CINXE.COM
Search results for: high water levels
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: high water levels</title> <meta name="description" content="Search results for: high water levels"> <meta name="keywords" content="high water levels"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="high water levels" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="high water levels"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30354</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: high water levels</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30354</span> Optimization of the Drinking Water Treatment Process Improvement of the Treated Water Quality by Using the Sludge Produced by the Water Treatment Plant </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Derraz">M. Derraz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhaoui"> M. Farhaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage Sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20, and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96%, and 99.47% respectively for low, medium and high turbidity levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20process" title="coagulation process">coagulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulant%20dose" title=" coagulant dose"> coagulant dose</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20reuse" title=" sludge reuse"> sludge reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity%20removal" title=" turbidity removal"> turbidity removal</a> </p> <a href="https://publications.waset.org/abstracts/45169/optimization-of-the-drinking-water-treatment-process-improvement-of-the-treated-water-quality-by-using-the-sludge-produced-by-the-water-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30353</span> Effect of Water Hardness and Free Residual Chlorine on Black Tea Brew</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Murugesan">P. Murugesan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Venkateswaran"> G. Venkateswaran</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Shanmuga%20Selvan"> V. A. Shanmuga Selvan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water used for brewing tea plays a major role in the quality of tea. Water with higher hardness gives very dark coloured brew. This study was conducted to determine the effect of water hardness and free residual chlorine on the quality of black tea liquor. Theaflavin (TF) and Thearubigin (TR) levels are lower in comparison with the tea brewed in distilled water. At the same time, there is an increase in High Polymerized Substance (HPS) and Total Liquor Colour (TLC). While water with higher hardness has a negative impact on tea brew, water with high concentration of free residual chlorine did not affect the quality of tea brew. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theaflavin" title="Theaflavin">Theaflavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thearubigin" title=" Thearubigin"> Thearubigin</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20polymerised%20substance" title=" high polymerised substance"> high polymerised substance</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20liquor%20colour" title=" total liquor colour"> total liquor colour</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20chlorine" title=" residual chlorine"> residual chlorine</a> </p> <a href="https://publications.waset.org/abstracts/53009/effect-of-water-hardness-and-free-residual-chlorine-on-black-tea-brew" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30352</span> Optimization of the Drinking Water Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farhaoui">M. Farhaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Derraz"> M. Derraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage the sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20 and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96% and 99.47% respectively for low, medium and high turbidity levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20process" title="coagulation process">coagulation process</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulant%20dose" title=" coagulant dose"> coagulant dose</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity%20removal" title=" turbidity removal"> turbidity removal</a> </p> <a href="https://publications.waset.org/abstracts/44936/optimization-of-the-drinking-water-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30351</span> Demographic and Socio-Economical Status of Children with Lead Exposure in Venezuela</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Espinosa%20Carlos">Espinosa Carlos</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobrega%20Doris"> Nobrega Doris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children are at high risk for lead (Pb) exposure. The objective of this study was to identify risk factors that contribute to high blood lead (PbB) levels in Venezuelan children. The concentration of PbB was determined in 60 children (ages 4-9 years old), coming from the Michelena sector, Valencia District, Carabobo State. The relationship between these concentrations and socio-economical parameters (A: high quality life; B: fair quality life; C: critic poverty), Pb levels of faucet water (Pb-water) and dust Pb levels of floor (Pb-dust) of their houses, was established. Living areas were classified according to sectors and socio-economical status. Forty [40=66.7%] children resulted with PbB levels above the permissible concentration (LAPC). Average PbB was not significantly higher than the permissible levels. Odds ratio proved that children from status C are 7.28 times more likely to have LAPC of PbB than the ones coming from A or B. Thirty-four percent (34%) of the children with LAPC come from status C which could be considered the most critical status from the exposure risk point of view. The 76,3% of the sampled houses reported VSLP of Pb-water, being the Pb-water average in 35 ± 25.5 ug/L. This average significantly went superior to the permissible limit established by Venezuela and international organisms (10 ug/L). When grouping the results of PbB and Pb-water by sex, were that 50,8% of the children who presented/displayed VSLP of Pb-water and PbB. Was a significant relation (p ≤ 0.05), between masculine sex and the VSLP of PbB and Pb-water (x² = 3,672). In relation to the Pb-Dust analyses, were not statistically significant differences with respect to their permissible limit value (40 ug/pie²). This study shows that by correlating geographical and