CINXE.COM
Search results for: sarahan thrust (ST)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sarahan thrust (ST)</title> <meta name="description" content="Search results for: sarahan thrust (ST)"> <meta name="keywords" content="sarahan thrust (ST)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sarahan thrust (ST)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sarahan thrust (ST)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 244</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sarahan thrust (ST)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> A study on Structural analysis of Out-of-Sequence Thrust along Sutlej River Valley (Jhakri-Wangtu section) Himachal Pradesh Higher Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Sutlej River Valley in Himachal Pradesh, India, is home to four Out-of-Sequence Thrusts (OOST) in the Higher Himalaya. These OOSTs include Jhakri Thrust (JT), Sarahan Thrust (ST), Chaura Thrust (CT), and Jeori Dislocation (JD). The study focuses on the rock types of these OOSTs, including ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Microstructural tests reveal a progressive increase in strain approaching the Jakhri thrust zone, with temperatures increasing from 400 to 750°C. The Chaura Thrust is assumed to be folded with this anticlinorium, with various branches that make up the thrust system. Fieldwork and microstructural research have revealed the following: (a) initial top-to-SW sense of ductile shearing (Chaura thrust); (b) brittle-ductile extension (Jeori Dislocation); and (c) uniform top-to-SW sense of brittle shearing (Jhakri thrust). Samples of Rampur Quartzite from the Rampur Group of Lesser Himalayan Crystalline and schistose rock from the Jutogh Group of Greater Himalayan Crystalline were examined.The study emphasizes the value of microscopic research in detecting different types of crenulated schistosity and documenting mylonitized zones. The paper explains the field evidence for the OOST and comes to the conclusion that the Chaura Thrust is not a blind thrust. The paper describes the box fold and its characteristics in the Himachal Himalayan regional geology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Out-of-sequence%20thrust%20%28OOST%29" title="Out-of-sequence thrust (OOST)">Out-of-sequence thrust (OOST)</a>, <a href="https://publications.waset.org/abstracts/search?q=jakhri%20thrust%20%28JT%29" title=" jakhri thrust (JT)"> jakhri thrust (JT)</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29" title=" sarahan thrust (ST)"> sarahan thrust (ST)</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust%20%28CT%29" title=" chaura thrust (CT)"> chaura thrust (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=jeori%20dislocation%20%28JD%29" title=" jeori dislocation (JD)"> jeori dislocation (JD)</a> </p> <a href="https://publications.waset.org/abstracts/168729/a-study-on-structural-analysis-of-out-of-sequence-thrust-along-sutlej-river-valley-jhakri-wangtu-section-himachal-pradesh-higher-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Unraveling the Puzzle of Out-of-Sequence Thrusting in the Higher Himalaya: Focus on Jhakri-Chaura-Sarahan Thrust, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examines the structural analysis of Chaura Thrust in Himachal Pradesh, India, focusing on the activation timing of Main Central Thrust (MCT) and South Tibetan Detachment System (STDS), mylonitised zones, and the characterization of box fold and its signature in the regional geology of Himachal Himalaya. The research aims to document the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCTL and in between a zone south of MCTU. The study also documents the GBM-associated temperature range and the activation of Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings contribute to understanding the structural analysis of Chaura Thrust and its signature in the regional geology of Himachal Himalaya. The study highlights the significance of microscopic studies in documenting mylonitized zones and identifying various types of crenulated schistosity. The study concludes that Chaura Thrust is not a blind thrust and details the field evidence for the OOST. The study characterizes the box fold and its signature in the regional geology of Himachal Himalaya. The study also documents the activation timing and ages of MCT, STDS, MBT, and MFT and identifies various types of crenulated schistosity under the microscope. The study also highlights the significance of microscopic studies in the structural analysis of Chaura Thrust. Finally, the study documents the activation of Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh and the expectations for strain variation near the OOST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title="Chaura Thrust">Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Higher%20Himalaya" title=" Higher Himalaya"> Higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhakri%20Thrust" title=" Jhakri Thrust"> Jhakri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Main%20Central%20Thrust" title=" Main Central Thrust"> Main Central Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Out-of-Sequence%20Thrust" title=" Out-of-Sequence Thrust"> Out-of-Sequence Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a> </p> <a href="https://publications.waset.org/abstracts/168724/unraveling-the-puzzle-of-out-of-sequence-thrusting-in-the-higher-himalaya-focus-on-jhakri-chaura-sarahan-thrust-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Tectonic Complexity: Out-of-Sequence Thrusting in the Higher Himalaya of Jhakri-Sarahan region, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study focuses on the tectonics of out-of-sequence thrusting (OOST) in the NW region of the Himalaya, particularly in Himachal Pradesh. The research aims to identify the features and nature of OOST in the field and the associated rock types and lithological boundaries in the field of NW Himalaya, Himachal Pradesh, India. The research employs fieldwork and micro-structure observations, correlations, and analyses to identify and analyze the OOST features and associated rock types. The study reveals the presence of three OOSTs, namely Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT), which consist of several branches, some of which are still active. The thrust system exhibits varying internal geometry, including box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. The CT, which is concealed beneath Jutogh Thrust sheet, represents a steepened downward thrust, while the JT has a western dip and is south-westward verging. The research provides crucial information on the tectonics of OOST in the NW region of the Himalaya, particularly in Himachal Pradesh, which is crucial in understanding the regional geological evolution and associated hazards. The data were