CINXE.COM
Search results for: aeronautical channel
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aeronautical channel</title> <meta name="description" content="Search results for: aeronautical channel"> <meta name="keywords" content="aeronautical channel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aeronautical channel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aeronautical channel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1345</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aeronautical channel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> A Peg Board with Photo-Reflectors to Detect Peg Insertion and Pull-Out Moments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Kinoshita">Hiroshi Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuto%20Nakanishi"> Yasuto Nakanishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryuhei%20Okuno"> Ryuhei Okuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshio%20Higashi"> Toshio Higashi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various kinds of pegboards have been developed and used widely in research and clinics of rehabilitation for evaluation and training of patient’s hand function. A common measure in these peg boards is a total time of performance execution assessed by a tester’s stopwatch. Introduction of electrical and automatic measurement technology to the apparatus, on the other hand, has been delayed. The present work introduces the development of a pegboard with an electric sensor to detect moments of individual peg’s insertion and removal. The work also gives fundamental data obtained from a group of healthy young individuals who performed peg transfer tasks using the pegboard developed. Through trails and errors in pilot tests, two 10-hole peg-board boxes installed with a small photo-reflector and a DC amplifier at the bottom of each hole were designed and built by the present authors. The amplified electric analogue signals from the 20 reflectors were automatically digitized at 500 Hz per channel, and stored in a PC. The boxes were set on a test table at different distances (25, 50, 75, and 125 mm) in parallel to examine the effect of hole-to-hole distance. Fifty healthy young volunteers (25 in each gender) as subjects of the study performed successive fast 80 time peg transfers at each distance using their dominant and non-dominant hands. The data gathered showed a clear-cut light interruption/continuation moment by the pegs, allowing accurately (no tester’s error involved) and precisely (an order of milliseconds) to determine the pull out and insertion times of each peg. This further permitted computation of individual peg movement duration (PMD: from peg-lift-off to insertion) apart from hand reaching duration (HRD: from peg insertion to lift-off). An accidental drop of a peg led to an exceptionally long ( < mean + 3 SD) PMD, which was readily detected from an examination of data distribution. The PMD data were commonly right-skewed, suggesting that the median can be a better estimate of individual PMD than the mean. Repeated measures ANOVA using the median values revealed significant hole-to-hole distance, and hand dominance effects, suggesting that these need to be fixed in the accurate evaluation of PMD. The gender effect was non-significant. Performance consistency was also evaluated by the use of quartile variation coefficient values, which revealed no gender, hole-to-hole, and hand dominance effects. The measurement reliability was further examined using interclass correlation obtained from 14 subjects who performed the 25 and 125 mm hole distance tasks at two 7-10 days separate test sessions. Inter-class correlation values between the two tests showed fair reliability for PMD (0.65-0.75), and for HRD (0.77-0.94). We concluded that a sensor peg board developed in the present study could provide accurate (excluding tester’s errors), and precise (at a millisecond rate) time information of peg movement separated from that used for hand movement. It could also easily detect and automatically exclude erroneous execution data from his/her standard data. These would lead to a better evaluation of hand dexterity function compared to the widely used conventional used peg boards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand" title="hand">hand</a>, <a href="https://publications.waset.org/abstracts/search?q=dexterity%20test" title=" dexterity test"> dexterity test</a>, <a href="https://publications.waset.org/abstracts/search?q=peg%20movement%20time" title=" peg movement time"> peg movement time</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20consistency" title=" performance consistency"> performance consistency</a> </p> <a href="https://publications.waset.org/abstracts/84616/a-peg-board-with-photo-reflectors-to-detect-peg-insertion-and-pull-out-moments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> An Autonomous Passive Acoustic System for Detection, Tracking and Classification of Motorboats in Portofino Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Casale">A. Casale</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Alessi"> J. Alessi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20N.