CINXE.COM
Search results for: indoor climate
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: indoor climate</title> <meta name="description" content="Search results for: indoor climate"> <meta name="keywords" content="indoor climate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="indoor climate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="indoor climate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3165</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: indoor climate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3165</span> A Study of the Implications for the Health and Wellbeing of Energy-Efficient House Occupants: A UK-Based Investigation of Indoor Climate and Indoor Air Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Kermeci">Patricia Kermeci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Policies related to the reduction of both carbon dioxide and energy consumption within the residential sector have contributed towards a growing number of energy-efficient houses being built in several countries. Many of these energy-efficient houses rely on the construction of very well insulated and highly airtight structures, ventilated mechanically. Although energy-efficient houses are indeed more energy efficient than conventional houses, concerns have been raised over the quality of their indoor air and, consequently, the possible adverse health and wellbeing effects for their occupants. Using a longitudinal study design over three different weather seasons (winter, spring and summer), this study has investigated the indoor climate and indoor air quality of different rooms (bedroom, living room and kitchen) in five energy-efficient houses and four conventional houses in the UK. Occupants have kept diaries of their activities during the studied periods and interviews have been conducted to investigate possible behavioural explanations for the findings. Data has been compared with reviews of epidemiological, toxicological and other health related published literature to reveals three main findings. First, it shows that the indoor environment quality of energy-efficient houses cannot be treated as a holistic entity as different rooms presented dissimilar indoor climate and indoor air quality. Thus, such differences might contribute to the health and wellbeing of occupants in different ways. Second, the results show that the indoor environment quality of energy-efficient houses can vary following changes in weather season, leaving occupants at a lower or higher risk of adverse health and wellbeing effects during different weather seasons. Third, one cannot assume that even identical energy-efficient houses provide a similar indoor environment quality. Fourth, the findings reveal that the practices and behaviours of the occupants of energy-efficient houses likely determine whether they enjoy a healthier indoor environment when compared with their control houses. In conclusion, it has been considered vital to understand occupants’ practices and behaviours in order to explain the ways they might contribute to the indoor climate and indoor air quality in energy-efficient houses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-efficient%20house" title="energy-efficient house">energy-efficient house</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20wellbeing" title=" health and wellbeing"> health and wellbeing</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment" title=" indoor environment"> indoor environment</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a> </p> <a href="https://publications.waset.org/abstracts/61494/a-study-of-the-implications-for-the-health-and-wellbeing-of-energy-efficient-house-occupants-a-uk-based-investigation-of-indoor-climate-and-indoor-air-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3164</span> Simulation of Natural Ventilation Strategies as a Comparison Method for Two Different Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fulya%20Ozbey">Fulya Ozbey</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecehan%20Ozmehmet"> Ecehan Ozmehmet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health and living in a healthy environment are important for all the living creatures. Healthy buildings are the part of the healthy environment and the ones that people and sometimes the animals spend most of their times in it. Therefore, healthy buildings are important subject for everybody. There are many elements of the healthy buildings from material choice to the thermal comfort including indoor air quality. The aim of this study is, to simulate two natural ventilation strategies which are used as a cooling method in Mediterranean climate, by applying to a residential building and compare the results for Asian climate. Fulltime natural and night-time ventilation strategies are simulated for three days during the summertime in Mediterranean climate. The results show that one of the chosen passive cooling strategies worked on both climates good enough without using additional shading element and cooling device, however, the other ventilation strategy did not provide comfortable indoor temperature enough. Finally, both of the ventilation strategies worked better on the Asian climate than the Mediterranean in terms of the total overheating hours during the chosen period of year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asian%20climate" title="Asian climate">Asian climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Mediterranean%20climate" title=" Mediterranean climate"> Mediterranean climate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20ventilation%20simulation" title=" natural ventilation simulation"> natural ventilation simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/85415/simulation-of-natural-ventilation-strategies-as-a-comparison-method-for-two-different-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3163</span> Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant's Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imad%20M.