collected through fieldwork and micro-structure observations, correlations, and analyses of rock samples. The data were analyzed using tectonic and geochronological techniques to identify the nature and characteristics of OOST. The research addressed the question of identifying Higher Himalayan OOST in the field of NW Himalaya, Himachal Pradesh, India, and the associated rock types and lithological boundaries. The study concludes that there is minimal documentation and a lack of suitable exposure of rocks to generalize the features of OOST in the field in NW Higher Himalaya, Himachal Pradesh. The study recommends more extensive mapping and fieldwork to improve understanding of OOST in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust%20%28OOST%29" title="out-of-sequence thrust (OOST)">out-of-sequence thrust (OOST)</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20central%20thrust%20%28MCT%29" title=" main central thrust (MCT)"> main central thrust (MCT)</a>, <a href="https://publications.waset.org/abstracts/search?q=jhakri%20thrust%20%28JT%29" title=" jhakri thrust (JT)"> jhakri thrust (JT)</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29" title=" sarahan thrust (ST)"> sarahan thrust (ST)</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust%20%28CT%29" title=" chaura thrust (CT)"> chaura thrust (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20himalaya%20%28HH%29" title=" higher himalaya (HH)"> higher himalaya (HH)</a> </p> <a href="https://publications.waset.org/abstracts/168719/tectonic-complexity-out-of-sequence-thrusting-in-the-higher-himalaya-of-jhakri-sarahan-region-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Quantifying Late Cenozoic Out‐of‐Sequence Thrusting at Chaura, Sutlej Valley, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out-of-sequence thrusts (OOST) are reported at different geographic locations with various local names along Siwalik Himalaya (SH), Lesser Himalaya (LH), Higher Himalaya (HH) from Bhutan, India, Nepal, and Pakistan Himalayan range. Most of OOSTs have been identified within the upper LH, and the lower HH based on geochronological age jump across. These thrusts activated from Late Miocene to recent. The Chaura Thrust (CT) was deciphered from age jump of Apatite Fission Track (AFT) and considered as blind thrust base on variable exhumation rates in Chaura region, Satluj river valley, Himachal Pradesh. CT is located north of Jhakri Thrust (JhT) and is also differently identified as Sarahan thrust (ST). Structural documentation from the rocks near the OOST in Chaura was not so far done. Detail structural study of the Jeori Group of rocks was carried out in this study to understand the manifestation of the Chaura thrust and associated structures in meso- to micro-scale. Box fold, scar fold, kink fold, crenulation cleavages, and boudins are developed in the Chaura region. These structures usually do not indicate shear sense. When studied under an optical microscope, the Chaura samples reveal that the mica fish are usually lenticular with aspect ratio (R) varying from 6–11 and inclination angle (α) from 15–40°. According to ‘R’ and ‘α’, elongated sigmoid shaped mica fish and parallelogram shaped mica fish were also documented. Asymmetric mica fish demonstrate top-to-S/SW ductile shear, which is similar as that of Chaura thrust. Grain boundary migration (GBM) structures in quartzo-feldspathic grains from Jeori Group of rocks indicate deformation temperature ranging from 400 to 650°C. This can indicate that the OOST at Chaura, i.e., the Chaura Thrust, underwent thrusting in the ductile regime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title="out-of-sequence thrust">out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust" title=" chaura thrust"> chaura thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust" title=" sarahan thrust"> sarahan thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=jakhri%20thrust" title=" jakhri thrust"> jakhri thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20himalaya" title=" higher himalaya"> higher himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=s%2Fc-%20fabric" title=" s/c- fabric"> s/c- fabric</a> </p> <a href="https://publications.waset.org/abstracts/168522/quantifying-late-cenozoic-outofsequence-thrusting-at-chaura-sutlej-valley-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Tectonics of Out-of-Sequence Thrusting in NW Himachal Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT) are the three OOST along Jakhri-Chaura segment along the Sutlej river valley in Himachal Pradesh. CT is deciphered only by Apatite Fission Track dating. Such geochronological information is not currently accessible for the Jhakri and Sarahan thrusts. JT was additionally validated as OOST without any dating. The described rock types include ductile sheared gneisses and upper greenschist-amphibolite facies metamorphosed schists. Locally, the Munsiari (Jutogh) Thrust is referred to as the JT. Brittle shear, the JT, borders the research area's southern and ductile shear, the CT, and its northern margins. The JT has a 50° western dip and is south-westward verging. It is 15–17 km deep. A progressive rise in strain towards the JT zone based on microstructural tests was observed by previous researchers. The high-temperature ranges of the MCT root zone are cited in the current work as supportive evidence for the ductile nature of the OOST. In Himachal Pradesh, the lithological boundaries for OOST are not set. In contrast, the Sarahan thrust is NW-SE striking and 50-80 m wide. ST and CT are probably equivalent and marked by a sheared biotite-chlorite matrix with a top-to-SE kinematic indicator. It is inferred from cross-section balancing that the CT is folded with this anticlinorium. These thrust systems consist of several branches, some of which are still active. The thrust system exhibits complex internal geometry consisting of box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. Box folds are observed on the hanging wall of the Chaura thrust. The ductile signature of CT represents steepen downward of the thrust. After the STDSU stopped deformation, out-of-sequence thrust was initiated in some sections of the Higher Himalaya. A part of GHC and part of the LH is thrust southwestward along the Jutogh Thrust/Munsiari Thrust/JT as also the Jutogh Nappe. The CT is concealed beneath Jutogh Thrust sheet hence the basal part of GHC is unexposed to the surface in Sutlej River section. Fieldwork and micro-structural studies of the Greater Himalayan Crystalline (GHC) along the Sutlej section reveal (a) initial top-to-SW sense of ductile shearing (CT); (b) brittle-ductile extension (ST); and (c) uniform top-to-SW sense of brittle shearing (JT). A group of samples of schistose rock from Jutogh Group of Greater Himalayan Crystalline and Quartzite from Rampur Group of Lesser Himalayan Crystalline were analyzed. No such physiographic transition in that area is to determine a break in the landscape due to OOST. OOSTs from GHC are interpreted mainly from geochronological studies to date, but proper field evidence is missing. Apart from minimal documentation in geological mapping for OOST, there exists a lack of suitable exposure of rock to generalize the features of OOST in the field in NW Higher Himalaya. Multiple sets of thrust planes may be activated within this zone or a zone along which OOST is engaged. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title="out-of-sequence thrust">out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20central%20thrust" title=" main central thrust"> main central thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20boundary%20migration" title=" grain boundary migration"> grain boundary migration</a>, <a href="https://publications.waset.org/abstracts/search?q=South%20Tibetan%20detachment%20system" title=" South Tibetan detachment system"> South Tibetan detachment system</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakhri%20Thrust" title=" Jakhri Thrust"> Jakhri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title=" Chaura Thrust"> Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20Himalaya" title=" higher Himalaya"> higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20Himalayan%20crystalline" title=" greater Himalayan crystalline"> greater Himalayan crystalline</a> </p> <a href="https://publications.waset.org/abstracts/168640/tectonics-of-out-of-sequence-thrusting-in-nw-himachal-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Tectonics of Out-of-Sequence Thrusting in Higher Himalaya- Example from Jhakri-Chaura-Sarahan Region, Himachal Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Out-of-Sequence Thrust (OOST) is a common phenomenon in collisional tectonic settings like the Himalayas. These OOSTs are activated in different locations at different time frames. These OOST are linked with the multiple Himalayan Thrusts. Apart from minimal documentation in geological mapping for OOST, there exists a lack of field data to establish OOST in the field. This work has considered three thrusts from NW Himalaya in Himachal Pradesh with published data from other sources, allowing a re-examination for correlation of OOST. For the Sutlej section, the approach has been to do fieldwork and microstructural studies. The information related to the cross-cut signature of S/C- and relative time relation could help to predict the nature of OOST. The activation timing, along with the basis of identification of OOST in Higher Himalayan, was documented in various literature. Compilation of the Grain Boundary Migration (GBM) associated temperature range (400–750 °C) was documented from microstructural studies along the Jhakri-Chaura section. No such significant temperature variation across thrusts was observed. Strain variation paths using S Ʌ C angle measurement were carried out along the Jeori-Wangtu transect to distinguish overprinting structures for OOSTs. Near the Chaura Thrust (CT), angular variation of S Ʌ C was documented, and it varies within a range of 15° - 28 °. Along the NH22 (National Highway, 22), all tectonic units of the orogen are exposed in NW Himalaya, INDIA. But there are inherent difficulties in finding field evidence of OOST, largely due to the lack of adequate surface morphology, including topography and drainage pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust%20%28OOST%29" title="out-of-sequence thrust (OOST)">out-of-sequence thrust (OOST)</a>, <a href="https://publications.waset.org/abstracts/search?q=main%20central%20thrust%20%28MCT%29" title=" main central thrust (MCT)"> main central thrust (MCT)</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20tibetan%20detachment%20system%20%28STDS%29" title=" south tibetan detachment system (STDS)"> south tibetan detachment system (STDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=jhakri%20thrust%20%28JT%29" title=" jhakri thrust (JT)"> jhakri thrust (JT)</a>, <a href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29" title=" sarahan thrust (ST)"> sarahan thrust (ST)</a>, <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust%20%28CT%29" title=" chaura thrust (CT)"> chaura thrust (CT)</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20himalaya%20%28HH%29" title=" higher himalaya (HH)"> higher himalaya (HH)</a>, <a href="https://publications.waset.org/abstracts/search?q=greater%20himalayan%20crystalline%20%28GHC%29" title=" greater himalayan crystalline (GHC)"> greater himalayan crystalline (GHC)</a> </p> <a href="https://publications.waset.org/abstracts/168649/tectonics-of-out-of-sequence-thrusting-in-higher-himalaya-example-from-jhakri-chaura-sarahan-region-himachal-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Main%20Central%20Thrust" title="Main Central Thrust">Main Central Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhakri%20Thrust" title=" Jhakri Thrust"> Jhakri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title=" Chaura Thrust"> Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Higher%20Himalaya" title=" Higher Himalaya"> Higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Out-of-Sequence%20Thrust" title=" Out-of-Sequence Thrust"> Out-of-Sequence Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a> </p> <a href="https://publications.waset.org/abstracts/168723/the-structural-analysis-of-out-of-sequence-thrust-insights-from-chaura-thrust-of-higher-himalaya-in-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Meso-Scopic Structural Analysis of Chaura Thrust, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jhakri Thrust (JT) coeval of Sarahan Thrust (ST) was later considered to be part of Chaura Thrust (CT). The Main Central Thrust (MCT) delimits the southern extreme of Higher Himalaya, whereas the northern boundary defines by South Tibetan Detachment System (STDS). STDS is parallel set of north dipping extensional faults. The activation timing of MCT and STDS. MCT activated in two parts (MCT-L during 15- 0.7 Ma, and MCT-U during 25-14 Ma). Similarly, STDS triggered in two parts (STDS-L during 24-12 Ma, and STDS-U during 19-14 Ma). The activation ages for MBT and MFT. Besides, the MBT occurred during 11-9 Ma, and MFT followed as <2.5 Ma. There are two mylonitised zones (zone of S-C fabric) found under the microscope. Dynamic and bulging recrystallization and sub-grain formation was documented under the optical microscope from samples collected from these zones. The varieties of crenulated schistosity are shown in photomicrographs. In a rare and uncommon case, crenulation cleavage and sigmoid Muscovite were found together side-by-side. Recrystallized quartzo-feldspathic grains exist in between crenulation