%20Bianchi"> C. N. Bianchi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Bozzini"> G. Bozzini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Brunoldi"> M. Brunoldi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Cappanera"> V. Cappanera</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Corvisiero"> P. Corvisiero</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Fanciulli"> G. Fanciulli</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Grosso"> D. Grosso</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Magnoli"> N. Magnoli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mandich"> A. Mandich</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Melchiorre"> C. Melchiorre</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Morri"> C. Morri</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Povero"> P. Povero</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Stasi"> N. Stasi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Taiuti"> M. Taiuti</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Viano"> G. Viano</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wurtz"> M. Wurtz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes a real-time algorithm for detecting, tracking and classifying single motorboats, developed using the acoustic data recorded by a hydrophone array within the framework of EU LIFE + project ARION (LIFE09NAT/IT/000190). The project aims to improve the conservation status of bottlenose dolphins through a real-time simultaneous monitoring of their population and surface ship traffic. A Passive Acoustic Monitoring (PAM) system is installed on two autonomous permanent marine buoys, located close to the boundaries of the Marine Protected Area (MPA) of Portofino (Ligurian Sea- Italy). Detecting surface ships is also a necessity in many other sensible areas, such as wind farms, oil platforms, and harbours. A PAM system could be an effective alternative to the usual monitoring systems, as radar or active sonar, for localizing unauthorized ship presence or illegal activities, with the advantage of not revealing its presence. Each ARION buoy consists of a particular type of structure, named meda elastica (elastic beacon) composed of a main pole, about 30-meter length, emerging for 7 meters, anchored to a mooring of 30 tons at 90 m depth by an anti-twist steel wire. Each buoy is equipped with a floating element and a hydrophone tetrahedron array, whose raw data are send via a Wi-Fi bridge to a ground station where real-time analysis is performed. Bottlenose dolphin detection algorithm and ship monitoring algorithm are operating in parallel and in real time. Three modules were developed and commissioned for ship monitoring. The first is the detection algorithm, based on Time Difference Of Arrival (TDOA) measurements, i.e., the evaluation of angular direction of the target respect to each buoy and the triangulation for obtaining the target position. The second is the tracking algorithm, based on a Kalman filter, i.e., the estimate of the real course and speed of the target through a predictor filter. At last, the classification algorithm is based on the DEMON method, i.e., the extraction of the acoustic signature of single vessels. The following results were obtained; the detection algorithm succeeded in evaluating the bearing angle with respect to each buoy and the position of the target, with an uncertainty of 2 degrees and a maximum range of 2.5 km. The tracking algorithm succeeded in reconstructing the real vessel courses and estimating the speed with an accuracy of 20% respect to the Automatic Identification System (AIS) signals. The classification algorithm succeeded in isolating the acoustic signature of single vessels, demonstrating its temporal stability and the consistency of both buoys results. As reference, the results were compared with the Hilbert transform of single channel signals. The algorithm for tracking multiple targets is ready to be developed, thanks to the modularity of the single ship algorithm: the classification module will enumerate and identify all targets present in the study area; for each of them, the detection module and the tracking module will be applied to monitor their course. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic-noise" title="acoustic-noise">acoustic-noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bottlenose-dolphin" title=" bottlenose-dolphin"> bottlenose-dolphin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophone" title=" hydrophone"> hydrophone</a>, <a href="https://publications.waset.org/abstracts/search?q=motorboat" title=" motorboat"> motorboat</a> </p> <a href="https://publications.waset.org/abstracts/94060/an-autonomous-passive-acoustic-system-for-detection-tracking-and-classification-of-motorboats-in-portofino-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Chatbots vs. Websites: A Comparative Analysis Measuring User Experience and Emotions in Mobile Commerce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Boehm">Stephan Boehm</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Engel"> Julia Engel</a>, <a href="https://publications.waset.org/abstracts/search?q=Judith%20Eisser"> Judith Eisser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade communication in the Internet transformed from a broadcast to a conversational model by supporting more interactive features, enabling user generated content and introducing social media networks. Another important trend with a significant impact on electronic commerce is a massive usage shift from desktop to mobile devices. However, a presentation of product- or service-related information accumulated on websites, micro pages or portals often remains the pivot and focal point of a customer journey. A more recent change of user behavior –especially in younger user groups and in Asia– is going along with the increasing adoption of messaging applications supporting almost real-time but asynchronous communication on mobile devices. Mobile apps of this type cannot only provide an alternative for traditional one-to-one communication on mobile devices like voice calls or short messaging service. Moreover, they can be used in mobile commerce as a new marketing and sales channel, e.g., for product promotions and direct marketing activities. This requires a new way of customer interaction compared to traditional mobile commerce activities and functionalities provided based on mobile web-sites. One option better aligned to the customer interaction in mes-saging apps are so-called chatbots. Chatbots are conversational programs or dialog systems simulating a text or voice based human interaction. They can be introduced in mobile messaging and social media apps by using rule- or artificial intelligence-based imple-mentations. In this context, a comparative analysis is conducted to examine the impact of using traditional websites or chatbots for promoting a product in an impulse purchase