CINXE.COM
Search results for: cooling water
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cooling water</title> <meta name="description" content="Search results for: cooling water"> <meta name="keywords" content="cooling water"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cooling water" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cooling water"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9314</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cooling water</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9314</span> Control Strategy of Solar Thermal Cooling System under the Indonesia Climate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Budihardjo%20Sarwo%20Sastrosudiro">Budihardjo Sarwo Sastrosudiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnas%20Lubis"> Arnas Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Idrus%20Alhamid"> Muhammad Idrus Alhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasruddin%20Jusuf"> Nasruddin Jusuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m<sup>2</sup>, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 <sup>o</sup>C. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling" title=" solar cooling"> solar cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/43453/control-strategy-of-solar-thermal-cooling-system-under-the-indonesia-climate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9313</span> The Effect of Shading on Cooling Tower Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eitidal%20Albassam">Eitidal Albassam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling towers (CTs) in arid zone countries, used for heat rejection in water-cooled (WC) systems, consume a large quantity of water. Universally, water conservation is an issue because of the scarcity of fresh water and natural resources. Therefore, many studies have aimed to conserve fresh water and limit the water wasted. Nonetheless, all these methods are not related to improving the weather conditions around the entering air to CT. In Kuwait and other arid-zone countries, the dry bulb temperature (DBT) during the summer season is significantly greater than the incoming hot water temperature, and the air undergoes sensible cooling. This high DBT leads to extra heat transfer from air to water, demanding high water vaporization to achieve the required cooling of water. Thus, any reduction in ambient air temperature around the CT will minimize water consumption. This paper aims to discuss theoretically the effect of reducing the DBT around the cooling tower when considering the sun-shading barrier. The theoretical simulation model results show that if the DBT reduces by 2.8 °C approximately, the percentage of water evaporation savings in gallon per minute (GPM) starts from 6.48% when DBT reaches 51.67 °C till 9.80% for 37.78 °C. Moreover, the performance of the cooling tower will be improved when considering the appropriate shading barriers, which will not affect the existing wet-bulb temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dry-bulb%20temperature" title="dry-bulb temperature">dry-bulb temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=entering%20air" title=" entering air"> entering air</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20consumption" title=" water consumption"> water consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vaporization" title=" water vaporization"> water vaporization</a> </p> <a href="https://publications.waset.org/abstracts/145541/the-effect-of-shading-on-cooling-tower-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9312</span> Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Jia">Zhiyuan Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiuxiu%20Sun"> Xiuxiu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Chen"> Yong Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Hai"> Liu Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuangqing%20Li"> Shuangqing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20water" title="cooling water">cooling water</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas" title=" exhaust gas"> exhaust gas</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20range%20engine" title=" extended range engine"> extended range engine</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20injection" title=" steam injection"> steam injection</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/128975/research-on-steam-injection-technology-of-extended-range-engine-cylinder-for-waste-heat-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9311</span> Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raksit%20Nanthatanti">Raksit Nanthatanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarruwat%20Charoensuk"> Jarruwat Charoensuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hirai"> S. Hirai</a>, <a href="https://publications.waset.org/abstracts/search?q=Manop%20Masomtop"> Manop Masomtop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configuration <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20efficiency" title="cooling efficiency">cooling efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20count" title=" channel count"> channel count</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=operating" title=" operating"> operating</a> </p> <a href="https://publications.waset.org/abstracts/165565/parametric-study-on-water-cooling-plates-to-improve-cooling-performance-on-18650-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9310</span> [Keynote Speaker]: Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Amine%20Hachicha">Ahmed Amine Hachicha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature effect on the performance of a photovoltaic module is one of the main concern that face this renewable energy, especially in the hot arid region, e.g United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to a non-cooling module and the performance of the PV module is determined for different situations. A mathematical model is presented to estimate the theoretical performance and validate the experimental results with and without cooling. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20cooling" title="PV cooling">PV cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20methods" title=" cooling methods"> cooling methods</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a> </p> <a href="https://publications.waset.org/abstracts/34166/keynote-speaker-enhancing-the-performance-of-a-photovoltaic-module-using-different-cooling-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9309</span> Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20G.%20Ibarra">J. B. G. Ibarra</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20A.%20Gagui"> J. M. A. Gagui</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20J.%20T.%20Jonson"> E. J. T. Jonson</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20V.%20Lim"> J. A. V. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20panel%20efficiency" title="solar panel efficiency">solar panel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel%20efficiency%20technique" title=" solar panel efficiency technique"> solar panel efficiency technique</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20tracking%20system" title=" solar tracking system"> solar tracking system</a>, <a href="https://publications.waset.org/abstracts/search?q=water-spray%20cooling%20system" title=" water-spray cooling system"> water-spray cooling system</a> </p> <a href="https://publications.waset.org/abstracts/122446/characterization-of-solar-panel-efficiency-using-sun-tracking-device-and-cooling-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9308</span> The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hrabovsk%C3%BD">J. Hrabovský</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chabi%C4%8Dovsk%C3%BD"> M. Chabičovský</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Horsk%C3%BD"> J. Horský</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title="heat transfer coefficient">heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layer" title=" oxide layer"> oxide layer</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20cooling" title=" spray cooling"> spray cooling</a> </p> <a href="https://publications.waset.org/abstracts/15544/the-effect-of-discontinued-water-spray-cooling-on-the-heat-transfer-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9307</span> Thermal Management of Ground Heat Exchangers Applied in High Power LED</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Ching%20Chiang">Yuan-Ching Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Yeh%20Hsu"> Chien-Yeh Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chih-Hao"> Chen Chih-Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sih-Li%20Chen"> Sih-Li Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The p-n junction temperature of LEDs directly influences their operating life and luminous efficiency. An excessively high p-n junction temperature minimizes the output flux of LEDs, decreasing their brightness and influencing the photon wavelength; consequently, the operating life of LEDs decreases and their luminous output changes. The maximum limit of the p-n junction temperature of LEDs is approximately 120 °C. The purpose of this research was to devise an approach for dissipating heat generated in a confined space when LEDs operate at low temperatures to reduce light decay. The cooling mode of existing commercial LED lights can be divided into natural- and forced convection cooling. In natural convection cooling, the volume of LED encapsulants must be increased by adding more fins to increase the cooling area. However, this causes difficulties in achieving efficient LED lighting at high power. Compared with forced convection cooling, heat transfer through water convection is associated with a higher heat transfer coefficient per unit area; therefore, we dissipated heat by using a closed loop water cooling system. Nevertheless, cooling water exposed to air can be easily influenced by environmental factors. Thus, we incorporated a ground heat exchanger into the water cooling system to minimize the influence of air on cooling water and then observed the relationship between the amounts of heat dissipated through the ground and LED efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20ground%20heat%20exchanger" title="helical ground heat exchanger">helical ground heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20LED" title=" high power LED"> high power LED</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20source%20cooling%20system" title=" ground source cooling system"> ground source cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20dissipation" title=" heat dissipation"> heat dissipation</a> </p> <a href="https://publications.waset.org/abstracts/34341/thermal-management-of-ground-heat-exchangers-applied-in-high-power-led" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9306</span> Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Song">Bing Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Kexi%20Han"> Kexi Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuewei%20Lv"> Xuewei Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti<sup>3+</sup>during different cooling ways. The Ti<sub>2</sub>O<sub>3</sub> content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti<sub>2</sub>O<sub>3</sub> content in granulated slag is decreased about 27.6%. The content of Fe<sub>2</sub>O<sub>3</sub> in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti<sup>3</sup><sup>+</sup>. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20approaches" title="cooling approaches">cooling approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20slag" title=" titania slag"> titania slag</a>, <a href="https://publications.waset.org/abstracts/search?q=granulating" title=" granulating"> granulating</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid%20acidolysis" title=" sulfuric acid acidolysis"> sulfuric acid acidolysis</a> </p> <a href="https://publications.waset.org/abstracts/62188/effect-of-cooling-approaches-on-chemical-compositions-phases-and-acidolysis-of-panzhihua-titania-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9305</span> Press Hardening of Tubes with Additional Interior Spray Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Behrens">B. A. Behrens</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Maier"> H. J. Maier</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Neumann"> A. Neumann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Moritz"> J. Moritz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H%C3%BCbner"> S. Hübner</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Gretzki"> T. Gretzki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20N%C3%BCrnberger"> F. Nürnberger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Spiekermeier"> A. Spiekermeier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=22MnB5" title="22MnB5">22MnB5</a>, <a href="https://publications.waset.org/abstracts/search?q=press%20hardening" title=" press hardening"> press hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=water-air%20spray%20cooling" title=" water-air spray cooling"> water-air spray cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=hollow%20profiles" title=" hollow profiles"> hollow profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=tubes" title=" tubes"> tubes</a> </p> <a href="https://publications.waset.org/abstracts/22942/press-hardening-of-tubes-with-additional-interior-spray-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9304</span> Review of Modern Gas turbine Blade Cooling Technologies used in Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasath%20Subramanian">Arun Prasath Subramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbine Inlet Temperature is an important parameter which determines the efficiency of a gas turbine engine. The increase in this parameter is limited by material constraints of the turbine blade.The modern Gas turbine blade has undergone a drastic change from a simple solid blade to a modern multi-pass blade with internal and external cooling techniques. This paper aims to introduce the reader the concept of turbine blade cooling, the classification of techniques and further explain some of the important internal cooling technologies used in a modern gas turbine blade along with the various factors that affect the cooling effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20blade" title="gas turbine blade">gas turbine blade</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20technologies" title=" cooling technologies"> cooling technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20cooling" title=" internal cooling"> internal cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pin-fin%20cooling" title=" pin-fin cooling"> pin-fin cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement%20cooling" title=" jet impingement cooling"> jet impingement cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20turbulated%20cooling" title=" rib turbulated cooling"> rib turbulated cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20foam%20cooling" title=" metallic foam cooling"> metallic foam cooling</a> </p> <a href="https://publications.waset.org/abstracts/39117/review-of-modern-gas-turbine-blade-cooling-technologies-used-in-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9303</span> Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Min%20Choi">Seok Min Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Bang"> Minho Bang</a>, <a href="https://publications.waset.org/abstracts/search?q=Seuong%20Yun%20Kim"> Seuong Yun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungmin%20Lee"> Hyungmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gu%20Joo"> Won-Gu Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung%20Hee%20Cho"> Hyung Hee Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=matrix%20cooling" title="matrix cooling">matrix cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rib" title=" rib"> rib</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/80524/numerical-simulation-of-effect-of-various-rib-configurations-on-enhancing-heat-transfer-of-matrix-cooling-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9302</span> Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.K.K.%20Agyeman">E.K.K. Agyeman</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mousseau"> P. Mousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarda"> A. Sarda</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Edelin"> D. Edelin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20speed" title="cooling speed">cooling speed</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity" title=" gravity"> gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenous%20cooling" title=" homogenous cooling"> homogenous cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20impingement" title=" jet impingement"> jet impingement</a> </p> <a href="https://publications.waset.org/abstracts/112429/effect-of-gravity-on-the-controlled-cooling-of-a-steel-block-by-impinging-water-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9301</span> Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20G.%20Youssef">Peter G. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20M.%20Mahmoud"> Saad M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Raya%20K.%20AL-Dadah"> Raya K. AL-Dadah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater" title=" seawater"> seawater</a> </p> <a href="https://publications.waset.org/abstracts/22462/effect-of-evaporator-temperature-on-the-performance-of-water-desalinationrefrigeration-adsorption-system-using-aqsoa-zo2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9300</span> Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiin-Yuh%20Jang">Jiin-Yuh Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Feng%20Gan"> Yu-Feng Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controlled%20cooling" title="controlled cooling">controlled cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=H-Beam" title=" H-Beam"> H-Beam</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress "> thermal stress </a> </p> <a href="https://publications.waset.org/abstracts/62779/optimization-analysis-of-controlled-cooling-process-for-h-shape-steam-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9299</span> Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temsiri%20Sapsaman">Temsiri Sapsaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anocha%20Bhocarattanahkul"> Anocha Bhocarattanahkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=work-roll%20cooling%20system" title="work-roll cooling system">work-roll cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20strip%20process%20adjustment" title=" hot strip process adjustment"> hot strip process adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=feasibility%20study" title=" feasibility study"> feasibility study</a>, <a href="https://publications.waset.org/abstracts/search?q=stand%20reduction" title=" stand reduction"> stand reduction</a> </p> <a href="https://publications.waset.org/abstracts/10836/effective-work-roll-cooling-toward-stand-reduction-in-hot-strip-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9298</span> Integration of Two Thermodynamic Cycles by Absorption for Simultaneous Production of Fresh Water and Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Delgado-Gonzaga">Javier Delgado-Gonzaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Wilfrido%20Rivera"> Wilfrido Rivera</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Ju%C3%A1rez-Romero"> David Juárez-Romero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooling and water purification are processes that have contributed to the economic and social development of the modern world. However, these processes require a significant amount of energy globally. Nowadays, absorption heat pumps have been studied with great interest since they are capable of producing cooling and/or purifying water from low-temperature energy sources such as industrial waste heat or renewable energy. In addition, absorption heat pumps require negligible amounts of electricity for their operation and generally use working fluids that do not represent a risk to the environment. The objective of this work is to evaluate a system that integrates an absorption heat transformer and an absorption cooling system to produce fresh water and cooling from a low-temperature heat source. Both cycles operate with the working pair LiBr-H2O. The integration is possible through the interaction of the LiBr-H2O solution streams between both cycles and also by recycling heat from the absorption heat transformer to the absorption cooling system. Mathematical models were developed to compare the performance of four different configurations. The results showed that the configuration in which the hottest streams of LiBr-H2O solution preheated the coldest streams in the economizers of both cycles was one that achieved the best performance. The interaction of the solution currents and the heat recycling analyzed in this work serves as a record of the possibilities of integration between absorption cycles for cogeneration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20heat%20transformer" title="absorption heat transformer">absorption heat transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20cooling%20system" title=" absorption cooling system"> absorption cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20desalination" title=" water desalination"> water desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20system" title=" integrated system"> integrated system</a> </p> <a href="https://publications.waset.org/abstracts/159517/integration-of-two-thermodynamic-cycles-by-absorption-for-simultaneous-production-of-fresh-water-and-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9297</span> Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Murad%20Zainal%20Abidin">Abdul Murad Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Azahar%20Mohd"> Azahar Mohd</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Idayu%20Arifin"> Nor Idayu Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nor%20Azila%20Khalid"> Siti Nor Azila Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Julzaha%20Zahari%20Mohamad%20Yusof"> Mohd Julzaha Zahari Mohamad Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20cooling" title=" thermoelectric cooling"> thermoelectric cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-cooling%20device" title=" pre-cooling device"> pre-cooling device</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20flow%20meter" title=" heat flow meter"> heat flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20technology" title=" sustainable technology"> sustainable technology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/144569/thermoelectric-cooler-as-a-heat-transfer-device-for-thermal-conductivity-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9296</span> Reduction of Biofilm Formation in Closed Circuit Cooling Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Turetgen">Irfan Turetgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilms" title="biofilms">biofilms</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20towers" title=" cooling towers"> cooling towers</a>, <a href="https://publications.waset.org/abstracts/search?q=fill%20material" title=" fill material"> fill material</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title=" nano silica"> nano silica</a> </p> <a href="https://publications.waset.org/abstracts/102512/reduction-of-biofilm-formation-in-closed-circuit-cooling-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9295</span> Flow Measurement Using Magnetic Meters in Large Underground Cooling Water Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humanyun%20Zahir">Humanyun Zahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Irtsam%20Ghazi"> Irtsam Ghazi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This report outlines the basic installation and operation of magnetic inductive flow velocity sensors on large underground cooling water pipelines. Research on the effects of cathodic protection as well as into other factors that might influence the overall performance of the meter are presented in this paper. The experiments were carried out on an immersion type magnetic meter specially used for flow measurement of cooling water pipeline. An attempt has been made in this paper to outline guidelines that can ensure accurate measurement related to immersion type magnetic meters on underground pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20induction" title="magnetic induction">magnetic induction</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20meter" title=" flow meter"> flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraday%27s%20law" title=" Faraday's law"> Faraday's law</a>, <a