cleavages. These thin-section studies allow three possible hypotheses for such variations in crenulation cleavages. S/SE verging meso- and micro-scale box folds around Chaura might be a manifestation of some structural upliftment. Near Chaura, kink folds are visible. Prominent asymmetric shear sense indicators in augen mylonite are missing in meso-scale but dominantly present under the microscope. The main foliation became steepest (range of dip ~ 65 – 80 º) at this place. The aim of this section is to characterize the box fold and its signature in the regional geology of Himachal Himalaya. Grain Boundary Migration (GBM) associated temperature range (400–750 ºC) from microstructural studies in grain scale along Jhakri-Wangtu transect documented. Oriented samples were collected from the Jhakri-Chaura transect at a regular interval of ~ 1km for strain analysis. The Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh is documented a decade ago. The OOST in other parts of the Himalayas is represented as a line in between MCTL and MCTU. But In Himachal Pradesh area, OOST activated the MCTL as well as in between a zone located south of MCTU. The expectations for strain variation near the OOST are very obvious. But multiple sets of OOSTs may produce a zigzag pattern of strain accumulation for this area and figure out the overprinting structures for multiple sets of OOSTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title="Chaura Thrust">Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Main%20Central%20Thrust" title=" Main Central Thrust"> Main Central Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a> </p> <a href="https://publications.waset.org/abstracts/168651/meso-scopic-structural-analysis-of-chaura-thrust-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Design and Analysis of a Clustered Nozzle Configuration and Comparison of Its Thrust</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Hadi%20Butt">Abdul Hadi Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Asfandyar%20Arshad"> Asfandyar Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to study the thrust variation in different configurations of clustered nozzles. It involves the design and analysis of clustered configuration of nozzles using Ansys fluent. Clustered nozzles with different configurations are simulated and compared on basis of effective exhaust thrust. Mixing length for the flow interaction is also calculated. Further clustered configurations are analyzed over different altitudes. An optimum value of the thrust among different configurations is proposed at the end of comparisons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD%20nozzle" title="CD nozzle">CD nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster" title=" cluster"> cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/47169/design-and-analysis-of-a-clustered-nozzle-configuration-and-comparison-of-its-thrust" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Main%20Central%20Thrust" title="Main Central Thrust">Main Central Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhakri%20Thrust" title=" Jhakri Thrust"> Jhakri Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaura%20Thrust" title=" Chaura Thrust"> Chaura Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Higher%20Himalaya" title=" Higher Himalaya"> Higher Himalaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Out-of-Sequence%20Thrust" title=" Out-of-Sequence Thrust"> Out-of-Sequence Thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarahan%20Thrust" title=" Sarahan Thrust"> Sarahan Thrust</a> </p> <a href="https://publications.waset.org/abstracts/168721/structural-geology-along-the-jhakri-wangtu-road-jutogh-section-himachal-pradesh-nw-higher-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20mitigation" title="earthquake mitigation">earthquake mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20recordings" title=" seismic recordings"> seismic recordings</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS%20measurements" title=" GPS measurements"> GPS measurements</a> </p> <a href="https://publications.waset.org/abstracts/168985/applications-of-out-of-sequence-thrust-movement-for-earthquake-mitigation-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Thrust Vectoring Control of Supersonic Flow through an Orifice Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Mnafeg">I. Mnafeg</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abichou"> A. Abichou</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Beji"> L. Beji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title="flow separation">flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidic%20thrust%20vectoring" title=" fluidic thrust vectoring"> fluidic thrust vectoring</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20jet" title=" secondary jet"> secondary jet</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/31098/thrust-vectoring-control-of-supersonic-flow-through-an-orifice-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Turbine Engine Performance Experimental Tests of Subscale UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haluk%20Altay">Haluk Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Y%C3%BCcel"> Bilal Yücel</a>, <a href="https://publications.waset.org/abstracts/search?q=Berkcan%20Ulcay"> Berkcan Ulcay</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%C3%BCcel%20Ayd%C4%B1n"> Yücel Aydın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the design, integration, and testing of measurement systems required for performance tests of jet engines used in small-scale unmanned aerial vehicles are described. Performance tests are carried out as thrust and fuel consumption. For thrust tests, measurements are made using a load cell. Amplifier and filter designs have been made for the load cell to measure accurately to meet the desired sensitivity. It was calibrated by making multiple measurements at different thrust levels. As a result of these processes, the cycle thrust graph was obtained. For fuel consumption tests, tests are carried out using a flow meter. Performance graphics were obtained by finding the fuel consumption for different RPM levels of the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20engine" title="jet engine">jet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=loadcell" title=" loadcell"> loadcell</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/168678/turbine-engine-performance-experimental-tests-of-subscale-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> High Thrust Upper Stage Solar Hydrogen Rocket Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20Assem%20Soliman%20Mossallam">Maged Assem Soliman Mossallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conversion of solar thruster model to an upper stage hydrogen rocket is considered. Solar