situation. The aim of this study is to measure the impact on the customers’ user experi-ence and emotions. The study is based on a random sample of about 60 smartphone users in the group of 20 to 30-year-olds. Participants are randomly assigned into two groups and participate in a traditional website or innovative chatbot based mobile com-merce scenario. The chatbot-based scenario is implemented by using a Wizard-of-Oz experimental approach for reasons of sim-plicity and to allow for more flexibility when simulating simple rule-based and more advanced artificial intelligence-based chatbot setups. A specific set of metrics is defined to measure and com-pare the user experience in both scenarios. It can be assumed, that users get more emotionally involved when interacting with a system simulating human communication behavior instead of browsing a mobile commerce website. For this reason, innovative face-tracking and analysis technology is used to derive feedback on the emotional status of the study participants while interacting with the website or the chatbot. This study is a work in progress. The results will provide first insights on the effects of chatbot usage on user experiences and emotions in mobile commerce environments. Based on the study findings basic requirements for a user-centered design and implementation of chatbot solutions for mobile com-merce can be derived. Moreover, first indications on situations where chatbots might be favorable in comparison to the usage of traditional website based mobile commerce can be identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chatbots" title="chatbots">chatbots</a>, <a href="https://publications.waset.org/abstracts/search?q=emotions" title=" emotions"> emotions</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20commerce" title=" mobile commerce"> mobile commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a>, <a href="https://publications.waset.org/abstracts/search?q=Wizard-of-Oz%20prototyping" title=" Wizard-of-Oz prototyping"> Wizard-of-Oz prototyping</a> </p> <a href="https://publications.waset.org/abstracts/67801/chatbots-vs-websites-a-comparative-analysis-measuring-user-experience-and-emotions-in-mobile-commerce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamal%20Roy">Tamal Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Bhat"> Anuradha Bhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=associative%20cue" title=" associative cue"> associative cue</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20complexity" title=" habitat complexity"> habitat complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20learning" title=" spatial learning"> spatial learning</a> </p> <a href="https://publications.waset.org/abstracts/48757/variations-in-spatial-learning-and-memory-across-natural-populations-of-zebrafish-danio-rerio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berna%20%C3%87al%C4%B1%C5%9Fkan">Berna Çalışkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title="water resources management">water resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20tool" title=" hydro tool"> hydro tool</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20protection" title=" water protection"> water protection</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/174137/an-integrated-water-resources-management-approach-to-evaluate-effects-of-transportation-projects-in-urbanized-territories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Kumar">Anil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajnish%20Kaur"> Rajnish Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Czyzycki"> Mateusz Czyzycki</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Migilori"> Alessandro Migilori</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Germanos%20Karydas"> Andreas Germanos Karydas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjiv%20Puri"> Sanjiv Puri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20effects" title="chemical effects">chemical effects</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20X-ray%20production%20cross%20sections" title=" L X-ray production cross sections"> L X-ray production cross sections</a>, <a href="https://publications.waset.org/abstracts/search?q=Many%20body%20effects" title=" Many body effects"> Many body effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Synchrotron%20radiation" title=" Synchrotron radiation"> Synchrotron radiation</a> </p> <a href="https://publications.waset.org/abstracts/124775/investigation-of-chemical-effects-on-the-lgh23-and-lgh4-x-ray-production-cross-sections-for-some-compounds-of-66dy-at-photon-energies-close-to-l1-absorption-edge-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Sacc%C3%A0">V. Saccà</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sarica"> A. Sarica</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Novellino"> F. Novellino</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Barone"> S. Barone</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tallarico"> T. Tallarico</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Filippelli"> E. Filippelli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Granata"> A. Granata</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Valentino"> P. Valentino</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Quattrone"> A. Quattrone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/72690/evaluation-of-random-forest-and-support-vector-machine-classification-performance-for-the-prediction-of-early-multiple-sclerosis-from-resting-state-fmri-connectivity-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Sonne%20Kristensen">Michael Sonne Kristensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Loesche"> Frank Loesche</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Foster"> James Foster</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ozcan"> Elif Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Judy%20Edworthy"> Judy Edworthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auditory%20spatiotemporal%20trajectory" title="auditory spatiotemporal trajectory">auditory spatiotemporal trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20alarms" title=" medical alarms"> medical alarms</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20cognition" title=" social cognition"> social cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=video-ethography" title=" video-ethography"> video-ethography</a> </p> <a href="https://publications.waset.org/abstracts/73648/distributed-listening-in-intensive-care-nurses-collective-alarm-responses-unravelled-through-auditory-spatiotemporal-trajectories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glykeria%20A.