health data, we can identify 'high risk' areas, leading to a proactive public health action. The results of this study are excellent, in order to take preventive measures for the care from the health. Later studies are suggested predicting main to determine of more conclusive form of levels elevated of PbB in the investigated population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demographic" title="demographic">demographic</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economical%20status" title=" socio-economical status"> socio-economical status</a> </p> <a href="https://publications.waset.org/abstracts/105357/demographic-and-socio-economical-status-of-children-with-lead-exposure-in-venezuela" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30350</span> Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysegul%20Sarac">Aysegul Sarac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=6-Sigma%20methodology" title=" 6-Sigma methodology"> 6-Sigma methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=washer-dryers" title=" washer-dryers"> washer-dryers</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20condensation%20technology" title=" water condensation technology"> water condensation technology</a> </p> <a href="https://publications.waset.org/abstracts/46334/optimizing-water-consumption-of-a-washer-dryer-which-contains-water-condensation-technology-under-a-constraint-of-energy-consumption-and-drying-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30349</span> A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muslim%20Khan">Muslim Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20B.%20Jensen"> Kenneth B. Jensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20A.%20Francesconi"> Kevin A. Francesconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenolipids" title="arsenolipids">arsenolipids</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20water" title=" sea water"> sea water</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-high%20resolution%20mass%20spectrometry" title=" HPLC-high resolution mass spectrometry"> HPLC-high resolution mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/39793/a-method-for-quantifying-arsenolipids-in-sea-water-by-hplc-high-resolution-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30348</span> Interaction of Water Stress and VA Mycorrhizal Inoculation on Green Bean under Different P Levels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Baghban%20Cirus">Shahram Baghban Cirus</a>, <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Alizadeh%20Oskuie"> Parisa Alizadeh Oskuie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a greenhouse experiment, green bean were inoculated with three levels of phosphorus (P1, P2, P3, respectively 0, 50, 100 kgP/h) and four levels of water stress(Fc1, Fc2, Fc3 ,Fc4, respectively 0.8Fc, 0.7Fc, 0.6Fc, 0.5Fc) and one species of VA mycorrhiza (Glomus versiform) or left uninocolated as control plants in the steril soil. AM colonization significantly stimulated plant growth, leaf area, shoot, and pod dry weight but water stress significantly decreased colonization, pod and shoot dry weight, and shoot P. The use P levels significantly increased leaf area, shoot, and pod dry weight, pods length, and colonization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20bean" title="green bean">green bean</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth" title=" plant growth"> plant growth</a>, <a href="https://publications.waset.org/abstracts/search?q=VA%20mycorrhiza" title=" VA mycorrhiza"> VA mycorrhiza</a>, <a href="https://publications.waset.org/abstracts/search?q=water-stress" title=" water-stress"> water-stress</a> </p> <a href="https://publications.waset.org/abstracts/17731/interaction-of-water-stress-and-va-mycorrhizal-inoculation-on-green-bean-under-different-p-levels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30347</span> Forecasting Lake Malawi Water Level Fluctuations Using Stochastic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mulumpwa">M. Mulumpwa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20W.%20L.%20Jere"> W. W. L. Jere</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lazaro"> M. Lazaro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20N.%20Mtethiwa"> A. H. N. Mtethiwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study considered Seasonal Autoregressive Integrated Moving Average (SARIMA) processes to select an appropriate stochastic model to forecast the monthly data from the Lake Malawi water levels for the period 1986 through 2015. The appropriate model was chosen based on SARIMA (p, d, q) (P, D, Q)S. The Autocorrelation function (ACF), Partial autocorrelation (PACF), Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), Box–Ljung statistics, correlogram and distribution of residual errors were estimated. The SARIMA (1, 1, 0) (1, 1, 1)12 was selected to forecast the monthly data of the Lake Malawi water levels from August, 2015 to December, 2021. The plotted time series showed that the Lake Malawi water levels are decreasing since 2010 to date but not as much as was the case in 1995 through 1997. The future forecast of the Lake Malawi water levels until 2021 showed a mean of 474.47 m ranging from 473.93 to 475.02 meters with a confidence interval of 80% and 90% against registered mean of 473.398 m in 1997 and 475.475 m in 1989 which was the lowest and highest water levels in the lake respectively since 1986. The forecast also showed that the water levels of Lake Malawi will drop by 0.57 meters as compared to the mean water levels recorded in the previous years. These results suggest that the Lake Malawi water level may not likely go lower than that recorded in 1997. Therefore, utilisation and management of water-related activities and programs among others on the lake should provide room for such scenarios. The findings suggest a need to manage the Lake Malawi jointly and prudently with other stakeholders starting from the catchment area. This will reduce impacts of anthropogenic activities on the lake’s water quality, water level, aquatic and adjacent terrestrial ecosystems thereby ensuring its resilience to climate change impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Malawi" title=" Lake Malawi"> Lake Malawi</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20levels" title=" water levels"> water levels</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20level%20fluctuation" title=" water level fluctuation"> water level fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20activities" title=" anthropogenic