thruster categorization limits its capabilities to low and moderate thrust system with high specific impulse. The current study proposes a different concept for such systems by increasing the thrust which enables using as an upper stage rocket and for future launching purposes. A computational model for the thruster is discussed for solar thruster subsystems. The first module depends on ray tracing technique to determine the intercepted solar power by the hydrogen combustion chamber. The cavity receiver is modeled using finite volume technique. The final module imports the heated hydrogen properties to the nozzle using quasi one dimensional simulation. The probability of shock waves formulation inside the nozzle is almost diminished as the outlet pressure in space environment tends to zero. The computational model relates the high thrust hydrogen rocket conversion to the design parameters and operating conditions of the thruster. Three different designs for solar thruster systems are discussed. The first design is a low thrust high specific impulse design that produces about 10 Newton of thrust .The second one output thrust is about 250 Newton and the third design produces about 1000 Newton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20propulsion" title="space propulsion">space propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20rocket" title=" hydrogen rocket"> hydrogen rocket</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20impulse" title=" specific impulse "> specific impulse </a> </p> <a href="https://publications.waset.org/abstracts/128850/high-thrust-upper-stage-solar-hydrogen-rocket-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Unveiling the Chaura Thrust: Insights into a Blind Out-of-Sequence Thrust in Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Chaura Thrust, located in Himachal Pradesh, India, is a prominent geological feature that exhibits characteristics of an out-of-sequence thrust fault. This paper explores the geological setting of Himachal Pradesh, focusing on the Chaura Thrust's unique characteristics, its classification as an out-of-sequence thrust, and the implications of its presence in the region. The introduction provides background information on thrust faults and out-of-sequence thrusts, emphasizing their significance in understanding the tectonic history and deformation patterns of an area. It also outlines the objectives of the paper, which include examining the Chaura Thrust's geological features, discussing its classification as an out-of-sequence thrust, and assessing its implications for the region. The paper delves into the geological setting of Himachal Pradesh, describing the tectonic framework and providing insights into the formation of thrust faults in the region. Special attention is given to the Chaura Thrust, including its location, extent, and geometry, along with an overview of the associated rock formations and structural characteristics. The concept of out-of-sequence thrusts is introduced, defining their distinctive behavior and highlighting their importance in the understanding of geological processes. The Chaura Thrust is then analyzed in the context of an out-of-sequence thrust, examining the evidence and characteristics that support this classification. Factors contributing to the out-of-sequence behavior of the Chaura Thrust, such as stress interactions and fault interactions, are discussed. The geological implications and significance of the Chaura Thrust are explored, addressing its impact on the regional geology, tectonic evolution, and seismic hazard assessment. The paper also discusses the potential geological hazards associated with the Chaura Thrust and the need for effective mitigation strategies in the region. Future research directions and recommendations are provided, highlighting areas that warrant further investigation, such as detailed structural analyses, geodetic measurements, and geophysical surveys. The importance of continued research in understanding and managing geological hazards related to the Chaura Thrust is emphasized. In conclusion, the Chaura Thrust in Himachal Pradesh represents an out-of-sequence thrust fault that has significant implications for the region's geology and tectonic evolution. By studying the unique characteristics and behavior of the Chaura Thrust, researchers can gain valuable insights into the geological processes occurring in Himachal Pradesh and contribute to a better understanding and mitigation of seismic hazards in the area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaura%20thrust" title="chaura thrust">chaura thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=himachal%20pradesh" title=" himachal pradesh"> himachal pradesh</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20setting" title=" geological setting"> geological setting</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonic%20framework" title=" tectonic framework"> tectonic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20formations" title=" rock formations"> rock formations</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20characteristics" title=" structural characteristics"> structural characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20interactions" title=" stress interactions"> stress interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20interactions" title=" fault interactions"> fault interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20implications" title=" geological implications"> geological implications</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard%20assessment" title=" seismic hazard assessment"> seismic hazard assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20hazards" title=" geological hazards"> geological hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=future%20research" title=" future research"> future research</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20strategies." title=" mitigation strategies."> mitigation strategies.</a> </p> <a href="https://publications.waset.org/abstracts/169847/unveiling-the-chaura-thrust-insights-into-a-blind-out-of-sequence-thrust-in-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Q.%20Kelly">Nigel Q. Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Siddiqi"> Zaid Siddiqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20W.%20Lee"> Jin W. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=Coanda" title=" Coanda"> Coanda</a>, <a href="https://publications.waset.org/abstracts/search?q=lift" title=" lift"> lift</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/127878/computational-fluid-dynamics-analysis-and-optimization-of-the-coanda-unmanned-aerial-vehicle-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> The Immediate Effects of Thrust Manipulation for Thoracic Hyperkyphosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Betul%20Taspinar">Betul Taspinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eda%20O.