%20Visvini">Glykeria A. Visvini</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20%CE%9D.%20Mathioudakis"> George Ν. Mathioudakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Soto%20Beobide"> Amaia Soto Beobide</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20A.%20Voyiatzis"> George A. Voyiatzis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337) <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20based%20nanomaterials" title="carbon based nanomaterials">carbon based nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleating%20agent" title=" nucleating agent"> nucleating agent</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20permeability" title=" water vapor permeability"> water vapor permeability</a> </p> <a href="https://publications.waset.org/abstracts/165339/the-impact-of-v-nucleating-agents-and-carbon-based-nanomaterials-on-water-vapor-permeability-of-polypropylene-composite-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20J.%20Wilde">Simon J. Wilde</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20M.%20Herold"> David M. Herold</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Bryant"> Michael J. Bryant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20media%20advertising" title="social media advertising">social media advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20consumers" title=" older consumers"> older consumers</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20studies" title=" internet studies"> internet studies</a> </p> <a href="https://publications.waset.org/abstracts/187077/older-consumers-willingness-to-trust-social-media-advertising-a-case-of-australian-social-media-users" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhilesh%20Singh">Nikhilesh Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shishir%20Gaur"> Shishir Gaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20K.%20Sharma"> Anitha K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20management" title="sustainable management">sustainable management</a>, <a href="https://publications.waset.org/abstracts/search?q=holistic%20approach" title=" holistic approach"> holistic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20lab" title=" living lab"> living lab</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20river%20management" title=" integrated river management"> integrated river management</a> </p> <a href="https://publications.waset.org/abstracts/182283/smart-laboratory-for-clean-rivers-in-india-an-indo-danish-collaboration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemys%C5%82aw%20Adamczyk">Przemysław Adamczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Wyczesany"> Mirosław Wyczesany</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Domagalik"> Aleksandra Domagalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Daren"> Artur Daren</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Cepuch"> Kamil Cepuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20B%C5%82%C4%85dzi%C5%84ski"> Piotr Błądziński</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadeusz%20Marek"> Tadeusz Marek</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Cechnicki"> Andrzej Cechnicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20skills" title="communication skills">communication skills</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20magnetic%20resonance%20imaging" title=" functional magnetic resonance imaging"> functional magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=humor" title=" humor"> humor</a>, <a href="https://publications.waset.org/abstracts/search?q=schizophrenia" title=" schizophrenia"> schizophrenia</a> </p> <a href="https://publications.waset.org/abstracts/60165/neural-correlates-of-diminished-humor-comprehension-in-schizophrenia-a-functional-magnetic-resonance-imaging-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Recognition of a Stacked Wave-Tide Dominated Fluvio-Marine Depositional System in an Ancient Rock Record, Proterozoic Simla Group, Lesser Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mukhopadhyay">Ananya Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Mazumdar"> Priyanka Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tithi%20Banerjee"> Tithi Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Alono%20Thorie"> Alono Thorie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Outcrop-based facies analysis of the Proterozoic rock successions in the Simla Basin, Lesser Himalaya was combined with the application of sequence stratigraphy to delineate the stages of wave-tide dominated fluvio-marine depositional system development. On this basis, a vertical profile depositional model has been developed. Based on lateral and vertical facies transitions, twenty lithofacies have been delineated from the lower-middle-upper part of the Simla Group, which are categorized into four major facies (FA1, FA2, FA3 and FA4) belts. FA1 documented from the Basantpur Formation (lower part of the Simla Group) indicates evolution of a distally steepened carbonate ramp deposits) highly influenced by sea level fluctuations, where outer, mid and inner ramp sub environments were identified. This transition from inner-mid to outer ramp is marked by a distinct slope break that has been widely cited as an example of a distally steepened ramp. The Basantpur carbonate ramp represents two different systems tracts: TST and HST which developed at different stages of sea level