CINXE.COM

Search results for: Bifidobacteria fermented milk

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bifidobacteria fermented milk</title> <meta name="description" content="Search results for: Bifidobacteria fermented milk"> <meta name="keywords" content="Bifidobacteria fermented milk"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bifidobacteria fermented milk" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bifidobacteria fermented milk"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 653</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bifidobacteria fermented milk</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Possibilities of Using Chia Seeds in Fermented Beverages Made from Mare’s and Cow’s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mahmoud">Nancy Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Teichert"> Joanna Teichert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, fermented milk containing probiotic microorganisms is fundamental to human health. The changes in the properties of fermented milk during storage influence the quality and consumer acceptability. This study aimed to evaluate the effect of 1.5 % of chia seeds on the chemical, physical and sensory properties of fermented cow’s and mare’s milk for two weeks at 4°C. The results showed that the pH of cow’s milk drops significantly at the 2nd hour, but mare's milk drops significantly at the 6th hour. The acidity of both types of milk increased as the storage time progressed. Adding chia seeds increased firmness significantly and improved color and consistency. A decrease in brightness (L*), an increase in redness (a*), and yellowness (b*) during storage were observed. Our study showed that the chia seeds have more effect on reducing the brightness of fermented mare milk than fermented cow milk. Analysis of taste and smell parameters showed that after adding chia seeds, the scores changed and became much higher. The sour taste of fermented milk had reduced this positively affected the acceptance of the product. Chia seeds induced beneficial effects on sensory outcomes and enhanced physiochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mare%20milk" title="mare milk">mare milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=feremnted%20milk" title=" feremnted milk"> feremnted milk</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=koumiss" title=" koumiss"> koumiss</a> </p> <a href="https://publications.waset.org/abstracts/163677/possibilities-of-using-chia-seeds-in-fermented-beverages-made-from-mares-and-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">652</span> The Effect of Double Fortification of Iron and Zinc of Synbiotic Fermented Milk on Growth of Rat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endri%20Yuliati">Endri Yuliati</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Helmyati"> Siti Helmyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Yoga%20Hendarta"> Narendra Yoga Hendarta</a>, <a href="https://publications.waset.org/abstracts/search?q=Moh.%20Darussalam"> Moh. Darussalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Maharani%20Jibbriella"> Maharani Jibbriella</a>, <a href="https://publications.waset.org/abstracts/search?q=Fauziah%20Oktavira%20Hayati%20Fakhruddin"> Fauziah Oktavira Hayati Fakhruddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Hanin"> Faisal Hanin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Both of iron and zinc has vital role in growth. The prebiotics fermentation by probiotics lower the acidity of intestine thus increase mineral absorption. Objective: To know the effect of double fortification of synbiotic fermented milk on growth. Methods: An Indonesian local isolate, Lactobacillus plantarum Dad-13 and Fructo-oligosaccharides (FOS) were used in making synbiotic fermented milk. It, then was double fortified with 100 ppm Fe and 50 ppm Zn. A total of 15 Wistar rats were divided into 3 groups and given: synbiotic fermented milk (CO), synbiotic fermented milk with NaFeEDTA and Zn acetate (NZ) and synbiotic fermented milk with Fe gluconate and Zn acetate (FZ) every day for one month. Body weight and body length were measured before, every week and after intervention. Results: Body weight and body length were similar at baseline among three groups (p > 0.05). All groups showed similar growth after intervention, from 62,40 + 6,1 to 109,0 + 9,0; 62,0 + 7,9 to 110,3 + 14,2; and 64,40 + 4,7 to 115,1 + 7,7 g for CO, NZ, and FZ, respectively (p > 0.05). The body length after intervention was also similar (p > 0.05). Conclusion: Fortification of iron and zinc did not modify effect of synbiotic fermented milk on growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a> </p> <a href="https://publications.waset.org/abstracts/17436/the-effect-of-double-fortification-of-iron-and-zinc-of-synbiotic-fermented-milk-on-growth-of-rat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">651</span> Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Zahran">Ahmed Zahran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria%20physiological%20properties" title="bifidobacteria physiological properties">bifidobacteria physiological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk" title=" soy milk"> soy milk</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=attachment%20epithelial%20cells" title=" attachment epithelial cells"> attachment epithelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20tissues" title=" columnar tissues"> columnar tissues</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic%20food" title=" probiotic food"> probiotic food</a> </p> <a href="https://publications.waset.org/abstracts/168851/growth-and-some-physiological-properties-of-three-selected-species-of-bifidobacteria-in-admixture-of-soy-milk-and-goat-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">650</span> Bifidobacterium lactis Fermented Milk Was Not Effective to Eradication of Helicobacter Pylori Infection: A Prospective, Randomized, Double-Blind, Controlled Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Barbuti">R. C. Barbuti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Oliveira"> M. N. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Perina"> N. P. Perina</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Haro"> C. Haro</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bosch"> P. Bosch</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Bogsan"> C. S. Bogsan</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20N.