(1+r)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(1+r)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cf082c61a34fe5de811e7796807639035e240d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.602ex; height:2.843ex;" alt="{\displaystyle F(1+r)}"></span>. </p><p>The present value of a bond is the purchase price.<sup id="cite_ref-Broverman_2-8" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> The purchase price can be computed as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle PV=\left[\sum _{k=1}^{n}Fr(1+i)^{-k}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mi>V</mi> <mo>=</mo> <mrow> <mo>[</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>F</mi> <mi>r</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle PV=\left[\sum _{k=1}^{n}Fr(1+i)^{-k}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ded6592018770a0310beed7f91db0372ad6426b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.855ex; height:7.509ex;" alt="{\displaystyle PV=\left[\sum _{k=1}^{n}Fr(1+i)^{-k}\right]}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +F(1+i)^{-n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +F(1+i)^{-n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/230d5de36d28a7cf580606d386b8d7199d2ef35a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.661ex; height:3.009ex;" alt="{\displaystyle +F(1+i)^{-n}}"></span></dd></dl> <p>The purchase price is equal to the bond's face value if the coupon rate is equal to the current interest rate of the market, and in this case, the bond is said to be sold 'at par'. If the coupon rate is less than the market interest rate, the purchase price will be less than the bond's face value, and the bond is said to have been sold 'at a discount', or below par. Finally, if the coupon rate is greater than the market interest rate, the purchase price will be greater than the bond's face value, and the bond is said to have been sold 'at a premium', or above par.<sup id="cite_ref-Ross_3-5" class="reference"><a href="#cite_note-Ross-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading5"><h5 id="Technical_details">Technical details</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=10" title="Edit section: Technical details"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Present value is <a href="/wiki/Additive_inverse" title="Additive inverse">additive</a>. The present value of a bundle of <a href="/wiki/Cash_flow" title="Cash flow">cash flows</a> is the sum of each one's present value. See <a href="/wiki/Time_value_of_money" title="Time value of money">time value of money</a> for further discussion. These calculations must be applied carefully, as there are underlying assumptions: </p> <ul><li>That it is not necessary to account for price <a href="/wiki/Inflation" title="Inflation">inflation</a>, or alternatively, that the cost of inflation is incorporated into the interest rate; see <a href="/wiki/Inflation-indexed_bond" title="Inflation-indexed bond">Inflation-indexed bond</a>.</li> <li>That the likelihood of receiving the payments is high — or, alternatively, that the <a href="/wiki/Default_risk" class="mw-redirect" title="Default risk">default risk</a> is incorporated into the interest rate; see <a href="/wiki/Corporate_bond#Risk_analysis" title="Corporate bond">Corporate bond#Risk analysis</a>.</li></ul> <p>(In fact, the present value of a cashflow at a constant interest rate is mathematically one point in the <a href="/wiki/Laplace_transform" title="Laplace transform">Laplace transform</a> of that cashflow, evaluated with the transform variable (usually denoted "s") equal to the interest rate. The full Laplace transform is the curve of all present values, plotted as a function of interest rate. For discrete time, where payments are separated by large time periods, the transform reduces to a sum, but when payments are ongoing on an almost continual basis, the <a href="/wiki/Compound_interest#Continuous_compounding" title="Compound interest">mathematics of continuous functions</a> can be used as an approximation.) </p> <div class="mw-heading mw-heading3"><h3 id="Variants/approaches"><span id="Variants.2Fapproaches"></span>Variants/approaches</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=11" title="Edit section: Variants/approaches"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are mainly two flavors of Present Value. Whenever there will be uncertainties in both timing and amount of the cash flows, the expected present value approach will often be the appropriate technique. With Present Value under uncertainty, future dividends are replaced by their conditional expectation. </p> <ul><li><b>Traditional Present Value Approach</b> – in this approach a single set of estimated cash flows and a single interest rate (commensurate with the risk, typically a weighted average of cost components) will be used to estimate the fair value.</li> <li><b>Expected Present Value Approach</b> – in this approach multiple cash flows scenarios with different/expected probabilities and a credit-adjusted risk free rate are used to estimate the fair value.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Choice_of_interest_rate">Choice of interest rate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=12" title="Edit section: Choice of interest rate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The interest rate used is the <a href="/wiki/Risk-free_interest_rate" class="mw-redirect" title="Risk-free interest rate">risk-free interest rate</a> if there are no risks involved in the project. The rate of return from the project must equal or exceed this rate of return or it would be better to invest the capital in these risk free assets. If there are risks involved in an investment this can be reflected through the use of a <a href="/wiki/Risk_premium" title="Risk premium">risk premium</a>. The risk premium required can be found by comparing the project with the rate of return required from other projects with similar risks. Thus it is possible for investors to take account of any uncertainty involved in various investments. </p> <div class="mw-heading mw-heading2"><h2 id="Present_value_method_of_valuation">Present value method of valuation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=13" title="Edit section: Present value method of valuation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An investor, the lender of money, must decide the financial project in which to invest their money, and present value offers one method of deciding.