%20Assali">Imad M. Assali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20building" title="sustainable building">sustainable building</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environment%20quality%20%28IEQ%29" title=" indoor environment quality (IEQ)"> indoor environment quality (IEQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%27s%20health" title=" occupant's health"> occupant's health</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20system" title=" active system"> active system</a>, <a href="https://publications.waset.org/abstracts/search?q=sick%20building%20syndrome%20%28SBS%29" title=" sick building syndrome (SBS)"> sick building syndrome (SBS)</a> </p> <a href="https://publications.waset.org/abstracts/45472/enhance-indoor-environment-in-buildings-and-its-effect-on-improving-occupants-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3162</span> Indoor Microclimate in a Historic Library: Considerations on the Positive Effect of Historic Books on the Stability of Indoor Relative Humidity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magda%20Posani">Magda Posani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Do%20Rosario%20Veiga"> Maria Do Rosario Veiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasco%20Peixoto%20De%20Freitas"> Vasco Peixoto De Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented research considers the hygrothermal data acquired in the municipal library of Porto. The library is housed in an XVIII century convent and, among all the rooms in the construction, one, in particular, was chosen for the monitoring campaign because of the presence of a great number of historic books. Temperature and relative humidity, as well as CO₂ concentration, were measured for six consecutive months, in the period December 24th - June 24th. The indoor environment of the building is controlled with a heating and cooling system that is turned on only during the opening hours of the library. The ventilation rate is low because the windows are kept closed, and there is no forced ventilation. The micro-climate is analyzed in terms of users’ comfort and degradation risks for historic books and valuable building surfaces. Through a comparison between indoor and outdoor measured hygrothermal data, indoor relative humidity appears very stable. The influence of the hygroscopicity of books on the stabilization of indoor relative humidity is therefore investigated in detail. The paper finally discusses the benefits given by the presence of historic books in libraries with intermittent heating and cooling. The possibility of obtaining a comfortable and stable indoor climate with low use of HVAC systems in these conditions, while avoiding degradation risks for books and historic building components, is further debated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=books" title="books">books</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title=" historic buildings"> historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hygroscopicity" title=" hygroscopicity"> hygroscopicity</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a> </p> <a href="https://publications.waset.org/abstracts/110315/indoor-microclimate-in-a-historic-library-considerations-on-the-positive-effect-of-historic-books-on-the-stability-of-indoor-relative-humidity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3161</span> Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thet%20Su%20Hlaing">Thet Su Hlaing</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Kojima"> Shoichi Kojima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20house" title="bamboo house">bamboo house</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20and%20humid%20climate" title=" hot and humid climate"> hot and humid climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title=" indoor thermal comfort"> indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20indigenous%20roofing%20material" title=" local indigenous roofing material"> local indigenous roofing material</a> </p> <a href="https://publications.waset.org/abstracts/117485/influence-of-roofing-material-on-indoor-thermal-comfort-of-bamboo-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3160</span> The Influence of Different Green Roof Vegetation on Indoor Temperature in Semi-Arid Climate Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sinem%20Y%C4%B1ld%C4%B1r%C4%B1m">Sinem Yıldırım</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87imen%20%C3%96zburak"> Çimen Özburak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20%C3%96zden"> Özge Özden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities are facing a growing environmental issue as a result of the combined effect of urbanization and climate change. Climate change is the most conspicuousimpact on environmental issues. Nowadays, energy conservation is a very important subject for planners. It is known that green roofs can provide environmental benefits, which include building insulation and mitigating urban heat island effect within the cities. Some of the studies shown that green roofs regulate roof temperature and they have an effect on indoor temperatures of buildings. This research looks at the experimental investigation of different type green roof vegetation with control of no vegetation and their effect on indoor temperatures. The research has been carried out at Near East University Campus with the duration of four months in Nicosia, Cyprus. The experiment was consisting of four green roof types; three of them covered with vegetation, and one of them was not vegetated for control of the experiment. Each hut had 2.7 m2 roof areas, and the soil depth was 8 cm. Mediterranean climate drought resistant ground covers and shrubs were planted on the roof of the three huts. Three different vegetation type was used: 1-Low growing ground cover succulents 2-Mixture