activities"> anthropogenic activities</a> </p> <a href="https://publications.waset.org/abstracts/62537/forecasting-lake-malawi-water-level-fluctuations-using-stochastic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30346</span> The Research of Water Levels in the Zhinvali Water Reservoir and Results of Field Research on the Debris Flow Tributaries of the River Tetri Aragvi Flowing in It</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Givi%20Gavardashvili">Givi Gavardashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard%20Kukhalashvili"> Eduard Kukhalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamriko%20Supatashvili"> Tamriko Supatashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgi%20Natroshvili"> Giorgi Natroshvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantine%20Bziava"> Konstantine Bziava</a>, <a href="https://publications.waset.org/abstracts/search?q=Irma%20Qufarashvili"> Irma Qufarashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the article to research water levels in the Zhinvali water reservoirs by field and theoretical research and using GPS and GIS technologies has been established dynamic of water reservoirs changes in the suitable coordinates and has been made water reservoir maps and is lined in the 3D format. By using of GPS coordinates and digital maps has been established water horizons of Zhinvali water reservoir in the absolute marks and has been calculated water levels volume. To forecast the filling of the Zhinvali water reservoir by solid sediment in 2018 conducted field experimental researches in the catchment basin of river Tetri (White) Aragvi. It has been established main hydrological and hydraulic parameters of the active erosion-debris flow tributaries of river Tetri Aragvi. It has been calculated erosion coefficient considering the degradation of the slope. By calculation is determined, that in the river Tetri Aragvi catchment basin the value of 1% maximum discharge changes Q1% = 70,0 – 550,0 m3/sec, and erosion coefficient - E = 0,73 - 1,62, with suitable fifth class of erosion and intensity 50-100 tone/hectare in the year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhinvali%20soil%20dam" title="Zhinvali soil dam">Zhinvali soil dam</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reservoirs" title=" water reservoirs"> water reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20levels" title=" water levels"> water levels</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=debris%20flow" title=" debris flow"> debris flow</a> </p> <a href="https://publications.waset.org/abstracts/104072/the-research-of-water-levels-in-the-zhinvali-water-reservoir-and-results-of-field-research-on-the-debris-flow-tributaries-of-the-river-tetri-aragvi-flowing-in-it" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30345</span> Effect of Yogurt on Blood and Liver Lipids Lavel in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20Mohammed%20Al-Kehayez">Nora Mohammed Al-Kehayez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present investigation was performed to study the effect of low fat yogurt on serum and liver lipids profile of male albino rats (weighing 100 g+or- 5 gram) when fed balanced or high fat high cholesterol diets and given yogurt ad libitum compared with control groups. Rats were divided into 4 groups, each group contains 6 rats. The groups of rats were fed as follows: Group(1) was fed balanced diet + water(control). Group(2) was fed balanced diet + low fat yogurt. Group(3) was fed high fat high cholesterol diet + water(Control). Group(4) was fed high fat high cholesterol diet + low fat yogurt. The obtained results could be summarized as follows: When rats were given low fat yogurt and fed balanced or high fat high cholesterol diets a significantly greater weight gains resulted in comparison with the control groups given water instead of yogurt. The data on the weights of liver and heart expressed' as percentage increased the body weight in case of rats which were fed balanced diet with low fat yogurt while in case of rats which were fed high fat high cholesterol diet with low fat yogurt the increment scenes to be less. Results of serum cholesterol levels in serum of rats were given balanced or high fat high cholesterol diets and consuming low fat yogurt was showed a significant reduction values. However the low fat yogurt produced the highest significant decrease values. The values of serum cholesterol go hand in hand with serum lipoprotein fractions in rats given low fat yogurt with both balanced or high fat high cholesterol diets. An increase of high density lipoprotein HDL-C and a decrease of low density lipoprotein LDL-C values were obtained. When rats ingested low fat yogurt a significant decrease in serum and liver triglycerides content was obtained wether with balanced or high fat high cholesterol diets. Rats consuming high fat high cholesterol diets with water showed a significant increase in liver total lipids, total cholesterol and phospholipides levels in comparison with the same liver parameters in rats given balanced diet with water. Supplement with low fat yogurt significantly suppressed these effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yogurt" title="yogurt">yogurt</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids%20profile" title=" lipids profile"> lipids profile</a>, <a href="https://publications.waset.org/abstracts/search?q=albino" title=" albino"> albino</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/31460/effect-of-yogurt-on-blood-and-liver-lipids-lavel-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30344</span> Non-Revenue Water Management in Palestine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samah%20Jawad%20Jabari">Samah Jawad Jabari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water is the most important and valuable resource not only for human life but also for all living things on the planet. The water supply utilities should fulfill the water requirement quantitatively and qualitatively. Drinking water systems are exposed to both natural (hurricanes and flood) and manmade hazards (risks) that are common in Palestine. Non-Revenue Water (NRW) is a manmade risk which remains a major concern in Palestine, as the NRW levels are estimated to be at a high level. In this research, Hebron city water distribution network was taken as a case study to estimate and audit the NRW levels. The research also investigated the state of the existing water distribution system in the study area