%20Eisig"> J. N. Eisig</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Navarro-Rodriguez"> T. Navarro-Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The management of Helicobacter pylori (H. pylori) eradication is still a matter of discussion, full effectiveness is rarely achieved and it has many adverse effects. Probiotics are believed to have a role in eradicating and possibly preventing H. pylori infection as an adjunctive treatment. The present clinical study was undertaken to see the efficacy of a specially designed fermented milk product containing Bifidobacterium lactis B420 on the eradication of H. pylori infection in a prospective, randomized, double-blind, controlled study in humans. Method: Four test products were specially designed fermented milks, counts of viable cells in all products were 1010 Log CFU. 100 mL-1 for Bifidobacterium lactis-Bifidobacterium species 420, and 1011 Log CFU. 100 mL-1 for Streptococcus thermophiles were administered to subjects infected with H. pylori with a previous diagnosis of functional dyspepsia according to the Rome III criteria in a prospective, randomized, double-blind, placebo-controlled study in humans. Results: After FM supplementation, not all subjects showed a reduction in H. pylori colonization. Conclusion: Bifidobacterium lactis B420, administered twice a day for 90 days did not show an increase in H. pylori eradication effectiveness in Brazilian patients with functional dyspepsia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20therapy" title="antibacterial therapy">antibacterial therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk" title=" Bifidobacteria fermented milk"> Bifidobacteria fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Helicobacter%20pylori" title=" Helicobacter pylori"> Helicobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics "> probiotics </a> </p> <a href="https://publications.waset.org/abstracts/19963/bifidobacterium-lactis-fermented-milk-was-not-effective-to-eradication-of-helicobacter-pylori-infection-a-prospective-randomized-double-blind-controlled-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">649</span> Formulation Assay Of An Aloe Vera-based Oral Gel And Its Effect On Probiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serier%20Bouchenak%20NORA">Serier Bouchenak NORA</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouguerni%20ABDELMADJID"> Bouguerni ABDELMADJID</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algeria is a Mediterranean country which provides an ideal habitat for a wide range of species of medicinal plants. The objective of this current work is to extract the gel contained in the leaves of Aloe vera in order to formulate an oral gel as a prebiotic and see its effects on probiotics (lactic and pseudo lactic bacteria and bifido bacterium). Aloe vera polysaccharid extract is a matrix mainly composed of non-digestible oligosaccharids or slow-fermentation polysaccharids, as this produces a lower pH. The behavior of Aloe vera during in vitro fermentation of the colon was similar to that of lactulose, indicating the possibility of using Aloe vera and its polysaccharids extracts as a prebiotic. The microbiological control of the two kinds of bacteria (bifidobacteria and staphylococci) has demonstrated the gel capacity to stimulate them by these bioactive compounds. The generation time of Bifidobacteria in fermented milk with added prebiotic Aloe vera gel is 80.408 min with a µ growth rate equal to 0.012 min -1. The doubling time is 61.459 min with a growth rate µ equal to 0.016 min -1 for the Streptococcus sp. species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aloe%20vera" title="aloe vera">aloe vera</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotics" title=" prebiotics"> prebiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20rate" title=" growth rate"> growth rate</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria" title=" bifidobacteria"> bifidobacteria</a> </p> <a href="https://publications.waset.org/abstracts/167757/formulation-assay-of-an-aloe-vera-based-oral-gel-and-its-effect-on-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">648</span> Effect of Iron Fortification on the Antibacterial Activity of Synbiotic Fermented Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Helmyati">Siti Helmyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Euis%20Nurdiyawati"> Euis Nurdiyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Susilo"> Joko Susilo</a>, <a href="https://publications.waset.org/abstracts/search?q=Endri%20Yuliati"> Endri Yuliati</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Fadhilatun%20Nashriyah"> Siti Fadhilatun Nashriyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurnia%20Widyastuti"> Kurnia Widyastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Iron fortification is one of the most effective and sustainable strategies to overcome anemia. It contradictively, has negative effect on gut microbiota balance. Pathogenic bacteria required iron for their growth. The iron source have greatly affect iron absorption in the intestine. Probiotic can inhibit the growth of pathogen. Lactobacillus plantarum Dad 13, Indonesian local isolate provides many benefits for health while fructo-oligosaccharides (FOS) provides selective substrates for probiotics’ growth. Objective: To determine the effect of iron fortification (NaFeEDTA and FeSO4) on antibacterial activity of synbiotic fermented milk. Methods: The antibacterial activity test was performed using the disc diffusion method. Paper discs were soaked in three kinds of synbiotic fermented milk, which are: 1) fortified with NaFeEDTA, 2) FeSO4 and 3) control. Escherichia coli was inoculated on nutrient agar medium. The ability of inhibition was shown by the formation of clear zone around the paper disc and measured in diameter (mm). Results: Synbiotic fermented milk fortified with iron (either NaFeEDTA or FeSO4) had antibacterial activity against Escherichia coli with diameter of clear zone were 6.53 mm and 12.3 mm, respectively (p<0.05). Compared to control (10.73 mm), synbiotic fermented milk fortified with FeSO4 had similar antibacterial activity (p>0.05). Conclusions: In vitro, synbiotic fermented milk fortified with NaFeEDTA and FeSO4 had different antibacterial activity against Escherichia coli. Iron fortification compound affected the antibacterial activity of synbiotic fermented milk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20plantarum%20Dad%2013" title="lactobacillus plantarum Dad 13">lactobacillus plantarum Dad 13</a>, <a href="https://publications.waset.org/abstracts/search?q=FOS" title=" FOS"> FOS</a>, <a href="https://publications.waset.org/abstracts/search?q=NaFeEDTA" title=" NaFeEDTA"> NaFeEDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=FeSO4" title=" FeSO4"> FeSO4</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/17035/effect-of-iron-fortification-on-the-antibacterial-activity-of-synbiotic-fermented-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">647</span> Antioxidant Activity of Probiotic Lactic Acid Bacteria and Their Application in Fermented Milk Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitheejongjaroen%20P.">Vitheejongjaroen P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaisin%20Y."> Jaisin Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pachekrepapol%20U."> Pachekrepapol U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Taweechotipatr%20M."