of low growing succulents and low shrubs 3-Mixture of low growing succulents, low shrubs, and high growing foliage plantsElitech RC-5 temperature data loggers were used in order to measure indoor temperatures of the huts. Research results were shown that the hut with a highly vegetated roof had the lowest temperatures during hot summer period in Cyprus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roofs" title="green roofs">green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20temperature" title=" indoor temperature"> indoor temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=mediterranean" title=" mediterranean"> mediterranean</a>, <a href="https://publications.waset.org/abstracts/search?q=cyprus" title=" cyprus"> cyprus</a> </p> <a href="https://publications.waset.org/abstracts/143588/the-influence-of-different-green-roof-vegetation-on-indoor-temperature-in-semi-arid-climate-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3159</span> Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Pashneva">Daria Pashneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Julija%20Pauraite"> Julija Pauraite</a>, <a href="https://publications.waset.org/abstracts/search?q=Agne%20Minderyte"> Agne Minderyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Vadimas%20Dudoitis"> Vadimas Dudoitis</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Davuliene"> Lina Davuliene</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Plauskaite"> Kristina Plauskaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Inga%20Garbariene"> Inga Garbariene</a>, <a href="https://publications.waset.org/abstracts/search?q=Steigvile%20Bycenkiene"> Steigvile Bycenkiene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20carbon" title="black carbon">black carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20quality" title=" indoor air quality"> indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=I%2FO%20ratio" title=" I/O ratio"> I/O ratio</a> </p> <a href="https://publications.waset.org/abstracts/135114/relationship-of-indoor-and-outdoor-levels-of-black-carbon-in-an-urban-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3158</span> Indoor and Outdoor Concentration of PM₁₀, PM₂.₅ and PM₁ in Residential Building and Evaluation of Negative Air Ions (NAIs) in Indoor PM Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Arfaeinia">Hossein Arfaeinia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Nadali"> Azam Nadali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asadgol"> Zahra Asadgol</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fahiminia"> Mohammad Fahiminia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor and outdoor particulate matters (PM) were monitored in 20 residential buildings in a two-part study. In part I, the levels of indoor and outdoor PM₁₀, PM₂.₅ and PM₁ was measured using real time GRIMM dust monitors. In part II, the effect of negative air ions (NAIs) method was investigated on the reduction of indoor concentration of PM in these residential buildings. Hourly average concentration and standard deviation (SD) of PM₁₀ in indoor and outdoor at residential buildings were 90.1 ± 33.5 and 63.5 ± 27.4 µg/ m3, respectively. Indoor and outdoor concentrations of PM₂.₅ in residential buildings were 49.5 ± 18.2 and 39.4± 18.1 µg/ m3 and for PM₁ the concentrations were 6.5 ± 10.1and 4.3 ± 7.7 µg/ m3, respectively. Indoor/outdoor (I/O) ratios and concentrations of all size fractions of PM were strongly correlated with wind speed and temperature whereas a good relationship was not observed between humidity and I/O ratios of PM. We estimated that nearly 71.47 % of PM₁₀, 79.86 % of PM₂.₅ and of 61.25 % of PM₁ in indoor of residential buildings can be removed by negative air ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20matter%20%28PM%29" title="particle matter (PM)">particle matter (PM)</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air" title=" indoor air"> indoor air</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20air%20ions%20%28NAIs%29" title=" negative air ions (NAIs)"> negative air ions (NAIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20building" title=" residential building"> residential building</a> </p> <a href="https://publications.waset.org/abstracts/76064/indoor-and-outdoor-concentration-of-pm10-pm25-and-pm1-in-residential-building-and-evaluation-of-negative-air-ions-nais-in-indoor-pm-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3157</span> Impact of Ventilation Systems on Indoor Air Quality in Swedish Primary School Classrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Langer">Sarka Langer</a>, <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Teli"> Despoina Teli</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanka%20Cabovska"> Blanka Cabovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan-Olof%20Dalenb%C3%A4ck"> Jan-Olof Dalenbäck</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Ekberg"> Lars Ekberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Bek%C3%B6"> Gabriel Bekö</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawel%20Wargocki"> Pawel Wargocki</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Giraldo%20Vasquez"> Natalia Giraldo Vasquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to investigate the impact of various ventilation systems on indoor climate, air pollution, chemistry, and perception. Measurements of thermal environment and indoor air quality were performed in 45 primary school classrooms in Gothenburg, Sweden. The classrooms were grouped into three categories according to their ventilation system: category A) natural or exhaust ventilation or automated window opening; category B) balanced mechanical ventilation systems with constant air volume (CAV); and category C) balanced mechanical ventilation systems with variable air volume (VAV). A questionnaire survey about indoor air quality, perception of temperature, odour, noise and light, and