%20Okur"> Eda O. Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Saracoglu"> Ismail Saracoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Okur"> Ismail Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferruh%20Taspinar"> Ferruh Taspinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thoracic hyperkyphosis, is a well-known spinal phenomenon, refers to an excessive curvature (> 40 degrees) of the thoracic spine. The aim of this study was to explore the effectiveness of thrust manipulation on thoracic spine alignment. 31 young adults with hyperkyphosis diagnosed with Spinal Mouse® device were randomly assigned either thrust manipulation group (n=16, 11 female, 5 male) or sham manipulation group (n=15, 8 female, 7 male). Thrust and sham manipulations were performed by a blinded physiotherapist who is a certificated expert in musculoskeletal physiotherapy. Thoracic kyphosis degree was measured after the interventions via Spinal Mouse®. Wilcoxon test was used to analyse the data obtained before and after the manipulation for each group, whereas Mann-Whitney U test was used to compare the groups. The mean of baseline thoracic kyphosis degrees in thrust and sham groups were 50.69 o ± 7.73 and 48.27o ± 6.43, respectively. There was no statistically significant difference between groups in terms of initial thoracic kyphosis degrees (p=0.51). After the interventions, the mean of thoracic kyphosis degree in thrust and sham groups were measured as 44.06o ± 6.99 and 48.93o ± 6.57 respectively (p=0.03). There was no statistically significant difference between before and after interventions in sham group (p=0.33), while the mean of thoracic kyphosis degree in thrust group decreased significantly (p=0.00). Thrust manipulation can attenuate thoracic hyperkyphosis immediately in young adults by not using placebo effect. Manipulation might provide accurate proprioceptive (sensory) input to the spine joints and reduce kyphosis by restoring normal segment mobility. Therefore thoracic manipulation might be included in the physiotherapy programs to treat hyperkyphosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperkyphosis" title="hyperkyphosis">hyperkyphosis</a>, <a href="https://publications.waset.org/abstracts/search?q=manual%20therapy" title=" manual therapy"> manual therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20mouse" title=" spinal mouse"> spinal mouse</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a> </p> <a href="https://publications.waset.org/abstracts/60263/the-immediate-effects-of-thrust-manipulation-for-thoracic-hyperkyphosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Unsteadiness Effects on Variable Thrust Nozzle Performance </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Tadayon%20Mousavi"> S. Tadayon Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nozzle" title="nozzle">nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady" title=" unsteady"> unsteady</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thrust" title=" variable thrust"> variable thrust</a> </p> <a href="https://publications.waset.org/abstracts/1463/unsteadiness-effects-on-variable-thrust-nozzle-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Onal">O. Onal</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Turan"> O. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbofan" title="turbofan">turbofan</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a> </p> <a href="https://publications.waset.org/abstracts/51790/calculation-and-comparison-of-a-turbofan-engine-performance-parameters-with-various-definitions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Vashistha">Rohit Vashistha</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Kumar%20Gupta"> Amit Kumar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Ravishankar"> G. P. Ravishankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20P.%20Padwale"> Mahesh P. Padwale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=engine%20mounts" title="engine mounts">engine mounts</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements%20analysis" title=" finite elements analysis"> finite elements analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/47003/engine-thrust-estimation-by-strain-gauging-of-engine-mount-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Design & Development of a Static-Thrust Test-Bench for Aviation/UAV Based Piston Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Muhammad%20Basit%20Ali">Syed Muhammad Basit Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Saleem"> Usama Saleem</a>, <a href="https://publications.waset.org/abstracts/search?q=Irtiza%20Ali"> Irtiza Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal combustion engines have been pioneers in the aviation industry, use of piston engines for aircraft propulsion, from propeller-driven bi-planes to turbo-prop, commercial, and cargo airliners. To provide an adequate amount of thrust piston engine rotates the propeller at a specific rpm, allowing enough mass airflow. Thrust is the only forward-acting force of an aircraft that helps heavier than air bodies to fly, depending on the mathematical model and variables included in that with the correct measurement. Test-benches have been a bench-mark in the aerospace industry to analyse the results before a flight, having paramount significance in reliability and safety engineering, depending on the mathematical model and variables included in that with the correct measurement. Calculation of thrust from a piston engine also depends on environmental changes, the diameter of the propeller, and the density of air. The project would be centered on piston engines used in the aviation industry for light aircraft and UAVs. A static thrust test bench involves various units, each performing a designed purpose to monitor and display. Static thrust tests are performed on the ground, and safety concerns hold paramount importance. The execution of this study involves research, design, manufacturing, and results based on reverse engineering initiating from virtual design, analytical analysis, and simulations. The final evaluation of results gathered from various methods such as co-relation between conventional mass-spring and digital loadcell. On average, we received 17.5kg of thrust (25+ engine run-ups – around 40 hours of engine run), only 10% deviation from analytically calculated thrust –providing 90% accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=aeronautics" title=" aeronautics"> aeronautics</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20thrust" title=" static thrust"> static thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20bench" title=" test bench"> test bench</a>, <a href="https://publications.waset.org/abstracts/search?q=aircraft%20maintenance" title=" aircraft maintenance"> aircraft maintenance</a> </p> <a href="https://publications.waset.org/abstracts/140749/design-development-of-a-static-thrust-test-bench-for-aviationuav-based-piston-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Dash">S. M. Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Lua"> K. B. Lua</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Lim"> T. T. Lim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=two-dimensional%20flapping%20airfoil" title="two-dimensional flapping airfoil">two-dimensional flapping airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20performance" title=" thrust performance"> thrust performance</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20angle%20of%20attack" title=" effective angle of attack"> effective angle of attack</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a> </p> <a href="https://publications.waset.org/abstracts/45043/thrust-enhancement-on-a-two-dimensional-elliptic-airfoil-in-a-forward-flight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Study and Simulation of the Thrust Vectoring in Supersonic Nozzles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kbab%20%20H">Kbab H</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamitouche%20%20T"> Hamitouche T</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD%20Nozzle" title="CD Nozzle">CD Nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=TVC" title=" TVC"> TVC</a>, <a href="https://publications.waset.org/abstracts/search?q=SVC" title=" SVC"> SVC</a>, <a href="https://publications.waset.org/abstracts/search?q=NPR" title=" NPR"> NPR</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=NPR" title=" NPR"> NPR</a>, <a href="https://publications.waset.org/abstracts/search?q=SPR" title=" SPR"> SPR</a> </p> <a href="https://publications.waset.org/abstracts/133150/study-and-simulation-of-the-thrust-vectoring-in-supersonic-nozzles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajat%20Mittal">Rajat Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshal%20Raut"> Harshal Raut</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hee%20Seo"> Jung Hee Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propulsion" title="propulsion">propulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping%20foils" title=" flapping foils"> flapping foils</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20power" title=" wave power"> wave power</a> </p> <a href="https://publications.waset.org/abstracts/180766/wave-assisted-flapping-foil-propulsion-flow-physics-and-scaling-laws-from-fluid-structure-interaction-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Numerical Studies on Bypass Thrust Augmentation Using Convective Heat Transfer in Turbofan Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Adwaith">R. Adwaith</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gopinath"> J. Gopinath</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasantha%20Kohila%20B."> Vasantha Kohila B.</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chandru"> R. Chandru</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Prakash%20R."> Arul Prakash R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbofan engine is a type of air breathing engine that is widely used in aircraft propulsion produces thrust mainly from the mass-flow of air bypassing the engine core. The present research has developed an effective method numerically by increasing the thrust generated from the bypass air. This thrust increase is brought about by heating the walls of the bypass valve from the combustion chamber using convective heat transfer method. It is achieved computationally by the use external heat to enhance the velocity of bypass air of turbofan engines. The bypass valves are either heated externally using multicell tube resistor which convert electricity generated by dynamos into heat or heat is transferred from the combustion chamber. This increases the temperature of the flow in the valves and thereby increase the velocity of the flow that enters the nozzle of the engine. As a result, mass-flow of air passing the core engine for producing more thrust can be significantly reduced thereby saving considerable amount of Jet fuel. Numerical analysis has been carried out on a scaled down version of a typical turbofan bypass valve, where the valve wall temperature has been increased to 700 Kelvin. It is observed from the analysis that, the exit velocity contributing to thrust has significantly increased by 10 % due to the heating of by-pass valve. The degree of optimum increase in the temperature, and the corresponding effect in the increase of jet velocity is calculated to determine the operating temperature range for efficient increase in velocity. The technique used in the research increases the thrust by using heated by-pass air without extracting much work from the fuel and thus improve the efficiency of existing turbofan engines. Dimensional analysis has been carried to prove the accuracy of the results obtained numerically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbofan%20engine" title="turbofan engine">turbofan engine</a>, <a href="https://publications.waset.org/abstracts/search?q=bypass%20valve" title=" bypass valve"> bypass valve</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-cell%20tube" title=" multi-cell tube"> multi-cell tube</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a> </p> <a href="https://publications.waset.org/abstracts/30054/numerical-studies-on-bypass-thrust-augmentation-using-convective-heat-transfer-in-turbofan-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Lotfi">Amirhossein Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaizhong%20Li"> Huaizhong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dzung%20Viet%20Dao"> Dzung Viet Dao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130<sup>o</sup>) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber%20reinforced%20composites" title="natural fiber reinforced composites">natural fiber reinforced composites</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a>, <a href="https://publications.waset.org/abstracts/search?q=machinability" title=" machinability"> machinability</a> </p> <a href="https://publications.waset.org/abstracts/111475/machinability-analysis-in-drilling-flax-fiber-reinforced-polylactic-acid-bio-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Experimental Investigation of Cutting Forces and Temperature in Bone Drilling </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishwanath%20Mali">Vishwanath Mali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Warhatkar"> Hemant Warhatkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Pawade"> Raju Pawade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20drilling" title="bone