> Taweechotipatr M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic acid bacteria (LAB) are the most common type of microorganisms that had been used as probiotics also known for many beneficial health effects. The antioxidant activity of LAB is associated with numerous health-protective effects. This research aimed to investigate the antioxidant activity of lactic acid bacteria isolated from Thai sour pork sausage for their application in fermented milk products. Antioxidant activity determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay showed that the isolate FN33-7, as 1 of 8 isolated exhibited scavenging activity in intact cell 5-7%, and supernatant 13-16%, intracellular cell free extract 42-48% respectively. This isolate was identified using 16S ribosomal DNA sequence analysis as Lactobacillus plantarum. The effect of milk fermented with L. plantarum FN33-7 on microbial count, pH and syneresis was assessed during refrigerated storage period of 28 days. The strain showed increased viability, pH level decreased, while syneresis increased. These results are similar to dairy products fermented with commercial starter cultures. Additionally, microstructure analysis of fermented milk by fluorescent microscopy showed that curd structure appeared to be dense and less porous in this fermented milk than commercial yogurt. The results of this study indicated that L. plantarum FN33-7 was a good probiotic candidate to be used in cultured milk products to reduce the risk of diseases caused by oxidative stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus%20plantarum" title="Lactobacillus plantarum">Lactobacillus plantarum</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20radical" title=" free radical"> free radical</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk%20products" title=" fermented milk products"> fermented milk products</a> </p> <a href="https://publications.waset.org/abstracts/97124/antioxidant-activity-of-probiotic-lactic-acid-bacteria-and-their-application-in-fermented-milk-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">646</span> Effects of Certain Natural Food Additives (Pectin, Gelatin and Whey Proteins) on the Qualities of Fermented Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Cheriguene">Abderrahim Cheriguene</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Arioui"> Fatiha Arioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study focuses on the extraction of pectin, whey protein and gelatin, and the study of their functional properties. Microbiological, physicochemical and sensory approach integrated has been implanted to study the effect of the incorporation of these natural food additives in the matrix of a fermented milk type set yogurt, to study the stability of the product during the periods of fermentation and post-acidification over a period of 21 days at 4°C. Pectin was extracted in hot HCl solution. Thermo-precipitation was carried out to obtain the whey proteins while the gelatin was extracted by hydrolysis of the collagen from bovine ossein. The fermented milk was prepared by varying the concentration of the incorporated additives. The measures and controls carried performed periodically on fermented milk experimental tests were carried out: pH, acidity, viscosity, the enumeration of Streptococcus thermophilus, cohesiveness, adhesiveness, taste, aftertaste, whey exudation, and odor. It appears that the acidity, viscosity, and number of Streptococcus thermophilus increased with increasing concentration of additive added in the experimental tests. Indeed, it seems clear that the quality of fermented milk and storability is more improved than the incorporation rate is high. The products showed a better test and a firmer texture limiting the whey exudation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title="fermented milk">fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title=" whey proteins"> whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/112954/effects-of-certain-natural-food-additives-pectin-gelatin-and-whey-proteins-on-the-qualities-of-fermented-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">645</span> The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suttipong%20Phosuksirikul">Suttipong Phosuksirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawichar%20Chaipojjana"> Rawichar Chaipojjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunsri%20Leejeerajumnean"> Arunsri Leejeerajumnean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title="fermented milk">fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20compounds" title=" volatile compounds"> volatile compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=preference" title=" preference"> preference</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a> </p> <a href="https://publications.waset.org/abstracts/13920/the-relations-of-volatile-compounds-some-parameters-and-consumer-preference-of-commercial-fermented-milks-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">644</span> Antioxidant Activity of the Algerian Traditional Kefir Supernatant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Amellal-Chibane">H. Amellal-Chibane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dehdouh"> N. Dehdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ait-Kaki"> S. Ait-Kaki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%20Halladj"> F. Halladj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kefir is fermented milk that is produced by adding Kefir grains, consisting of bacteria and yeasts, to milk. The aim of this study was to investigate the antioxidant activity of the kefir supernatant and the raw milk. The Antioxidant activity assays of kefir supernatant and raw milk were evaluated by assessing the DPPH radical-scavenging activity. Kefir supernatant demonstrated high antioxidant activity (87.75%) compared to the raw milk (70.59 %). These results suggest that the Algerian kefir has interesting antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant" title=" kefir supernatant"> kefir supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title=" raw milk "> raw milk </a> </p> <a href="https://publications.waset.org/abstracts/24330/antioxidant-activity-of-the-algerian-traditional-kefir-supernatant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">643</span> Isolation and Characterization of Lactic Acid Bacteria from Libyan Traditional Fermented Milk &quot;Laban&quot;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Nahaisi">M. H. Nahaisi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Almaroum"> N. M. Almaroum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laban is a Libyan traditional fermented milk product. This lactic fermentation has been known in many cities of Libya long time ago as stable, nutritious, refreshing drink especially during the summer. 16 naturally fermented milk samples were collected from different cities located in North West of Libya. The average pH, titratable acidity, fat and total solids were 4.16, 0.73%, 1.54% and 8.12 % respectively. Coliform, yeast and mold counts were 21×10⁴, 39×10⁴ and 41 ×10³ cfu/ ml. respectively. The average Lactococcus, Streptococcus, Mesophilic Lactobacillus / Leuconostoc and Thermophilic Lactobacillus counts were 99 ×10⁷, 96 ×10⁷, 93 ×10⁷ and 15 ×10⁷ cfu / ml. respectively. A total of one hundred forty two lactic acid bacteria (LAB) isolates were identified to the genus level as Lactobacillus (48.59%), Lactococcus (43.66%), Streptococcus (4.93%) and Leuconostoc (2.82%). Sugar fermentation tests have revealed that the most frequently Lactobacillus species was found to be Lactobacillus delbrueckii ssp. lactis (62.32%) followed by Lactobacillus plantarum (31.88%). Furthermore, other selected LAB isolates were identified by API 50 CH test as Lactococcus lactis ssp. lactics, Lactobacillus pentosus, Lactobacillus brevis and Leuconostoc mesenteroides ssp. cremoris. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traditional%20fermented%20milk" title="traditional fermented milk">traditional fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=laban" title=" laban"> laban</a>, <a href="https://publications.waset.org/abstracts/search?q=lactococcus" title=" lactococcus"> lactococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=streptococcus" title=" streptococcus"> streptococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophilic%20lactobacillus" title=" mesophilic lactobacillus"> mesophilic lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic%20lactobacillus%20counts" title=" thermophilic lactobacillus counts"> thermophilic lactobacillus counts</a> </p> <a href="https://publications.waset.org/abstracts/21085/isolation-and-characterization-of-lactic-acid-bacteria-from-libyan-traditional-fermented-milk-laban" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">642</span> Isolation and Identification of Probiotic Lactic Acid Bacteria with Cholesterol Lowering Potential and Their Use in Fermented Milk Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeyarach%20Whisetkhan">Preeyarach Whisetkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Malai%20Taweechotipatr"> Malai Taweechotipatr</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulisa%20Pachekrepapol"> Ulisa Pachekrepapol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elevated level of blood cholesterol or hypercholesterolemia may lead to atherosclerosis and poses a major risk for cardiovascular diseases. Probiotics play a crucial role in human health, and probiotic bacteria that possesses bile salt hydrolase (BSH) activity can be used to lower cholesterol level of the host. The aim of this study was to investigate whether lactic acid bacteria (LAB) isolated from traditional Thai fermented foods were able to exhibit bile salt hydrolase activity and their use in fermented milk. A total of 28 isolates were tested for BSH activity by plate method on MRS agar supplemented with 0.5% sodium salt of taurodeoxycholic acid and incubated at 37°C for 48 h under anaerobic condition. The results showed that FN1-1 and FN23-3 isolates possessed strong BSH activity. FN1-1 and FN23-3 isolates were then identified for phenotype, biochemical characteristics, and genotype (16S rRNA sequencing). FN1-1 isolate showed 99.92% similarity to Lactobacillus pentosus DSM 20314(T), while FN23-3 isolate showed 99.94% similarity to Enterococcus faecium CGMCC1.2136 (T). Lactobacillus pentosus FN1-1 and Enterococcus faecium FN23-3 were tolerant of pH 3-4 and 0.3 and 0.8% bile. Bacterial count and pH of milk fermented with Lactobacillus pentosus FN1-1 at 37°C and 43°C were investigated. The results revealed that Lactobacillus pentosus FN1-1 was able to grow in milk, which led to decrease in pH level. Fermentation at 37°C resulted in faster growth rate than at 43 °C. Lactobacillus pentosus FN1-1 was a candidate probiotic to be used in fermented milk products to reduce the risk of high-cholesterol diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotics" title="probiotics">probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bile%20salt%20hydrolase" title=" bile salt hydrolase"> bile salt hydrolase</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a> </p> <a href="https://publications.waset.org/abstracts/97184/isolation-and-identification-of-probiotic-lactic-acid-bacteria-with-cholesterol-lowering-potential-and-their-use-in-fermented-milk-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">641</span> Potential Probiotic Bacteria Isolated from Dairy Products of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Hindi">Rashad Al-Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aims of the study were to isolate and identify potential probiotic lactic acid bacteria due to their therapeutic and food preservation importance. Sixty-three suspected lactic acid bacteria (LAB) strains were isolated from thirteen different raw milk and fermented milk product samples of various animal origins manufactured indigenously in the Kingdom of Saudi Arabia using de Man, Rogosa and Sharpe (MRS) agar medium and various incubation conditions. The identification of forty-six selected LAB strains was performed using molecular methods (16S rDNA gene sequencing). The LAB counts in certain samples were higher under microaerobic incubation conditions than under anaerobic conditions. The identified LAB belonged to the following genera: Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains), constituting 34.78%, 19.57%, 21.74%, 17.39% and 6.52% of the suspected isolates, respectively. This study noted that the raw milk and traditional fermented milk products of Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, could be rich in LAB. The obtained LAB strains in this study will be tested for their probiotic potentials in another ongoing study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy" title="dairy">dairy</a>, <a href="https://publications.waset.org/abstracts/search?q=LAB" title=" LAB"> LAB</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/54106/potential-probiotic-bacteria-isolated-from-dairy-products-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">640</span> Association of the Frequency of the Dairy Products Consumption by Students and Health Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radyah%20Ivan">Radyah Ivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Khanferyan%20Roman"> Khanferyan Roman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk and dairy products are an important component of a balanced diet. Dairy products represent a heterogeneous food group of solid, semi-solid and liquid, fermented or non-fermented foods, each differing in nutrients such as fat and micronutrient content. Deficiency of milk and dairy products contributes a impact on the main health parameters of the various age groups of the population. The goal of this study was to analyze of the frequency of the consumption of milk and various groups of dairy products by students and its association with their body mass index (BMI), body composition and other physiological parameters. 388 full-time students of the Medical Institute of RUDN University (185 male and 203 female, average age was 20.4+2.2 and 21.9+1.7 y.o., respectively) took part in the cross-sectional study. Anthropometric measurements, estimation of BMI and body composition were analyzed by bioelectrical impedance analysis. The frequency of consumption of the milk and various groups of dairy products was studied using a modified questionnaire on the frequency of consumption of products. Due to the questionnaire data on the frequency of consumption of the diary products, it have been demonstrated that only 11% of respondents consume milk daily, 5% - cottage cheese, 4% and 1% - fermented natural and with fillers milk products, respectively, hard cheese -4%. The study demonstrated that about 16% of the respondents did not consume milk at all over the past month, about one third - cottage cheese, 22% - natural sour-milk products and 18% - sour-milk products with various fillers. hard cheeses and pickled cheeses didn’t consume 9% and 26% of respondents, respectively. We demonstrated the gender differences in the characteristics of consumer preferences were revealed. Thus female students are less likely to use cream, sour cream, soft cheese, milk comparing to male students. Among female students the prevalence of persons with overweight was higher (25%) than among male students (19%). A modest inverse relationship was demonstrated between daily milk intake, BMI, body composition parameters and diary products consumption (r=-0.61 and r=-0.65). The study showed daily insufficient milk and dairy products consumption by students and due to this it have been demonstrated the relationship between the low and rare consumption of diary products and main parameters of indicators of physical activity and health indicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20of%20consumption" title="frequency of consumption">frequency of consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20development" title=" physical development"> physical development</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index." title=" body mass index."