sensation of well-being, alertness focus, etc., was distributed among the 10-12 years old children attending the classrooms. The results (medians) showed statistically significant differences between ventilation category A and categories B and C, but not between categories B and C in air change rates, median concentrations of carbon dioxide, individual volatile organic compounds formaldehyde and isoprene, in-door-to-outdoor ozone ratios and products of ozonolysis of squalene, a constituent of human skin oils, 6-methyl-5-hepten-2-one and decanal. Median ozone concentration, ozone loss -a difference between outdoor and indoor ozone concentrations- were different only between categories A and C. Median concentration of total VOCs and a perception index based on survey responses on perceptions and sensations indoors were not significantly different. In conclusion, ventilation systems have an impact on air change rates, indoor air quality, and chemistry, but the Swedish primary school children’s perception did not differ with the ventilation systems of the classrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20pollutants" title="indoor air pollutants">indoor air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20climate" title=" indoor climate"> indoor climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20chemistry" title=" indoor chemistry"> indoor chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20change%20rate" title=" air change rate"> air change rate</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a> </p> <a href="https://publications.waset.org/abstracts/177851/impact-of-ventilation-systems-on-indoor-air-quality-in-swedish-primary-school-classrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3156</span> Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Su">Bin Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20mass%20effect" title=" building mass effect"> building mass effect</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20thermal%20comfort" title=" building thermal comfort"> building thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20thermal%20performance" title=" building thermal performance"> building thermal performance</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20building" title=" school building "> school building </a> </p> <a href="https://publications.waset.org/abstracts/18103/field-study-for-evaluating-winter-thermal-performance-of-auckland-school-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3155</span> Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premkumar%20Vincent">Premkumar Vincent</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeok%20Kim"> Hyeok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Hyuk%20Bae"> Jin-Hyuk Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20solar%20cells" title="indoor solar cells">indoor solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20light%20harvesting" title=" indoor light harvesting"> indoor light harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solar%20cells" title=" organic solar cells"> organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%3AICBA" title=" P3HT:ICBA"> P3HT:ICBA</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a> </p> <a href="https://publications.waset.org/abstracts/75834/absorption-control-of-organic-solar-cells-under-led-light-for-high-efficiency-indoor-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3154</span> Assessment of Personal Level Exposures to Particulate Matter among Children in Rural Preliminary Schools as an Indoor Air Pollution Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedtaghi%20Mirmohammadi">Seyedtaghi Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yazdani"> J. Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Asadi"> S. M. Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rokni"> M. Rokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Toosi"> A. Toosi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many indoor air quality studies with an emphasis on indoor particulate matters (PM2.5) monitoring. Whereas, there is a lake of data about indoor PM2.5 concentrations in rural area schools (especially in classrooms), since preliminary children are assumed to be more defenseless to health hazards and spend a large part of their time in classrooms. The objective of this study was indoor PM2.5 concentration quality assessment. Fifteen preliminary schools by time-series sampling were selected to evaluate the indoor air quality in the rural district of Sari city, Iran. Data on indoor air climate parameters (temperature, relative humidity and wind speed) were measured by a hygrometer and thermometer. Particulate matters (PM2.5) were collected and assessed by Real Time Dust Monitor, (MicroDust Pro, Casella, UK). The mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3 in average. The multiple linear regression revealed that a correlation between PM2.5 concentration and relative humidity, distance from city center and classroom size. Classroom size yields reasonable negative relationship, the PM2.5 concentration was ranged from 65 to 540μg/m3 and statistically significant at 0.05 level and the relative humidity was ranged from 70 to 85% and dry bulb temperature ranged from 28 to 29°C were statistically significant at 0.035 and 0.05 level, respectively. A statistical predictive model was obtained from multiple regressions modeling for PM2.5 and indoor psychrometric parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particulate%20matters" title="particulate matters">particulate matters</a>, <a href="https://publications.waset.org/abstracts/search?q=classrooms" title=" classrooms"> classrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a> </p> <a href="https://publications.waset.org/abstracts/34116/assessment-of-personal-level-exposures-to-particulate-matter-among-children-in-rural-preliminary-schools-as-an-indoor-air-pollution-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3153</span> Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jerome%20Osentowski">Jerome Osentowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroecology" title="agroecology">agroecology</a>, <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title=" agroforestry"> agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20farming" title=" carbon farming"> carbon farming</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20battery" title=" climate battery"> climate battery</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20farming" title=" forest farming"> forest farming</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20garden" title=" forest garden"> forest garden</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=near-net-zero" title=" near-net-zero"> near-net-zero</a>, <a href="https://publications.waset.org/abstracts/search?q=perennial%20polycultures" title=" perennial polycultures"> perennial polycultures</a> </p> <a href="https://publications.waset.org/abstracts/66202/indoor-and-outdoor-forest-farming-for-year-round-food-and-medicine-production-carbon-sequestration-soil-building-and-climate-change-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3152</span> Development of Application Architecture for RFID Based Indoor Tracking Using Passive RFID Tag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaya%20Ismail">Sumaya Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Aijaz%20Ahmad%20Rehi"> Aijaz Ahmad Rehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract The location tracking and positioning systems have technologically grown exponentially in recent decade. In particular, Global Position system (GPS) has become a universal norm to be a part of almost every software application directly or indirectly for the location based modules. However major drawback of GPS based system is their inability of working in indoor environments. Researchers are thus focused on the alternative technologies which can be used in indoor environments for a vast range of application domains which require indoor location tracking. One of the most popular technology used for indoor tracking is radio frequency identification (RFID). Due to its numerous advantages, including its cost effectiveness, it is considered as a technology of choice in indoor location tracking systems. To contribute to the emerging trend of the research, this paper proposes an application architecture of passive RFID tag based indoor location tracking system. For the proof of concept, a test bed will be developed to in this study. In addition, various indoor location tracking algorithms will be used to assess their appropriateness in the proposed application architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RFID" title="RFID">RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20location%20tracking" title=" indoor location tracking"> indoor location tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20architecture" title=" application architecture"> application architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20RFID%20tag" title=" passive RFID tag"> passive RFID tag</a> </p> <a href="https://publications.waset.org/abstracts/164777/development-of-application-architecture-for-rfid-based-indoor-tracking-using-passive-rfid-tag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3151</span> Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Roumi">Soheil Roumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Zhang"> Fan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodney%20Stewart"> Rodney Stewart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEQ" title="IEQ">IEQ</a>, <a href="https://publications.waset.org/abstracts/search?q=office%20buildings" title=" office buildings"> office buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%20resilience" title=" occupant resilience"> occupant resilience</a> </p> <a href="https://publications.waset.org/abstracts/150709/indoor-environment-quality-and-occupant-resilience-toward-climate-change-a-case-study-from-gold-coast-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3150</span> An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakr%20Gomaa">Bakr Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Awad"> Hana Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20buildings" title="educational buildings">educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Indoor%20air%20quality" title=" Indoor air quality"> Indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/102974/an-assessment-of-thermal-comfort-and-air-quality-in-educational-space-a-case-study-of-design-studios-in-the-arab-academy-for-science-technology-and-maritime-transport-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3149</span> Correlation between Indoor and Outdoor Air</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Radaideh">Jamal A. Radaideh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziad%20N.%20Shatnawi"> Ziad N. Shatnawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criteria%20air%20pollutants" title="criteria air pollutants">criteria air pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20air%20pollution" title=" indoor/outdoor air pollution"> indoor/outdoor air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%2Foutdoor%20ratio" title=" indoor/outdoor ratio"> indoor/outdoor ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/21435/correlation-between-indoor-and-outdoor-air" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3148</span> An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwok%20W.%20Mui">Kwok W. Mui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20T.%20Wong"> Ling T. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin%20T.%20Cheung"> Chin T. Cheung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%20C.%20Yu"> Ho C. Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calculator" title="calculator">calculator</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20environmental%20quality%20%28IEQ%29" title=" indoor environmental quality (IEQ)"> indoor environmental quality (IEQ)</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=5-star%20benchmarks" title=" 5-star benchmarks "> 5-star benchmarks </a> </p> <a href="https://publications.waset.org/abstracts/24988/an-application-based-indoor-environmental-quality-ieq-calculator-for-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3147</span> Indoor Thermal Comfort in Educational Buildings in the State of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20El-Azzeh">Sana El-Azzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Farraj%20Al-Ajmi"> Farraj Al-Ajmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Aqqad"> Abdulrahman Al-Aqqad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salem"> Mohamed Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title="indoor thermal comfort">indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20facility" title=" educational facility"> educational facility</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20analysis" title=" gender analysis"> gender analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20desert%20climate" title=" dry desert climate"> dry desert climate</a> </p> <a href="https://publications.waset.org/abstracts/132734/indoor-thermal-comfort-in-educational-buildings-in-the-state-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3146</span> Visual Search Based Indoor Localization in Low Light via RGB-D Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yali%20Zheng">Yali Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peipei%20Luo"> Peipei Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinan%20Chen"> Shinan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiasheng%20Hao"> Jiasheng Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Cheng"> Hong Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20navigation" title="indoor navigation">indoor navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20light" title=" low light"> low light</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB-D%20camera" title=" RGB-D camera"> RGB-D camera</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20based" title=" vision based"> vision based</a> </p> <a href="https://publications.waset.org/abstracts/66057/visual-search-based-indoor-localization-in-low-light-via-rgb-d-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3145</span> The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Iwaro">J. Iwaro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mwasha"> A. Mwasha</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramsubhag"> K. Ramsubhag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=roof" title=" roof"> roof</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/57441/the-impact-of-roof-thermal-performance-on-the-indoor-thermal-comfort-in-a-natural-ventilated-building-envelope-in-hot-climatic-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3144</span> A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=X.%20Lu">X. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Lu"> T. Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Javadi"> S. Javadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title="dynamic model">dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20impact" title=" climate change impact"> climate change impact</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20structure" title=" wooden structure"> wooden structure</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a> </p> <a href="https://publications.waset.org/abstracts/123454/a-dynamic-approach-for-evaluating-the-climate-change-risks-on-building-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3143</span> Exploring People’s Perceptions of Indoor Plants through the Lens of Para-Social Relationships Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivashkina%20Elizaveta">Ivashkina Elizaveta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite significant research on the positive effects of houseplants on human life, we know almost nothing about how people perceive plants and their attitudes toward them. The following study seeks to fill this void by applying para-social relationships (PSRs) theory to analyze individuals’ perceptions of houseplants. We reveal how people form and maintain PSRs with indoor plants using 15 semi-structured in-depth interviews with Russian-speaking university students who had a close bond with their indoor plants when the study was conducted. The findings indicate that the process of forming PSRs is influenced by factors such as exposure and homophily. Students develop a sense of companionship with their indoor plants, which contributes to establishing a PSR. Participants reported engaging in various activities, such as regular care, communication, and interaction with their plants. The insights gained from this research have implications for horticultural therapy, environmental psychology, and indoor gardening practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=para-social%20relationships" title="para-social relationships">para-social relationships</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a>, <a href="https://publications.waset.org/abstracts/search?q=people-plant%20interaction" title=" people-plant interaction"> people-plant interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20plants" title=" indoor plants"> indoor plants</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20research" title=" qualitative research"> qualitative research</a> </p> <a href="https://publications.waset.org/abstracts/175220/exploring-peoples-perceptions-of-indoor-plants-through-the-lens-of-para-social-relationships-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3142</span> Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedtaghi%20Mirmohammadi">Seyedtaghi Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Yazdani"> Jamshid Yazdani</a>, <a