by investigating the water losses and obtained more information on NRW prevention and management practices. Data and information have been collected from the Palestinian Water Authority (PWA) and Hebron Municipality (HM) archive. In addition to that, a questionnaire has been designed and administered by the researcher in order to collect the necessary data for water auditing. The questionnaire also assessed the views of stakeholder in PWA and HM (staff) on the current status of the NRW in the Hebron water distribution system. The important result obtained by this research shows that NRW in Hebron city was high and in excess of 30%. The main factors that contribute to NRW were the inaccuracies in billing volumes, unauthorized consumption, and the method of estimating consumptions through faulty meters. Policy for NRW reduction is available in Palestine; however, it is clear that the number of qualified staff available to carry out the activities related to leak detection is low, and that there is a lack of appropriate technologies to reduce water losses and undertake sufficient system maintenance, which needs to be improved to enhance the performance of the network and decrease the level of NRW losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-revenue%20water" title="non-revenue water">non-revenue water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20auditing" title=" water auditing"> water auditing</a>, <a href="https://publications.waset.org/abstracts/search?q=leak%20detection" title=" leak detection"> leak detection</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20meters" title=" water meters"> water meters</a> </p> <a href="https://publications.waset.org/abstracts/45389/non-revenue-water-management-in-palestine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30343</span> Case Studies of Mitigation Methods against the Impacts of High Water Levels in the Great Lakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20M.%20Penton">Jennifer M. Penton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Record high lake levels in 2017 and 2019 (2017 max lake level = 75.81 m; 2018 max lake level = 75.26 m; 2019 max lake level = 75.92 m) combined with a number of severe storms in the Great Lakes region, have resulted in significant wave generation across Lake Ontario. The resulting large wave heights have led to erosion of the natural shoreline, overtopping of existing revetments, backshore erosion, and partial and complete failure of several coastal structures, which in turn have led to further erosion of the shoreline and damaged existing infrastructure. Such impacts can be seen all along the coast of Lake Ontario. Three specific locations have been chosen as case studies for this paper, each addressing erosion and/or flood mitigation methods, such as revetments and sheet piling with increased land levels. Varying site conditions and the resulting shoreline damage are compared herein. The results are reflected in the case-specific design components of the mitigation and adaptation methods and are presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion%20mitigation" title="erosion mitigation">erosion mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mitigation" title=" flood mitigation"> flood mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=great%20lakes" title=" great lakes"> great lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20water%20levels" title=" high water levels"> high water levels</a> </p> <a href="https://publications.waset.org/abstracts/139692/case-studies-of-mitigation-methods-against-the-impacts-of-high-water-levels-in-the-great-lakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30342</span> Water Education in the Middle East: Case Study of Iran and Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Zahra%20Seyed%20Sharifi">Seyedeh Zahra Seyed Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20M.%20Tabatabaei"> M. R. M. Tabatabaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increase of population and healthy food demand, management and conservation of water resources have become one of the main concerns of governments, scientists and economists. In recent years, Iran has exposed to water scarcity as a result of which its rivers, lakes and wetlands have dried up or are in the drying process. Therefore, water crisis has become the most important environmental issue in the country. Under these circumstances, increasing public awareness by promoting their culture as well as public collaboration to protect water resources could only be possible by making courses to reflect water importance. This could be approached by school and high-school students to learn optimum use of water resources. This study initially focuses on the current position of water courses in levels of school and high-school educations in Iran and Turkey and then deals with the challenges to be faced for the promotion of the system. The course titles and number of pages related to water in all primary and secondary textbooks of the education system of Iran and Turkey were determined using content analysis method and the results were presented. The results indicate that primary and secondary textbooks in both countries must focus on water shortage and water protection and teach children the optimum use of water in order to promote water protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20system" title="educational system">educational system</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20awareness" title=" environmental awareness"> environmental awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20crisis" title=" water crisis"> water crisis</a> </p> <a href="https://publications.waset.org/abstracts/90726/water-education-in-the-middle-east-case-study-of-iran-and-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30341</span> Mongolian Water Quality Problem and Health of Free-Grazing Sheep </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Yoshihara">Yu Yoshihara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chika%20Tada"> Chika Tada</a>, <a href="https://publications.waset.org/abstracts/search?q=Moe%20Takada"> Moe Takada</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyam-Osor%20Purevdorj"> Nyam-Osor Purevdorj</a>, <a href="https://publications.waset.org/abstracts/search?q=Khorolmaa%20Chimedtseren"> Khorolmaa Chimedtseren</a>, <a href="https://publications.waset.org/abstracts/search?q=Yutaka%20Nakai"> Yutaka Nakai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution from animal waste and its influence on grazing