> body mass index.</a> </p> <a href="https://publications.waset.org/abstracts/186468/association-of-the-frequency-of-the-dairy-products-consumption-by-students-and-health-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">639</span> The Promising Way to Minimize the Negative Effects of Iron Fortification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Juffrie">M. Juffrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Helmyati"> Siti Helmyati</a>, <a href="https://publications.waset.org/abstracts/search?q=Toto%20Sudargo"> Toto Sudargo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20J.%20Istiti%20Kandarina"> B. J. Istiti Kandarina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tempeh" title="tempeh">tempeh</a>, <a href="https://publications.waset.org/abstracts/search?q=synbiotic" title=" synbiotic"> synbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=haemoglobin" title=" haemoglobin"> haemoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a> </p> <a href="https://publications.waset.org/abstracts/16447/the-promising-way-to-minimize-the-negative-effects-of-iron-fortification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">638</span> Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Swasti%20Ayuning%20Tyas">Agatha Swasti Ayuning Tyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk%20kefir" title=" goat milk kefir"> goat milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk%20kefir" title=" soy milk kefir"> soy milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin%206" title=" interleukin 6"> interleukin 6</a> </p> <a href="https://publications.waset.org/abstracts/65540/effect-of-goat-milk-kefir-and-soy-milk-kefir-on-il-6-in-diabetes-mellitus-wistar-mice-models-induced-by-streptozotocin-and-nicotinamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">637</span> Molecular Approach for the Detection of Lactic Acid Bacteria in the Kenyan Spontaneously Fermented Milk, Mursik</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Masani%20Nduko">John Masani Nduko</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Wafula%20Matofari"> Joseph Wafula Matofari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many spontaneously fermented milk products are produced in Kenya, where they are integral to the human diet and play a central role in enhancing food security and income generation via small-scale enterprises. Fermentation enhances product properties such as taste, aroma, shelf-life, safety, texture, and nutritional value. Some of these products have demonstrated therapeutic and probiotic effects although recent reports have linked some to death, biotoxin infections, and esophageal cancer. These products are mostly processed from poor quality raw materials under unhygienic conditions resulting to inconsistent product quality and limited shelf-lives. Though very popular, research on their processing technologies is low, and none of the products has been produced under controlled conditions using starter cultures. To modernize the processing technologies for these products, our study aims at describing the microbiology and biochemistry of a representative Kenyan spontaneously fermented milk product, Mursik using modern biotechnology (DNA sequencing) and their chemical composition. Moreover, co-creation processes reflecting stakeholders’ experiences on traditional fermented milk production technologies and utilization, ideals and senses of value, which will allow the generation of products based on common ground for rapid progress will be discussed. Knowledge of the value of clean starting raw material will be emphasized, the need for the definition of fermentation parameters highlighted, and standard equipment employment to attain controlled fermentation discussed. This presentation will review the available information regarding traditional fermented milk (Mursik) and highlight our current research work on the application of molecular approaches (metagenomics) for the valorization of Mursik production process through starter culture/ probiotic strains isolation and identification, and quality and safety aspects of the product. The importance of the research and future research areas on the same subject will also be highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title="lactic acid bacteria">lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20throughput%20biotechnology" title=" high throughput biotechnology"> high throughput biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20fermentation" title=" spontaneous fermentation"> spontaneous fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Mursik" title=" Mursik"> Mursik</a> </p> <a href="https://publications.waset.org/abstracts/65041/molecular-approach-for-the-detection-of-lactic-acid-bacteria-in-the-kenyan-spontaneously-fermented-milk-mursik" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">636</span> Efficiency of Microbial Metabolites on Quality Milk Production in Nili Ravi Breed of Buffalos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman">Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of natural metabolites obtained from partially fermented soya hulls and wheat bran using Saccharomyces cerevisiae (DL-22 S/N) ensures a potential impact on the total milk yield and quality of milk production. On attaining a moderate number of Saccharomyces cerevisiae cells around 1×10⁹ CFU/ml, the concentrate was further elevated under in-vivo conditions to study the quality of milk production in lactating buffalo. Ten lactating buffalos of the Nili Ravi breed having the same physical factors were given 12 gm of microbial metabolites daily, along with the palleted feed having 22 % proteins. Another group of 10 lactating animals with the same characteristics was maintained without metabolites. The body score, overall health, incidence of mastitis, milk fat, milk proteins, ash and solid not fat (SNF) were elevated on a weekly basis up to thirty days of trial. It was recorded that the average total increase in quality milk production was 0.9 liter/h/d, whereas SNF in the milk was enhanced to 0.71, and fats were decreased to 0.09 %. Moreover, during all periods of the trial, the overall non-specific immunity of buffalo was increased, as indicated by less than 0.2 % of mastitis incidence compared to 1.8% in the untreated buffalos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20metabolites" title="natural metabolites">natural metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20milk" title=" quality milk"> quality milk</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20yield" title=" milk yield"> milk yield</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonspecific%20immunity" title=" nonspecific immunity"> nonspecific immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=better%20performing%20animals" title=" better performing animals"> better performing animals</a> </p> <a href="https://publications.waset.org/abstracts/164255/efficiency-of-microbial-metabolites-on-quality-milk-production-in-nili-ravi-breed-of-buffalos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">635</span> Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20ur%20Rahman">Sajjad ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam"> Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20production" title=" milk production"> milk production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotic%20metabolites" title=" post-biotic metabolites"> post-biotic metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a> </p> <a href="https://publications.waset.org/abstracts/165949/efficacy-of-microbial-metabolites-obtained-from-saccharomyces-cerevisiae-as-supplement-for-quality-milk-production-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">634</span> Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20M.