<sup id="cite_ref-Moyer_1-5" class="reference"><a href="#cite_note-Moyer-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> A financial project requires an initial outlay of money, such as the price of stock or the price of a corporate bond. The project claims to return the initial outlay, as well as some surplus (for example, interest, or future cash flows). An investor can decide which project to invest in by calculating each projects’ present value (using the same interest rate for each calculation) and then comparing them. The project with the smallest present value – the least initial outlay – will be chosen because it offers the same return as the other projects for the least amount of money.<sup id="cite_ref-Broverman_2-9" class="reference"><a href="#cite_note-Broverman-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Years'_purchase"><span id="Years.27_purchase"></span>Years' purchase</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=14" title="Edit section: Years' purchase"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The traditional method of valuing future income streams as a present capital sum is to multiply the average expected annual cash-flow by a multiple, known as "years' purchase". For example, in selling to a third party a property leased to a tenant under a 99-year lease at a rent of $10,000 per annum, a deal might be struck at "20 years' purchase", which would value the lease at 20 * $10,000, i.e. $200,000. This equates to a present value discounted in perpetuity at 5%. For a riskier investment the purchaser would demand to pay a lower number of years' purchase. This was the method used for example by the English crown in setting re-sale prices for manors seized at the <a href="/wiki/Dissolution_of_the_Monasteries" class="mw-redirect" title="Dissolution of the Monasteries">Dissolution of the Monasteries</a> in the early 16th century. The standard usage was 20 years' purchase.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Capital_budgeting" title="Capital budgeting">Capital budgeting</a></li> <li><a href="/wiki/Current_yield" title="Current yield">Current yield</a></li> <li><a href="/wiki/Lifetime_value" class="mw-redirect" title="Lifetime value">Lifetime value</a></li> <li><a href="/wiki/Liquidation" title="Liquidation">Liquidation</a></li> <li><a href="/wiki/Net_present_value" title="Net present value">Net present value</a></li> <li><a href="/wiki/Present_value_interest_factor" title="Present value interest factor">Present value interest factor</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Moyer-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Moyer_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Moyer_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Moyer_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Moyer_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Moyer_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Moyer_1-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMoyerWilliam_KretlowJames_McGuigan2011" class="citation book cs1">Moyer, Charles; William Kretlow; James McGuigan (2011). <i>Contemporary Financial Management</i> (12 ed.). Winsted: South-Western Publishing Co. pp. <span class="nowrap">147–</span>498. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780538479172" title="Special:BookSources/9780538479172"><bdi>9780538479172</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Contemporary+Financial+Management&rft.place=Winsted&rft.pages=%3Cspan+class%3D%22nowrap%22%3E147-%3C%2Fspan%3E498&rft.edition=12&rft.pub=South-Western+Publishing+Co&rft.date=2011&rft.isbn=9780538479172&rft.aulast=Moyer&rft.aufirst=Charles&rft.au=William+Kretlow&rft.au=James+McGuigan&rfr_id=info%3Asid%2Fen.wikipedia.org%3APresent+value" class="Z3988"></span></span> </li> <li id="cite_note-Broverman-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Broverman_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Broverman_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Broverman_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Broverman_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Broverman_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Broverman_2-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Broverman_2-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Broverman_2-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Broverman_2-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Broverman_2-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBroverman2010" class="citation book cs1">Broverman, Samuel (2010). <i>Mathematics of Investment and Credit</i>. Winsted: ACTEX Publishers. pp. <span class="nowrap">4–</span>229. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781566987677" title="Special:BookSources/9781566987677"><bdi>9781566987677</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+of+Investment+and+Credit&rft.place=Winsted&rft.pages=%3Cspan+class%3D%22nowrap%22%3E4-%3C%2Fspan%3E229&rft.pub=ACTEX+Publishers&rft.date=2010&rft.isbn=9781566987677&rft.aulast=Broverman&rft.aufirst=Samuel&rfr_id=info%3Asid%2Fen.wikipedia.org%3APresent+value" class="Z3988"></span></span> </li> <li id="cite_note-Ross-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ross_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ross_3-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Ross_3-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Ross_3-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Ross_3-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Ross_3-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRossRandolph_W._WesterfieldBradford_D._Jordan2010" class="citation book cs1">Ross, Stephen; Randolph W. Westerfield; Bradford D. Jordan (2010). <i>Fundamentals of Corporate Finance</i> (9 ed.). New York: McGraw-Hill. pp. <span class="nowrap">145–</span>287. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780077246129" title="Special:BookSources/9780077246129"><bdi>9780077246129</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Fundamentals+of+Corporate+Finance&rft.place=New+York&rft.pages=%3Cspan+class%3D%22nowrap%22%3E145-%3C%2Fspan%3E287&rft.edition=9&rft.pub=McGraw-Hill&rft.date=2010&rft.isbn=9780077246129&rft.aulast=Ross&rft.aufirst=Stephen&rft.au=Randolph+W.+Westerfield&rft.au=Bradford+D.+Jordan&rfr_id=info%3Asid%2Fen.wikipedia.org%3APresent+value" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Swingler, D. N., (2014), "A Rule of Thumb approximation for time value of money calculations", <i>Journal of Personal Finance</i>, Vol. 13, Issue 2, pp.57-61</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Youings, Joyce, "Devon Monastic Lands: Calendar of Particulars for Grants 1536–1558", Devon & Cornwall Record Society, <i>New Series</i>, Vol.1, 1955</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Present_value&action=edit&section=17" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHenderson2008" class="citation encyclopaedia cs1"><a href="/wiki/David_R._Henderson" title="David R. Henderson">Henderson, David R.</a> (2008). <a rel="nofollow" class="external text" href="http://www.econlib.org/library/Enc/PresentValue.html">"Present Value"</a>. <i><a href="/wiki/Concise_Encyclopedia_of_Economics" class="mw-redirect" title="Concise Encyclopedia of Economics">Concise Encyclopedia of Economics</a></i> (2nd ed.). Indianapolis: <a href="/wiki/Library_of_Economics_and_Liberty" class="mw-redirect" title="Library of Economics and Liberty">Library of Economics and Liberty</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0865976658" title="Special:BookSources/978-0865976658"><bdi>978-0865976658</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/237794267">237794267</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Present+Value&rft.btitle=Concise+Encyclopedia+of+Economics&rft.place=Indianapolis&rft.edition=2nd&rft.pub=Library+of+Economics+and+Liberty&rft.date=2008&rft_id=info%3Aoclcnum%2F237794267&rft.isbn=978-0865976658&rft.aulast=Henderson&rft.aufirst=David+R.&rft_id=http%3A%2F%2Fwww.econlib.org%2Flibrary%2FEnc%2FPresentValue.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3APresent+value" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐6c4b4c4bd6‐ml78g Cached time: 20250210045414 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.365 seconds Real time usage: 0.621 seconds Preprocessor visited node count: 974/1000000 Post‐expand include size: 17768/2097152 bytes Template argument size: 360/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 22532/5000000 bytes Lua time usage: 0.196/10.000 seconds Lua memory usage: 4623276/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 440.771 1 -total 33.64% 148.261 1 Template:Reflist 31.65% 139.508 1 Template:More_citations_needed 30.57% 134.755 1 Template:Ambox 29.32% 129.228 3 Template:Cite_book 24.85% 109.544 1 Template:Short_description 14.12% 62.257 2 Template:Pagetype 11.92% 52.524 1 Template:Find_sources_mainspace 7.32% 32.254 3 Template:Main_other 6.71% 29.596 1 Template:SDcat --> <!-- Saved in parser cache with key enwiki:pcache:63218:|#|:idhash:canonical and timestamp 20250210045414 and revision id 1267371082. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&type=1x1&usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Present_value&oldid=1267371082">https://en.wikipedia.org/w/index.php?title=Present_value&oldid=1267371082</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Income" title="Category:Income">Income</a></li><li><a href="/wiki/Category:Mathematical_finance" title="Category:Mathematical finance">Mathematical finance</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_March_2012" title="Category:Articles needing additional references from March 2012">Articles needing additional references from March 2012</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 4 January 2025, at 20:57<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Present_value&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Present value</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>20 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-ff47b69b6-kx597","wgBackendResponseTime":106,"wgPageParseReport":{"limitreport":{"cputime":"0.365","walltime":"0.621","ppvisitednodes":{"value":974,"limit":1000000},"postexpandincludesize":{"value":17768,"limit":2097152},"templateargumentsize":{"value":360,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":22532,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 440.771 1 -total"," 33.64% 148.261 1 Template:Reflist"," 31.65% 139.508 1 Template:More_citations_needed"," 30.57% 134.755 1 Template:Ambox"," 29.32% 129.228 3 Template:Cite_book"," 24.85% 109.544 1 Template:Short_description"," 14.12% 62.257 2 Template:Pagetype"," 11.92% 52.524 1 Template:Find_sources_mainspace"," 7.32% 32.254 3 Template:Main_other"," 6.71% 29.596 1 Template:SDcat"]},"scribunto":{"limitreport-timeusage":{"value":"0.196","limit":"10.000"},"limitreport-memusage":{"value":4623276,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-6c4b4c4bd6-ml78g","timestamp":"20250210045414","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Present value","url":"https:\/\/en.wikipedia.org\/wiki\/Present_value","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1100466","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1100466","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-07-21T16:01:56Z","dateModified":"2025-01-04T20:57:59Z","headline":"economic concept denoting value of an expected income stream determined as of the date of valuation"}</script> </body> </html>