href="https://publications.waset.org/abstracts/search?q=Syavash%20Etemadi%20Nejad"> Syavash Etemadi Nejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classrooms" title="classrooms">classrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matters" title=" particulate matters"> particulate matters</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/21397/long-term-indoor-air-monitoring-for-students-with-emphasis-on-particulate-matter-pm25-exposure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3141</span> A Comparative Analysis about the Effects of a Courtyard in Indoor Thermal Environment of a Room with and without Transitional Space Adjacent to Courtyard of a House in Old Dhaka, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Tasmia">Fatema Tasmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Brishti%20Majumder"> Brishti Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiqur%20Rahman"> Atiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attaining appropriate comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it is resided at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. Courtyards are the part of buildings which are used as space for outdoor household activities, social gathering and it is also proved to have indoor thermal comfort as an effect of courtyard. This paper aims to investigate the effect of courtyard in indoor thermal environment of a room adjacent to the courtyard and a room next to transitional space after a courtyard through field measurements of a case study house. The field measurement was conducted in a two-storey house. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature in both situations. Ventilation or air movement was considered to have no impact because of the rooms’ layout and location. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of courtyards and in its relation to indoor space while achieving thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=courtyard" title="courtyard">courtyard</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20Dhaka" title=" old Dhaka"> old Dhaka</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=transitional%20space" title=" transitional space"> transitional space</a> </p> <a href="https://publications.waset.org/abstracts/87111/a-comparative-analysis-about-the-effects-of-a-courtyard-in-indoor-thermal-environment-of-a-room-with-and-without-transitional-space-adjacent-to-courtyard-of-a-house-in-old-dhaka-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3140</span> Investigation of Thermal Comfort Conditions of Vernacular Buildings Taking into Consideration Various Use Patterns: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Kalogirou">Christina Kalogirou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to explore the thermal comfort conditions in traditional buildings during all seasons of the year taking into consideration various use patterns. For this purpose a dwelling of vernacular architecture is selected and data regarding the indoor and outdoor air and surface temperature as well as the relative humidity are collected. These measurements are conducted in situ during the period of a year. Also, this building is occupied periodically and a calendar of occupancy was kept (duration of residence, hours of heating system operation, hours of natural ventilation, etc.) in order to correlate the indoor conditions recorded with the use patterns via statistical analysis. Furthermore, the effect of the high thermal inertia of the stone masonry walls and the different orientation of the rooms is addressed. Thus, this paper concludes in some interesting results on the effect of the users in the indoor climate conditions in the case of buildings with high thermal inertia envelops. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title="thermal comfort">thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20measurements" title=" in situ measurements"> in situ measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=occupant%20behaviour" title=" occupant behaviour"> occupant behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=vernacular%20architecture" title=" vernacular architecture"> vernacular architecture</a> </p> <a href="https://publications.waset.org/abstracts/67831/investigation-of-thermal-comfort-conditions-of-vernacular-buildings-taking-into-consideration-various-use-patterns-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3139</span> Childhood Respiratory Diseases Related to Indoor and Outdoor Air Temperature in Shanghai, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanjuan%20Sun">Chanjuan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijie%20Hong"> Shijie Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jialing%20Zhang"> Jialing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchao%20Guo"> Yuchao Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Zou"> Zhijun Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Huang"> Chen Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Studies on associations between air temperature and childhood respiratory diseases are lack in China. Objectives: We aim to analyze the relationship between air temperature and childhood respiratory diseases. Methods: We conducted the on-site inspection into 454 residences and questionnaires survey. Indoor air temperature were from field inspection and outdoor air temperature were from website. Multiple logistic regression analyses were used to investigate the associations. Results: Indoor extreme hot air temperature was positively correlated with duration of a common cold (>=2 weeks), and outdoor extreme hot air temperature was also positively related with pneumonia among children. Indoor and outdoor extreme cold air temperature was a risk factor for rhinitis among children. The biggest indoor air temperature difference (indoor maximum air temperature minus indoor minimum air temperature) (Imax minus Imin) (the 4th quartile, >4 oC) and outdoor air