%20Islam">K. B. M. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Syeeda%20Shiraj-Um-Mahmuda"> Syeeda Shiraj-Um-Mahmuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Afroj%20Jahan"> Afroj Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Bhuiyan"> A. A. Bhuiyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bangladeshi%20poultry" title="Bangladeshi poultry">Bangladeshi poultry</a>, <a href="https://publications.waset.org/abstracts/search?q=gut%20microbiota" title=" gut microbiota"> gut microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=scavenging%20chicken" title=" scavenging chicken"> scavenging chicken</a>, <a href="https://publications.waset.org/abstracts/search?q=GIT%20health" title=" GIT health"> GIT health</a> </p> <a href="https://publications.waset.org/abstracts/7660/screening-of-lactobacilli-and-bifidobacteria-from-bangladeshi-indigenous-poultry-for-their-potential-use-as-probiotics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">633</span> Bifidobacterial Postbiotics as Health-Promoting Agents in Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Kamalledin%20Moghadam">Saba Kamalledin Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Mortazavian"> Amir M. Mortazavian</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Homayouni-Rad"> Aziz Homayouni-Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent decade, bioactive-enriched foods, as well as natural health products, have caught the intention of the general and health-conscious population. In this regard, naturally occurring beneficial microorganisms have been successfully added to various dairy products during fermentation. Bifidobacteria, known as probiotics with a broad range of bioactivities, are commonly used in the dairy industry to naturally enrich dairy products. These bioactive metabolites are industrially and commercially important due to health-promoting activities on the consumers (e.g., anti-hypertensive, anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation, etcetera). This review aims to discuss the potential of bifidobacteria for the elaboration of dairy foods with functional properties and added value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dairy" title="dairy">dairy</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotic" title=" postbiotic"> postbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacteria" title="bifidobacteria">bifidobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=bifidobacterial%20postbiotic" title=" bifidobacterial postbiotic"> bifidobacterial postbiotic</a> </p> <a href="https://publications.waset.org/abstracts/145131/bifidobacterial-postbiotics-as-health-promoting-agents-in-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">632</span> An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rameshwar%20Singh%20Seema">Rameshwar Singh Seema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title="type 2 diabetes">type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=LGG" title=" LGG"> LGG</a>, <a href="https://publications.waset.org/abstracts/search?q=L.casei%20NCDC19" title=" L.casei NCDC19"> L.casei NCDC19</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20science" title=" food science"> food science</a> </p> <a href="https://publications.waset.org/abstracts/14820/an-antidiabetic-dietary-defence-weapon-oats-and-milk-based-probiotic-fermented-product" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">631</span> Assessment of Lactic Acid Bacteria of Probiotic Potentials in Dairy Produce in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20R.%20Al-Hindi">Rashad R. Al-Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to isolate and identify lactic acid bacteria and evaluate their therapeutic and food preservation importance. Ninety-three suspected lactic acid bacteria (LAB) were isolated from thirteen different raw and fermented milk of indigenous sources in the Kingdom of Saudi Arabia. The identification of forty-six selected LAB strains and genetic relatedness were performed based on 16S rDNA gene sequence comparison. The LAB counts in certain samples were higher under microaerobic than anaerobic conditions. The identified LAB belonged to genera Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains). Phylogenetic tree generated from the full-length (~1.6 kb) sequences confirmed previous findings. Utilization of shorter 16S rDNA sequences (~1.0 kb) also discriminated among strains of which V2 region was the most effective. None of the strains exhibited resistance to clinically relevant antibiotics or undesirable hemolytic activity, while they differed in other probiotic characteristics, e.g., tolerance to acidic pH, resistance to bile salt, and antibacterial activity. In conclusion, the isolates Lactobacillus casei MSJ1, Lactobacillus casei Dwan5, Lactobacillus plantarum EyLan2 and Enterococcus faecium Gail-BawZir8 are likely the best probiotic LAB and we speculate that studying the synergistic effects of bacterial combinations might result in the occurrence of more effective probiotic potential. We argue that the raw and fermented milk of animals hosted in Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, are rich in LAB with promising probiotics potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20foods" title="fermented foods">fermented foods</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia "> Saudi Arabia </a> </p> <a href="https://publications.waset.org/abstracts/77426/assessment-of-lactic-acid-bacteria-of-probiotic-potentials-in-dairy-produce-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">630</span> The First Step to Standardization of Iranian Buffalo Milk: Physicochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnoosh%20Attar">Farnoosh Attar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, buffalo’s milk due to has highly nutritional properties, has a special place among consumers and its application for the production of dairy products due to the high technological properties is increasing day by day. In the present study, the physicochemical characteristics of Iranian buffalo’s milk were compared with cow's milk. According to chemical analysis, the amount of fat, protein, and total solid was higher in buffalo milk than cow's milk (respectively, 8.2%, 4.73%, and 15.92% compared with 3.5%, 3.25%, and 12.5%). Also, the percentage of cholesterol buffalo’s milk was less than in cow's milk. In contrast, no significant difference between the pH, acidity, and specific gravity was observed. The size of buffalo milk fat globules was larger than cow's milk. In addition, the profile of buffalo free fatty acids milk showed the relatively high distribution of long chain saturated fatty acids. The presence of four major bands related to αs casein, β casein, β-lactoglobulin, and α-lactalbumin with quite higher intensity than cow’s milk was also observed. The results obtained will provide a reference investigation to improve the developing of buffalo milk standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffalo%20milk" title="buffalo milk">buffalo milk</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20characterization" title=" physicochemical characterization"> physicochemical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a> </p> <a href="https://publications.waset.org/abstracts/23975/the-first-step-to-standardization-of-iranian-buffalo-milk-physicochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">629</span> Feeding Value Improvement of Rice Straw Fermented by Spent Mushroom Substrate on Growth and Lactating Performance of Dairy Goat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Fan">G. J. Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Lee"> T. T. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Chen"> M. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20F.%20Shiao"> T. F. Shiao</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yu"> B. Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Lee"> C. F. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw with poor feed quality and spent mushroom substrate are both the most abundant agricultural residues in Taiwan. Edible mushrooms from white rot fungi possess lignocellulase activity. It was expected to improve the feeding value of rice straw for ruminant by solid-state fermentation pretreatment using spent mushroom substrate. Six varieties or subspecies of spent edible mushrooms (Pleurotus ostreatus (blue or white color), P. sajor-caju, P. citrinopileatus, P. eryngii and Ganoderma lucidium) substrate were evaluated in solid-state fermentation process with rice straw for 8 wks. Quality improvement of fermented rice straw was determined by its in vitro digestibility, lignocellulose degradability, and cell wall breakdown checked by scanning electron microscope. Results turned out that Pleurotus ostreatus (white color) and P. sajor-caju had the better lignocellulose degradation effect than the others and was chosen for advance in vivo study. Rice straw fermented with spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate 8 wks was prepared for growing and lactating feeding trials of dairy goat, respectively. Pangolagrass hay at 15% diet dry matter was the control diet. Fermented or original rice straw was added to substitute pangolagrass hay in both feeding trials. A total of 30 head of Alpine castrated ram were assigned into three groups for 11 weeks, 5 pens (2 head/pen) each group. A total of 21 head of Saanen and Alpine goats were assigned into three treatments and individually fed in two repeat lactating trials with 28-d each. In castrated ram study, results showed that fermented rice straw by spent Pleurotus ostreatus mushroom substrate attributed the higher daily dry matter intakes (DMI, 1.53 vs. 1.20 kg) and body weight gain (138 vs. 101 g) than goats fed original rice straw. DMI (2.25 vs. 1.81 kg) and milk yield (3.31 vs. 3.02 kg) of lactating goats fed control pangolagrass diet and fermented rice straw by spent Pleurotus sajor-caju mushroom substrate were also higher than those fed original rice straw diet (P < 0.05). Milk compositions, milk fat, protein, total solid and lactose, were similar among treatments. In conclusion, solid-state fermentation by spent Pleurotus ostreatus or Pleurotus sajor-caju mushroom substrate could effectively improve the feeding value of rice straw. Fermented rice straw is a good alternative fiber feed resource for growing and lactating dairy goats and 15% in diet dry matter is recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feeding%20value" title="feeding value">feeding value</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20rice%20straw" title=" fermented rice straw"> fermented rice straw</a>, <a href="https://publications.waset.org/abstracts/search?q=growing%20and%20lactating%20dairy%20goat" title=" growing and lactating dairy goat"> growing and lactating dairy goat</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20Pleurotus%20ostreatus%20and%20Pleurotus%20sajor-caju%20mushroom%20substrate" title=" spent Pleurotus ostreatus and Pleurotus sajor-caju mushroom substrate"> spent Pleurotus ostreatus and Pleurotus sajor-caju mushroom substrate</a> </p> <a href="https://publications.waset.org/abstracts/99810/feeding-value-improvement-of-rice-straw-fermented-by-spent-mushroom-substrate-on-growth-and-lactating-performance-of-dairy-goat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">628</span> Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariam%20Azam">Mariam Azam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ur%20Rahman"> Sajjad Ur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukarram%20Bashir"> Mukarram Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemal%20Javaid"> Seemal Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad"> Jawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Aoun%20Muhammad"> Aoun Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zohaib"> Muhammad Zohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannan%20Khan"> Hannan Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title="microbial metabolites">microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=post-biotics" title=" post-biotics"> post-biotics</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20supplements" title=" animal supplements"> animal supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20nutrition" title=" animal nutrition"> animal nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20production" title=" animal production"> animal production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/164404/efficiency-of-natural-metabolites-on-quality-milk-production-in-mixed-breed-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">627</span> Optimization of Moisture Content for Highest Tensile Strength of Instant Soluble Milk Tablet and Flowability of Milk Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Vishwakarma">Siddharth Vishwakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Danie%20Shajie%20A."> Danie Shajie A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mishra%20H.%20N."> Mishra H. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milk powder becomes very useful in the low milk supply area but the exact amount to add for one glass of milk and the handling is difficult. So, the idea of instant soluble milk tablet comes into existence for its high solubility and easy handling. The moisture content of milk tablets is increased by the direct addition of water with no additives for binding. The variation of the tensile strength of instant soluble milk tablets and the flowability of milk powder with the moisture content is analyzed and optimized for the highest tensile strength of instant soluble milk tablets and flowability, above a particular value of milk powder using response surface methodology. The flowability value is necessary for ease in quantifying the milk powder, as a feed, in the designed tablet making machine. The instant soluble nature of milk tablets purely depends upon the disintegration characteristic of tablets in water whose study is under progress. Conclusions: The optimization results are very useful in the commercialization of milk tablets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flowability" title="flowability">flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20powder" title=" milk