drilling">bone drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=helix%20angle" title=" helix angle"> helix angle</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20angle" title=" point angle"> point angle</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20necrosis" title=" thermal necrosis"> thermal necrosis</a> </p> <a href="https://publications.waset.org/abstracts/52171/experimental-investigation-of-cutting-forces-and-temperature-in-bone-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Earthquake Risk Assessment Using Out-of-Sequence Thrust Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes are natural disasters that pose a significant risk to human life and infrastructure. Effective earthquake mitigation measures require a thorough understanding of the dynamics of seismic occurrences, including thrust movement. Traditionally, estimating thrust movement has relied on typical techniques that may not capture the full complexity of these events. Therefore, investigating alternative approaches, such as incorporating out-of-sequence thrust movement data, could enhance earthquake mitigation strategies. This review aims to provide an overview of the applications of out-of-sequence thrust movement in earthquake mitigation. By examining existing research and studies, the objective is to understand how precise estimation of thrust movement can contribute to improving structural design, analyzing infrastructure risk, and developing early warning systems. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources, including GPS measurements, satellite imagery, and seismic recordings. By analyzing and synthesizing these diverse datasets, researchers can gain a more comprehensive understanding of thrust movement dynamics during seismic occurrences. The review identifies potential advantages of incorporating out-of-sequence data in earthquake mitigation techniques. These include improving the efficiency of structural design, enhancing infrastructure risk analysis, and developing more accurate early warning systems. By considering out-of-sequence thrust movement estimates, researchers and policymakers can make informed decisions to mitigate the impact of earthquakes. This study contributes to the field of seismic monitoring and earthquake risk assessment by highlighting the benefits of incorporating out-of-sequence thrust movement data. By broadening the scope of analysis beyond traditional techniques, researchers can enhance their knowledge of earthquake dynamics and improve the effectiveness of mitigation measures. The study collects data from various sources, including GPS measurements, satellite imagery, and seismic recordings. These datasets are then analyzed using appropriate statistical and computational techniques to estimate out-of-sequence thrust movement. The review integrates findings from multiple studies to provide a comprehensive assessment of the topic. The study concludes that incorporating out-of-sequence thrust movement data can significantly enhance earthquake mitigation measures. By utilizing diverse data sources, researchers and policymakers can gain a more comprehensive understanding of seismic dynamics and make informed decisions. However, challenges exist, such as data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and improve the accuracy of estimates, further research and advancements in methodology are recommended. Overall, this review serves as a valuable resource for researchers, engineers, and policymakers involved in earthquake mitigation, as it encourages the development of innovative strategies based on a better understanding of thrust movement dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-sequence%20thrust" title=" out-of-sequence thrust"> out-of-sequence thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20life" title=" human life"> human life</a> </p> <a href="https://publications.waset.org/abstracts/169037/earthquake-risk-assessment-using-out-of-sequence-thrust-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Design of a Thrust Vectoring System for an Underwater ROV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Laryea">Isaac Laryea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title="PID control">PID control</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20vectoring" title=" thrust vectoring"> thrust vectoring</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20manipulators" title=" parallel manipulators"> parallel manipulators</a>, <a href="https://publications.waset.org/abstracts/search?q=ROV" title=" ROV"> ROV</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater" title=" underwater"> underwater</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20control" title=" attitude control"> attitude control</a> </p> <a href="https://publications.waset.org/abstracts/179655/design-of-a-thrust-vectoring-system-for-an-underwater-rov" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Propellant Less Propulsion System Using Microwave Thrusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Pradeep%20Mitra">D. Pradeep Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla"> Prafulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Looking to the word propellant-less system it makes us to believe that it is an impossible one, but this paper demonstrates the use of microwaves to create a system which makes impossible to be possible, it means a propellant-less propulsion system using microwaves. In these thrusters, microwaves are radiated into a sealed parabolic cavity through a waveguide, which act on the surface of the cavity and follow the axis of the thrusters to produce thrust. The advantages of these thrusters are: (1) Producing thrust without propellant; without erosion, wear, and thermal stress from the hot exhaust gas; and at the same time increasing quality. (2) If the microwave output power is stable, the performance of thrusters is not affected by its working environment. This paper is demonstrated from general maxwell equations. These equations are used to create the mathematical model of the thrusters. These mathematical model helps us to calculate the Q factor and calculate the approximate thrust which would be generated in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=propellant%20less" title="propellant less">propellant less</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20wave%20guide" title=" parabolic wave guide"> parabolic wave guide</a>, <a href="https://publications.waset.org/abstracts/search?q=propulsion%20system" title=" propulsion system"> propulsion system</a> </p> <a href="https://publications.waset.org/abstracts/15925/propellant-less-propulsion-system-using-microwave-thrusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sarahan%20thrust%20%28ST%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>