animals is a current concern regarding Mongolian grazing lands. We allocated 32 free-grazing lambs to four groups and provided each with water from a different source (upper stream, lower stream, well, and pond) for 49 days. We recorded the amount of water consumed by the lambs, as well as their body weight, behavior, white blood cell count, acute phase (haptoglobin) protein level, and fecal condition. We measured the chemical and biological qualities of the four types of water, and we detected enteropathogenic and enterohemorrhagic Escherichia coli in fecal samples by using a genetic approach. Pond water contained high levels of nitrogen and minerals, and well water contained high levels of bacteria. The odor concentration index decreased in order from pond water to upper stream, lower stream, and well. On day 15 of the experiment, the following parameters were the highest in lambs drinking water from the following sources: water intake (pond or lower stream), body weight gain (pond), WBC count (lower stream), haptoglobin concentration (well), and enteropathogenic E. coli infection rate (lower stream). Lambs that drank well water spent more time lying down and less time grazing than the others, and lambs that drank pond water spent more time standing and less time lying down. Lambs given upper or lower stream water exhibited more severe diarrhea on day 15 of the experiment than before the experiment. Mongolian sheep seemed to adapt to chemically contaminated water: their productivity benefited the most from pond water, likely owing to its rich mineral content. Lambs that drank lower stream water showed increases in enteropathogenic E. coli infection, clinical diarrhea, and WBC count. Lambs that drank well water, which was bacteriologically contaminated, had increased serum acute phase protein levels and poor physical condition; they were thus at increased risk of negative health and production effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20sample" title=" fecal sample"> fecal sample</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20stream" title=" lower stream"> lower stream</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20water" title=" well water"> well water</a> </p> <a href="https://publications.waset.org/abstracts/33379/mongolian-water-quality-problem-and-health-of-free-grazing-sheep" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30340</span> Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Alromi">D. Alromi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alansari"> A. Alansari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alghamdi"> S. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Jambi"> E. Jambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title="air conditioning systems">air conditioning systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quantity" title=" water quantity"> water quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%0D%0Aresources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/114549/biochemical-evaluation-of-air-conditioning-west-water-in-jeddah-city-concept-of-sustainable-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30339</span> Water Crisis Management in a Tourism Dependent Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishath%20Shakeela">Aishath Shakeela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20policies" title=" government policies"> government policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Maldives" title=" Maldives"> Maldives</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water "> water </a> </p> <a href="https://publications.waset.org/abstracts/34238/water-crisis-management-in-a-tourism-dependent-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30338</span> Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anis%20Eloud">Anis Eloud</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Amor"> Mohamed Ben Amor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal" title=" geothermal"> geothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20pipe" title=" supply pipe"> supply pipe</a> </p> <a href="https://publications.waset.org/abstracts/19838/physico-chemical-quality-study-of-geothermal-waters-of-the-region-djerid-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30337</span> Comparison of Potato Varieties under Different Water Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Assalmi">Ali Assalmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to compare the yield of two varieties of potato seeds under different water conditions. In the first part of the study, we conducted a literature review to gather academic research published on the two varieties. Based on the literature review, we optimized the water conditions for one variety and tested the other variety under high salinity water conditions. Our findings indicate that the optimized water conditions resulted in a very good yield for one variety of potato seeds. However, under high salinity water conditions, the other variety produced a higher yield in water that was not used due to the high salinity. Overall, our results suggest that the yield of potato seeds can vary significantly based on the water conditions and variety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=potatoes" title="potatoes">potatoes</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20varieties" title=" seed varieties"> seed varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20optimization" title=" water optimization"> water optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20salinity" title=" high salinity"> high salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20comparison" title=" yield comparison"> yield comparison</a> </p> <a href="https://publications.waset.org/abstracts/172580/comparison-of-potato-varieties-under-different-water-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30336</span> Impact of Saline Water and Water Restriction in Laying Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20pollutants" title="chemical pollutants">chemical pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=eggs" title=" eggs"> eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20hens" title=" laying hens"> laying hens</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/191494/impact-of-saline-water-and-water-restriction-in-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30335</span> Water Accessibility at Household Levels in Zambia: A Case Study of Fitobaula Settlement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Sachikumba">Emmanuel Sachikumba</a>, <a