powder"> milk powder</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20making%20machine" title=" tablet making machine"> tablet making machine</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/101034/optimization-of-moisture-content-for-highest-tensile-strength-of-instant-soluble-milk-tablet-and-flowability-of-milk-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">626</span> The Impact of Milk Transport on Its Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Urszula%20Malaga-Tobo%C5%82a">Urszula Malaga-Toboła</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Guga%C5%82a"> Marek Gugała</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%20Kornas"> Rafał Kornas</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rusinek"> Robert Rusinek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Gancarz"> Marek Gancarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focused on presenting the elements that determine the quality of fresh milk in the context of the quality of its transport. The quality of the raw material depends on the quality of transport. Milk transport involves many activities in which, apart from the temperature and sterility of the means of transport, it is important not to expose the raw material to shocks. Recently, there have been changes in the milk supply chain, thus affecting the logistics processes between its links. Based on the conducted research and analyses, it was found that the condition of the road surface on which milk is transported affects its quality. For the T1 milk transport route- gravel roads of very poor and poor quality, the lowest number of bacteria and the highest number of somatic cells, fat content, and temperature of the transported milk were obtained. A well-organized integrated transport system is a real need for most companies today. The analysis showed significant differences in the quality of milk delivered to the dairy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fresh%20milk" title="fresh milk">fresh milk</a>, <a href="https://publications.waset.org/abstracts/search?q=transport" title=" transport"> transport</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20quality" title=" milk quality"> milk quality</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy" title=" dairy"> dairy</a> </p> <a href="https://publications.waset.org/abstracts/181444/the-impact-of-milk-transport-on-its-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">625</span> Place and Importance of Goats in the Milk Sector in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tennah%20Safia">Tennah Safia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzag%20Naouelle"> Azzag Naouelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Derdour%20Salima"> Derdour Salima</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafsi%20Fella"> Hafsi Fella</a>, <a href="https://publications.waset.org/abstracts/search?q=Laouadi%20Mourad"> Laouadi Mourad</a>, <a href="https://publications.waset.org/abstracts/search?q=Laamari%20Abdalouahab"> Laamari Abdalouahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghalmi%20Farida"> Ghalmi Farida</a>, <a href="https://publications.waset.org/abstracts/search?q=Kafidi%20Nacerredine"> Kafidi Nacerredine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, goat farming is widely practiced among the rural population of Algeria. Although milk yield of goats is low (110 liters per goat and per year on average), this milk partly ensures the feeding of small children and provides raw milk, curd, and fermented milk to the whole family. In addition, given its investment cost, which is ten times lower than that of a cow, this level of production is still of interest. This interest is reinforced by the qualities of goat's milk, highly sought after for its nutritional value superior to that of cow's milk. In the same way, its aptitude for the transformation, in particular in quality cheeses, is very sought after. The objective of this study is to give the situation of goat milk production in rural areas of Algeria and to establish a classification of goat breeds according to their production potential. For this, a survey was carried out with goat farmers in Algerian steppe. Three indigenous breeds were encountered in this study: the breed Arabia, Mozabite, and Mekatia; Arabia being the most dominant. The Mekatia breed and the Mozabite breed appear to have higher production and milking abilities than other local breeds. They are therefore indicated to play the role of local dairy breeds par excellence. The other breed that could be improved milk performance is the Arabia breed. There, however, the milk performance of this breed is low. However, in order to increase milk production, uncontrolled crosses with imported breeds (mainly Saanen and Alpine) were carried out. The third population that can be included in the category for dairy production is the dairy breed group of imported origin. There are farms in Algeria composed of Alpine and Saanen breeds born locally. Improved milk performance of local goats, Crusader population, and dairy breeds of imported origin could be done by selection. For this, it is necessary to set up a milk control to detect the best animals. This control could be carried out among interested farmers in each large goat breeding area. In conclusion, sustained efforts must be made to enable the sustainable development of the goat sector in Algeria. It will, therefore, be necessary to deepen the reflection on a national strategy to valorize goat's milk, taking into account the specificities of the environment, the genetic biodiversity, and the eating habits of the Algerian consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goat" title="goat">goat</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a> </p> <a href="https://publications.waset.org/abstracts/108342/place-and-importance-of-goats-in-the-milk-sector-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">624</span> Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vita%20Krungleviciute">Vita Krungleviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasa%20Zelvyte"> Rasa Zelvyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrida%20Monkeviciene"> Ingrida Monkeviciene</a>, <a href="https://publications.waset.org/abstracts/search?q=Jone%20Kantautaite"> Jone Kantautaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolandas%20Stankevicius"> Rolandas Stankevicius</a>, <a href="https://publications.waset.org/abstracts/search?q=Modestas%20Ruzauskas"> Modestas Ruzauskas</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Bartkiene"> Elena Bartkiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barley%2Fwheat%20bran" title="barley/wheat bran">barley/wheat bran</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cattle" title=" dairy cattle"> dairy cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20feed" title=" fermented feed"> fermented feed</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=pediococcus" title=" pediococcus"> pediococcus</a> </p> <a href="https://publications.waset.org/abstracts/59313/cereal-bioproducts-conversion-to-higher-value-feed-by-using-pediococcus-strains-isolated-from-spontaneous-fermented-cereal-and-its-influence-on-milk-production-of-dairy-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bifidobacteria%20fermented%20milk&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10