fluctuations. FA2 manifested from the Kunihar Formation (uncorformably overlying the Basantpur Formation) indicates deposition in a rimmed shelf (rich in microbial activity) sub-environment and bears the signature of an HST. FA3 delineated from the Chhaosa Formation (unconformably overlying the Kunihar mixed siliciclastic carbonates, middle part of the Simla Group) provides an excellent example of tide- and wave influenced deltaic deposit (FA3) which is characterized by wave dominated shorefacies deposit in the lower part, sharply overlain by fluvio-tidal channel and/or estuarine bay successions in the middle part followed by a tide dominated muddy tidal flat in the upper part. Despite large-scale progradation, the Chhaosa deltaic deposits are volumetrically dominated by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units which are characterized by muddy tidal flat deposit. The Sanjauli Formation (upper part of the Simla Basin) records a major marine regression leading to the shifting of the shoreline basinward thereby resulting in fluvial incision on the top of the Chhaosa deltaic succession. The development of a braided fluvial system (FA4) with prominent fluvial incision is marked by presence of conglomerate-sandstone facies associations. Prominent fluvial incision on top of the delta deposits indicates the presence of sub-aerial TYPE 1 unconformity. The fluvial deposits mark the closure of sedimentation in the Simla basin that evolved during high frequency periods of coastal progradation and retrogradation. Each of the depositional cycles represents shoreline regression followed by transgression which is bounded by flooding surfaces and further followed by regression. The proposed depositional model in the present work deals with lateral facies variation due to shift in shore line along with fluctuations in accommodation space on a wave-tide influenced depositional system owing to fluctuations of sea level. This model will probably find its applicability in similar depositional setups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proterozoic" title="proterozoic">proterozoic</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonate%20ramp" title=" carbonate ramp"> carbonate ramp</a>, <a href="https://publications.waset.org/abstracts/search?q=tide%20dominated%20delta" title=" tide dominated delta"> tide dominated delta</a>, <a href="https://publications.waset.org/abstracts/search?q=braided%20fluvial%20system" title=" braided fluvial system"> braided fluvial system</a>, <a href="https://publications.waset.org/abstracts/search?q=TYPE%201%20unconformity" title=" TYPE 1 unconformity"> TYPE 1 unconformity</a> </p> <a href="https://publications.waset.org/abstracts/57242/recognition-of-a-stacked-wave-tide-dominated-fluvio-marine-depositional-system-in-an-ancient-rock-record-proterozoic-simla-group-lesser-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Reverse Logistics Network Optimization for E-Commerce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Albert%20W.%20K.%20Tan">Albert W. K. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research consolidates a comprehensive array of publications from peer-reviewed journals, case studies, and seminar reports focused on reverse logistics and network design. By synthesizing this secondary knowledge, our objective is to identify and articulate key decision factors crucial to reverse logistics network design for e-commerce. Through this exploration, we aim to present a refined mathematical model that offers valuable insights for companies seeking to optimize their reverse logistics operations. The primary goal of this research endeavor is to develop a comprehensive framework tailored to advising organizations and companies on crafting effective networks for their reverse logistics operations, thereby facilitating the achievement of their organizational goals. This involves a thorough examination of various network configurations, weighing their advantages and disadvantages to ensure alignment with specific business objectives. The key objectives of this research include: (i) Identifying pivotal factors pertinent to network design decisions within the realm of reverse logistics across diverse supply chains. (ii) Formulating a structured framework designed to offer informed recommendations for sound network design decisions applicable to relevant industries and scenarios. (iii) Propose a mathematical model to optimize its reverse logistics network. A conceptual framework for designing a reverse logistics network has been developed through a combination of insights from the literature review and information gathered from company websites. This framework encompasses four key stages in the selection of reverse logistics operations modes: (1) Collection, (2) Sorting and testing, (3) Processing, and (4) Storage. Key factors to consider in reverse logistics network design: I) Centralized vs. decentralized processing: Centralized processing, a long-standing practice in reverse logistics, has recently gained greater attention from manufacturing companies. In this system, all products within the reverse logistics pipeline are brought to a central facility for sorting, processing, and subsequent shipment to their next destinations. Centralization offers the advantage of efficiently managing the reverse logistics flow, potentially leading to increased revenues from returned items. Moreover, it aids in determining the most appropriate reverse channel for handling returns. On the contrary, a decentralized system is more suitable when products are returned directly from consumers to retailers. In this scenario, individual sales outlets serve as gatekeepers for processing returns. Considerations encompass the product lifecycle, product value and cost, return volume, and the geographic distribution of returns. II) In-house vs. third-party logistics providers: The decision between insourcing and outsourcing in reverse logistics network design is pivotal. In insourcing, a company handles the entire reverse logistics process, including material reuse. In