temperature difference (outdoor maximum air temperature minus outdoor minimum air temperature) (Omax minus Omin) (the 4th quartile, >8oC) were positively related to pneumonia among children. Meanwhile, indoor air temperature difference (Imax minus Imin) (the 4th quartile, >4 oC) was positively correlated with diagnosed asthma among children. Air temperature difference between indoor and outdoor was negatively related with the most childhood respiratory diseases. This may be partly related to the avoidance behavior. Conclusions: Improper air temperature may affect the respiratory diseases among children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20temperature" title="air temperature">air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=extreme%20air%20temperature" title=" extreme air temperature"> extreme air temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20temperature%20difference" title=" air temperature difference"> air temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20diseases" title=" respiratory diseases"> respiratory diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/120913/childhood-respiratory-diseases-related-to-indoor-and-outdoor-air-temperature-in-shanghai-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3138</span> Assessing the NYC's Single-Family Housing Typology for Urban Heat Vulnerability and Occupants’ Health Risk under the Climate Change Emergency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Stefania%20Kalapoda">Eleni Stefania Kalapoda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurring heat waves due to the global climate change emergency pose continuous risks to human health and urban resources. Local and state decision-makers incorporate Heat Vulnerability Indices (HVIs) to quantify and map the relative impact on human health in emergencies. These maps enable government officials to identify the highest-risk districts and to concentrate emergency planning efforts and available resources accordingly (e.g., to reevaluate the location and the number of heat-relief centers). Even though the framework of conducting an HVI is unique per municipality, its accuracy in assessing the heat risk is limited. To resolve this issue, varied housing-related metrics should be included. This paper quantifies and classifies NYC’s single detached housing typology within high-vulnerable NYC districts using detailed energy simulations and post-processing calculations. The results show that the variation in indoor heat risk depends significantly on the dwelling’s design/operation characteristics, concluding that low-ventilated dwellings are the most vulnerable ones. Also, it confirmed that when building-level determinants of exposure are excluded from the assessment, HVI fails to capture important components of heat vulnerability. Lastly, the overall vulnerability ratio of the housing units was calculated between 0.11 to 1.6 indoor heat degrees in terms of ventilation and shading capacity, insulation degree, and other building attributes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20vulnerability%20index" title="heat vulnerability index">heat vulnerability index</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat" title=" urban heat"> urban heat</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliency%20to%20heat" title=" resiliency to heat"> resiliency to heat</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20adaptation" title=" climate adaptation"> climate adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20mitigation" title=" climate mitigation"> climate mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy" title=" building energy"> building energy</a> </p> <a href="https://publications.waset.org/abstracts/160288/assessing-the-nycs-single-family-housing-typology-for-urban-heat-vulnerability-and-occupants-health-risk-under-the-climate-change-emergency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3137</span> Wood as a Climate Buffer in a Supermarket</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kristine%20Nore">Kristine Nore</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Severnisen"> Alexander Severnisen</a>, <a href="https://publications.waset.org/abstracts/search?q=Petter%20Arnestad"> Petter Arnestad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Kraniotis"> Dimitris Kraniotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Roy%20Rosseb%C3%B8"> Roy Rossebø</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20buffer" title="climate buffer">climate buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20mass" title=" hygrothermal mass"> hygrothermal mass</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20forecast" title=" weather forecast"> weather forecast</a> </p> <a href="https://publications.waset.org/abstracts/87349/wood-as-a-climate-buffer-in-a-supermarket" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3136</span> Indoor Temperature Estimation with FIR Filter Using R-C Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun%20You">Sung Hyun You</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20Hoon%20Kim"> Jeong Hoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Ki%20Kim"> Dae Ki Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon%20Ki%20Ahn"> Choon Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance-capacitance%20network%20model" title=" resistance-capacitance network model"> resistance-capacitance network model</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20impulse%20response%20filter" title=" finite impulse response filter"> finite impulse response filter</a> </p> <a href="https://publications.waset.org/abstracts/65608/indoor-temperature-estimation-with-fir-filter-using-r-c-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=105">105</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=106">106</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=indoor%20climate&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>