href="https://publications.waset.org/abstracts/search?q=Micheal%20Msoni"> Micheal Msoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Westone%20Mafuleka"> Westone Mafuleka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zambia has a good climate with favourable rainfall pattern; this provides sufficient recharge for the surface and groundwater resources. In spite of the sufficient surface and ground water resources, accessibility to water at household levels is problematic both in quality and quantity. The study examined water accessibility as well as water quality at the household level. The research looked at the sources of water for the households and considered the complications of accessibility to water and the available opportunities therein. The investigation involved fifty households and the data was collected by the use of questionnaires (to assess accessibility) and laboratory tests (for ascertaining water quality). In addition to this, government departments such as the health, agriculture, forestry and education as well as the municipal council were interviewed on the topic under study. The study was descriptive in nature where clustered sampling procedures using simple random methods were utilised to select the households which were to participate in the study. The key findings were that; accessibility to water household levels is still a challenge in the settlement as most of the point sources (shallow wells, the stream and the river) were found to be contaminated. In addition to this, it was found that there was no direct relationship between the economic performance of a household and the accessibility to water. The study also observed that there were opportunities for the people in the settlement as they were increasingly getting into the education system, and adult literacy was being encouraged in the settlement. Furthermore, the settlement has groundwater resources which indicate that there can be sufficient water provision for the settlers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accessibility" title="accessibility">accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=household" title=" household"> household</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/19667/water-accessibility-at-household-levels-in-zambia-a-case-study-of-fitobaula-settlement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30334</span> Water Productivity and Sensitivity Tolerance Stress Indices in Five Soybean Cultivars (Glycine max L.) at Different Levels of Water Deficit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Masoumi">Hassan Masoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashed%20Alavi"> Rashed Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Reza%20Khorshidian"> Mahmoud Reza Khorshidian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to measure the water deficit stress effects on seed yield and water productivity of soybean cultivars, a two field experiments wad conducted out via split plot in a randomized complete block design with four replications in 2011 and 2012. Irrigation treatments were three levels (S1; 50, S2; 62.5 and S3; 150 mm) that applied based on evaporation from the ‘class A’ pan. Cultivars were L17, Clean, T.M.S, Williams×Chippewa and M9, too. The results showed that, only extreme water deficit stresses (S3) was reduced number of pods per plants, dry weight, seed yield and also water productivity and water economic productivity, significantly. Among cultivars and at the first and second levels of irrigation (S1, S2) cultivar of L17 and at the third level (S3) cultivar of Wiiliams*Chippwea had the highest seed yield, water productivity and water economic productivity. There were observed a positive and significant correlation between seed yield with number of pods per plants and plants dry weight, too. Also, despite the reduction in water consumption at level of S2 than S1 and due to the lack of a significant reduction in seed yield, water productivity and water economic productivity was also increased, significantly (P < 0.01). All indices of sensitivity and tolerance (SSI, STI and GMP) investigated in this study showed that at the moderate and extreme water deficit stresses (S2, S3), the cultivars of L17 and Wiiliams * Chippwea had the highest tolerance and lowest sensitivity among the cultivars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20indices" title=" sensitivity indices"> sensitivity indices</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20components" title=" yield components"> yield components</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a> </p> <a href="https://publications.waset.org/abstracts/22036/water-productivity-and-sensitivity-tolerance-stress-indices-in-five-soybean-cultivars-glycine-max-l-at-different-levels-of-water-deficit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30333</span> Sustainable Water Resource Management and Challenges in Indian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title="water resource management">water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20technologies" title=" water management technologies"> water management technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/69837/sustainable-water-resource-management-and-challenges-in-indian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30332</span> Assessment of Yield and Water Use Efficiency of Soybean under Deficit Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Abedinpour">Meysam Abedinpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water limitation is the main challenge for crop production in a semi-arid environment. Deficit irrigation is a strategy that allows a crop to sustain some degree of water deficit in order to reduce costs and potentially increase income. For this goal, a field experimental carried out at Asrieh fields of Gorgan city in the north of Iran, during summer season 2011. The treatments imposed were different irrigation water regimes (i.e. W1:70, W2:80, W3:90, and W4:100) percent of field capacity (FC). The results showed that there was Significant difference between the yield and (WUE) under different levels of irrigation, excepting of soil moisture content at field capacity (W4) and 90% of field capacity (W3) on yield and water use efficiency (WUE). The seasonal irrigation water applied were (i.e. 375, 338, 300, and 263 mm ha-1) under different irrigation water treatments (100, 90, 80, 80 and 70%) of FC, respectively. Grain yield productions under treatments were 4180, 3955, 3640, and 3355 (kg ha-1) respectively. Furthermore, the