href="https://publications.waset.org/abstracts/search?q=immersion" title=" immersion"> immersion</a>, <a href="https://publications.waset.org/abstracts/search?q=cathodic%20protection" title=" cathodic protection"> cathodic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=anode" title=" anode"> anode</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode" title=" cathode"> cathode</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding" title=" grounding"> grounding</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20information%20management%20system" title=" plant information management system"> plant information management system</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodes" title=" electrodes"> electrodes</a> </p> <a href="https://publications.waset.org/abstracts/23671/flow-measurement-using-magnetic-meters-in-large-underground-cooling-water-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9294</span> Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Al-Bloushi">Mohammed Al-Bloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyun%20Jeong"> Sanghyun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Torove%20Leiknes"> Torove Leiknes </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algae" title="algae">algae</a>, <a href="https://publications.waset.org/abstracts/search?q=biocide" title=" biocide"> biocide</a>, <a href="https://publications.waset.org/abstracts/search?q=biofouling" title=" biofouling"> biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20cooling%20tower" title=" seawater cooling tower"> seawater cooling tower</a> </p> <a href="https://publications.waset.org/abstracts/74335/alternative-biocides-to-reduce-algal-fouling-in-seawater-industrial-cooling-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9293</span> Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Okechukwu%20Onah">Thomas Okechukwu Onah</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyekachi%20Marcel%20Egwuagu"> Onyekachi Marcel Egwuagu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanistic-model" title=" mechanistic-model"> mechanistic-model</a>, <a href="https://publications.waset.org/abstracts/search?q=plates" title=" plates"> plates</a>, <a href="https://publications.waset.org/abstracts/search?q=impingements" title=" impingements"> impingements</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionless-numbers" title=" dimensionless-numbers"> dimensionless-numbers</a> </p> <a href="https://publications.waset.org/abstracts/187729/experimental-modeling-and-simulation-of-zero-surface-temperature-of-controlled-water-jet-impingement-cooling-system-for-hot-rolled-steel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9292</span> Mathematical Modeling of District Cooling Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Alghool">Dana Alghool</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20%20ElMekkawy"> Tarek ElMekkawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haouari"> Mohamed Haouari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Elomari"> Adel Elomari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annual%20Cooling%20Demand" title="Annual Cooling Demand">Annual Cooling Demand</a>, <a href="https://publications.waset.org/abstracts/search?q=Compression%20Chiller" title=" Compression Chiller"> Compression Chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathematical%20Modeling" title=" Mathematical Modeling"> Mathematical Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=District%20Cooling%20Systems" title=" District Cooling Systems"> District Cooling Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Optimization" title=" Optimization"> Optimization</a> </p> <a href="https://publications.waset.org/abstracts/118677/mathematical-modeling-of-district-cooling-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9291</span> Hydrothermal Energy Application Technology Using Dam Deep Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yooseo%20Pang">Yooseo Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongwoong%20Choi"> Jongwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Cho"> Yong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongchae%20Jeong"> Yongchae Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20energy" title="hydrothermal energy">hydrothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC" title=" HVAC"> HVAC</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20data%20center" title=" internet data center"> internet data center</a>, <a href="https://publications.waset.org/abstracts/search?q=free-cooling" title=" free-cooling"> free-cooling</a> </p> <a href="https://publications.waset.org/abstracts/162403/hydrothermal-energy-application-technology-using-dam-deep-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9290</span> Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasaq%20Adekunle%20Olabomi">Rasaq Adekunle Olabomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20load" title="cooling load">cooling load</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption%20cooling%20system" title=" absorption cooling system"> absorption cooling system</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20performance" title=" coefficient of performance"> coefficient of performance</a>, <a href="https://publications.waset.org/abstracts/search?q=radiant%20floor" title=" radiant floor"> radiant floor</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20saving" title=" cost saving"> cost saving</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20reduction" title=" emission reduction"> emission reduction</a> </p> <a href="https://publications.waset.org/abstracts/191918/feasibility-and-energy-efficiency-analysis-of-chilled-water-radiant-cooling-system-of-office-apartment-in-nigerias-tropical-climate-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">24</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9289</span> Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruobing%20Liang">Ruobing Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jili%20Zhang"> Jili Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Zhou"> Chao Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20chiller" title="absorption chiller">absorption chiller</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PVT%20collector" title=" solar PVT collector"> solar PVT collector</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20heating%20and%20cooling" title=" solar heating and cooling"> solar heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20air-conditioning" title=" solar air-conditioning"> solar air-conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20study" title=" parametric study"> parametric study</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/36328/parametric-study-of-a-solar-heating-and-cooling-system-with-hybrid-photovoltaicthermal-collectors-in-north-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9288</span> Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Hasan">W. Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Farhat"> H. Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhilo"> A. Alhilo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Tamimi"> L. Tamimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20lattice%20Boltzmann%20method" title="hybrid lattice Boltzmann method">hybrid lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunstensen%20model" title=" Gunstensen model"> Gunstensen model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant-covered%20droplet" title=" surfactant-covered droplet"> surfactant-covered droplet</a>, <a href="https://publications.waset.org/abstracts/search?q=Marangoni%20stress" title=" Marangoni stress"> Marangoni stress</a> </p> <a href="https://publications.waset.org/abstracts/66566/hybrid-quasi-steady-thermal-lattice-boltzmann-model-for-studying-the-behavior-of-oil-in-water-emulsions-used-in-machining-tool-cooling-and-lubrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9287</span> The Effect of CPU Location in Total Immersion of Microelectronics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Almaneea">A. Almaneea</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kapur"> N. Kapur</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20L.%20Summers"> J. L. Summers</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Thompson"> H. M. Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPU%20location" title="CPU location">CPU location</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20centre%20cooling" title=" data centre cooling"> data centre cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink%20in%20enclosures" title=" heat sink in enclosures"> heat sink in enclosures</a>, <a href="https://publications.waset.org/abstracts/search?q=immersed%20microelectronics" title=" immersed microelectronics"> immersed microelectronics</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20natural%20convection%20in%20enclosures" title=" turbulent natural convection in enclosures"> turbulent natural convection in enclosures</a> </p> <a href="https://publications.waset.org/abstracts/27636/the-effect-of-cpu-location-in-total-immersion-of-microelectronics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9286</span> An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Djalal">Hamed Djalal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title="evaporative cooling">evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20tower" title=" cooling tower"> cooling tower</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20washer" title=" air washer"> air washer</a>, <a href="https://publications.waset.org/abstracts/search?q=humidification" title=" humidification"> humidification</a>, <a href="https://publications.waset.org/abstracts/search?q=moist%20air" title=" moist air"> moist air</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20mass%20transfer" title=" and mass transfer"> and mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/152695/an-analytical-and-numerical-solutions-for-the-thermal-analysis-of-a-mechanical-draft-wet-cooling-tower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9285</span> Assessment of Environmental Impact of Rain Water and Industrial Water Leakage in the Libyan Iron and Steel Company in the Sea Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Alzarug%20Aburugba">Mohamed Alzarug Aburugba</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Mohamed%20Eltanashi"> Rashid Mohamed Eltanashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainwater is considered an essential water resource, as it contributes to filling the deficit in water resources, especially in countries that suffer from a scarcity of natural water sources. One of the important issues facing the Water and Gas Services Department at the Libyan Iron and Steel Company is the large loss of quantities of industrial water, both direct and indirect cooling water (DCW, ICW), produced within the company due to leaks in the cooling systems of the factories of the Libyan Iron and Steel Company. These amounts of polluted industrial water leakage are mixed with rainwater collected by stormwater stations (6 stations) in LISCO, which is pumped to the sea through pumps with a very high flow rate, and thus, this will carry a lot of waste, heavy metals, and oils to the sea, which negatively affects marine environmental resources. This paper assesses the environmental impact of the quantities of rainwater and mixed industrial water in stormwater stations in the Libyan Iron and Steel Company and methods of mitigation, treating pollutants and reusing them as industrial water in the production processes of the steel industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainwater" title="rainwater">rainwater</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation" title=" mitigation"> mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources" title=" natural resources"> natural resources</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20water." title=" industrial water."> industrial water.</a> </p> <a href="https://publications.waset.org/abstracts/181201/assessment-of-environmental-impact-of-rain-water-and-industrial-water-leakage-in-the-libyan-iron-and-steel-company-in-the-sea-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=310">310</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=311">311</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cooling%20water&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>