results showed that water use efficiency (WUE) at different treatments were 7.67, 7.79, 7.74, and 7.75 Kg mm ha-1 for (100, 90, 80, and 70) per cent of field capacity, therefore the 90 % of FC treatment (W3) is recommended for Soybean irrigation for water saving. Furthermore, the result showed that the treatment of 90 % of filed capacity (W3) seemed to be better adapted to product a high crop yield with acceptable yield coupling with water use efficiency in Golestan province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title="deficit irrigation">deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a> </p> <a href="https://publications.waset.org/abstracts/16412/assessment-of-yield-and-water-use-efficiency-of-soybean-under-deficit-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30331</span> Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Morishita">Etsuo Morishita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20compressible%20flow" title="aerodynamics compressible flow">aerodynamics compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20dynamics" title=" gas dynamics"> gas dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulics" title=" hydraulics"> hydraulics</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/68545/desktop-high-speed-aerodynamics-by-shallow-water-analogy-in-a-tin-box-for-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30330</span> The Relationship between Trace Elements in Groundwater Linked to a History of Volcanic Activity in La Pampa and Buenos Aires Provinces, Argentina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maisarah%20Jaafar">Maisarah Jaafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20I.%20Ward"> Neil I. Ward</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volcanic and geothermal activity can result in the release of arsenic (As), manganese (Mn), iron, selenium (Se), molybdenum (Mo) and uranium (U) into natural waters. Several studies have reported high levels of these elements in surface and groundwater in Argentina. The main focus has been on As associated with volcanic ash deposits. This study reports the trace element levels of groundwater from an agricultural region of south-eastern La Pampa and southern Buenos Aires provinces, Argentina which have reported high levels of human health problems (bone/teeth disorders, depression, arthritis, etc). Fifty-eight groundwater samples were collected from wells adjacent to Ruta 35 and an Agilent 7700x inductively coupled plasma mass spectrometer (ICP-MS) were used for total elemental analysis. Physicochemical analysis confirmed pH range of 7.05-8.84 and variable conductivity (988-3880 µS/cm) with total dissolved solid content of 502-1989 mg/l. The majority water samples are in an oxidizing environment (Eh= 45-146 mV). Total As levels ranged from (µg/l): 13.08 – 319.4 for La Pampa (LP) and 39.6 – 189.4 for Buenos Aires (BA); all above the WHO Guideline for Drinking Water, 10 µg/l As. Interestingly, Mo (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;), Se (LP: 1.2 – 16.59 µg/l; BA: 0.3– 6.94 µg/l;) and U (LP: 1.85 – 85.39 µg/l; BA: 4.61– 55.55 µg/l;) levels are lower than reported values for northern La Pampa. Inter-elemental correlation displayed positive statistically significant between As-Mo, A-Se, As-U while negative statistically significant between As-Mn and As-Fe. This confirms that the source of the trace element is similar to that reported for other region of Argentina, namely volcanic ash deposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argentina" title="Argentina">Argentina</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20element" title=" trace element"> trace element</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20activity" title=" volcanic activity"> volcanic activity</a> </p> <a href="https://publications.waset.org/abstracts/40106/the-relationship-between-trace-elements-in-groundwater-linked-to-a-history-of-volcanic-activity-in-la-pampa-and-buenos-aires-provinces-argentina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30329</span> Use of Treated Municipal Wastewater on Artichoke Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Disciglio">G. Disciglio</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gatta"> G. Gatta</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Libutti"> A. Libutti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tarantino"> A. Tarantino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Frabboni"> L. Frabboni</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tarantino"> E. Tarantino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artichoke" title="artichoke">artichoke</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20chemical%20characteristics" title=" soil chemical characteristics"> soil chemical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=fecal%20indicators" title=" fecal indicators"> fecal indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20municipal%20wastewater" title=" treated municipal wastewater"> treated municipal wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20recycling" title=" water recycling"> water recycling</a> </p> <a href="https://publications.waset.org/abstracts/3648/use-of-treated-municipal-wastewater-on-artichoke-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30328</span> Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miguel%20A.%20Jimenez%20Barros">Miguel A. Jimenez Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=Elyn%20L.%20Solano%20Charris"> Elyn L. Solano Charris</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20E.%20Ramirez"> Luis E. Ramirez</a>, <a href="https://publications.waset.org/abstracts/search?q=Lauren%20Castro%20Bolano"> Lauren Castro Bolano</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Torres%20Barreto"> Carlos Torres Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Morales%20Cubillo"> Juliana Morales Cubillo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-reactor" title="bio-reactor">bio-reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=potable%20water" title=" potable water"> potable water</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/69256/development-and-implementation-of-a-business-technology-program-based-on-techniques-for-reusing-water-in-a-colombian-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30327</span> Black Soybeans Show Acute and Chronic Liver Protective Functions against CCl4 Induced Liver Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Kuang%20Hsu">Cheng-Kuang Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Hsiang%20Chang"> Chih-Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Chih%20Wang"> Chi-Chih Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black soybeans contain high amount of antioxidants including polyphenols, anthocyanins and flavones. The protective function of black soybean against CCl4 (a strong oxidant) induced acute and chronic liver damage was investigated in vivo using SD rats or ICR mouse. The evaluation of CCl4 induced oxidative stress in the liver tissues included the measurements of the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the concentration of thiobarbituric acid reactive substances (TBARS), the activities of antioxidant enzymes (superoxide dismutase SOD, catalase, and glutathione peroxidase GPx), as well as the level of histological lesion in the liver tissues. For chronic experiment, a decoction at the concentration of 100 or 1000 mg/kg of body weight, produced by baking black soybean at 130°C for 5 min and followed by immerging in 100°C hot water for 20 min, showed the inhibitory effect against CCl4 induced liver damage in SD rats. Hot-water extract (80 °C for 30 min) from un-preheated black soybean at the concentration of 200 mg/kg of body weight could not reduce ALT and AST levels in CCl4 treated SD rats, but the hot-water extract from preheated black soybean did enhance antioxidant enzymes activities, decline ALT and AST levels. Specially, the hot-water extract from the seed cost of black soybean had the highest liver protective function since it can reduce vacuolization and necrosis in the liver tissues. For acute experiment, the hot-water extracts from black soybean and the seed coat, as well as pure cyanidin-3-glucoside (C3G) could reduce ALT and AST levels of CCl4 induced ICR mouse. The decoction and hot-water extract from the seed coat of black soybean had higher total polyphenols, anthocyanins and flavones contents than those extracts from whole black soybean. Such results agreed with high liver protective function in the decoction and hot-water from the seed coat of black soybean. Black soybean showed protective function only after preheating process (baking at 130°C for 5 to 10 min) because preheating treatment damaged the cell wall and made the extraction of the antioxidants more effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20soybean" title="black soybean">black soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20protective%20function" title=" liver protective function"> liver protective function</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidative%20stress" title=" antioxidative stress"> antioxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/24686/black-soybeans-show-acute-and-chronic-liver-protective-functions-against-ccl4-induced-liver-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30326</span> The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valdrina%20Ajeti">Valdrina Ajeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Icko%20Gjorgoski"> Icko Gjorgoski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20water" title="alkaline water">alkaline water</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20ascorbate" title=" sodium ascorbate"> sodium ascorbate</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperthermic%20stress" title=" hyperthermic stress"> hyperthermic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=cortisol" title=" cortisol"> cortisol</a> </p> <a href="https://publications.waset.org/abstracts/138360/the-impact-of-alkaline-water-supplemented-with-sodium-ascorbate-on-glucose-and-cortisol-levels-in-the-blood-serum-during-acute-hyperthermic-exposure-of-white-laboratory-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30325</span> Numerical Predictions of Trajectory Stability of a High-Speed Water-Entry and Water-Exit Projectile </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Lu">Lin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiang%20Li"> Qiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Cai"> Tao Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengjun%20Zhang"> Pengjun Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a detailed analysis of trajectory stability and flow characteristics of a high-speed projectile during the water-entry and water-exit process has been investigated numerically. The Zwart-Gerber-Belamri (Z-G-B) cavitation model and the SST k-ω turbulence model based on the Reynolds Averaged Navier-Stokes (RANS) method are employed. The numerical methodology is validated by comparing the experimental photograph of cavitation shape and the experimental underwater velocity with the numerical simulation results. Based on the numerical methodology, the influences of rotational speed, water-entry and water-exit angle of the projectile on the trajectory stability and flow characteristics have been carried out in detail. The variation features of projectile trajectory and total resistance have been conducted, respectively. In addition, the cavitation characteristics of water-entry and water-exit have been presented and analyzed. Results show that it may not be applicable for the water-entry and water-exit to achieve the projectile stability through the rotation of projectile. Furthermore, there ought to be a critical water-entry angle for the water-entry stability of practical projectile. The impact of water-exit angle on the trajectory stability and cavity phenomenon is not as remarkable as that of the water-entry angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20characteristics" title="cavitation characteristics">cavitation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20projectile" title=" high-speed projectile"> high-speed projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20predictions" title=" numerical predictions"> numerical predictions</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20stability" title=" trajectory stability"> trajectory stability</a>, <a href="https://publications.waset.org/abstracts/search?q=water-entry" title=" water-entry"> water-entry</a>, <a href="https://publications.waset.org/abstracts/search?q=water-exit" title=" water-exit"> water-exit</a> </p> <a href="https://publications.waset.org/abstracts/119865/numerical-predictions-of-trajectory-stability-of-a-high-speed-water-entry-and-water-exit-projectile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=1011">1011</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=1012">1012</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=high%20water%20levels&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>