contrast, outsourcing involves third-party providers taking on various aspects of reverse logistics. Companies may choose outsourcing due to resource constraints or lack of expertise, with the extent of outsourcing varying based on factors such as personnel skills and cost considerations. Based on the conceptual framework, the authors have constructed a mathematical model that optimizes reverse logistics network design decisions. The model will consider key factors identified in the framework, such as transportation costs, facility capacities, and lead times. The authors have employed mixed LP to find the optimal solutions that minimize costs while meeting organizational objectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title="reverse logistics">reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=e-commerce" title=" e-commerce"> e-commerce</a> </p> <a href="https://publications.waset.org/abstracts/185831/reverse-logistics-network-optimization-for-e-commerce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meena%20Agrawal">Meena Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitanya%20P.%20Agrawal"> Chaitanya P. Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition%20and%20control" title="data acquisition and control">data acquisition and control</a>, <a href="https://publications.waset.org/abstracts/search?q=LabVIEW" title=" LabVIEW"> LabVIEW</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller%20cRIO" title=" microcontroller cRIO"> microcontroller cRIO</a>, <a href="https://publications.waset.org/abstracts/search?q=Smart%20Micro-Grid" title=" Smart Micro-Grid"> Smart Micro-Grid</a> </p> <a href="https://publications.waset.org/abstracts/58537/renewable-energy-micro-grid-control-using-microcontroller-in-labview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho-Ting%20Wu">Ho-Ting Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Ke"> Kai-Wei Ke</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo-Yu%20Huang"> Bo-Yu Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Lin%20Yan"> Liang-Lin Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Ting%20Lin"> Chun-Ting Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IEEE%20802.15.4e" title="IEEE 802.15.4e">IEEE 802.15.4e</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20internet%20of%20things%20%28IIOT%29" title=" industrial internet of things (IIOT)"> industrial internet of things (IIOT)</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20mechanisms" title=" scheduling mechanisms"> scheduling mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks%20%28WSN%29" title=" wireless sensor networks (WSN)"> wireless sensor networks (WSN)</a> </p> <a href="https://publications.waset.org/abstracts/91782/ieee802154e-based-scheduling-mechanisms-and-systems-for-industrial-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Older Consumer’s Willingness to Trust Social Media Advertising: An Australian Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simon%20J.%20Wilde">Simon J. Wilde</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20M.%20Herold"> David M. Herold</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Bryant"> Michael J. Bryant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social media networks have become the hotbed for advertising activities, due mainly to their increasing consumer/user base, and secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel-specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. The purpose of this exploratory paper is to investigate the extent to which social media users trust social media advertising. Understanding this relationship will fundamentally assist marketers in better understanding social media interactions and their implications for society. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional different media, such as broadcast media and print media, and more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilised as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: Gen Z/Millennials Reliability = 4.90/7 vs Gen X/Boomers Reliability = 4.34/7; Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads, when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioural intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users, in an attempt to foster positive behavioural responses from within this large demographic group – whose engagement with social media sites continues to increase year on year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20media%20advertising" title="social media advertising">social media advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=trust" title=" trust"> trust</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20consumers" title=" older consumers"> older consumers</a>, <a href="https://publications.waset.org/abstracts/search?q=online" title=" online"> online</a> </p> <a href="https://publications.waset.org/abstracts/168362/older-consumers-willingness-to-trust-social-media-advertising-an-australian-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Sampling and Chemical Characterization of Particulate Matter in a Platinum Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Orasche">Juergen Orasche</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesta%20Kohlmeier"> Vesta Kohlmeier</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20C.%20Dragan"> George C. Dragan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gert%20Jakobi"> Gert Jakobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Forbes"> Patricia Forbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralf%20Zimmermann"> Ralf Zimmermann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underground mining poses a difficult environment for both man and machines. At more than 1000 meters underneath the surface of the earth, ores and other mineral resources are still gained by conventional and motorised mining. Adding to the hazards caused by blasting and stone-chipping, the working conditions are best described by the high temperatures of 35-40°C and high humidity, at low air exchange rates. Separate ventilation shafts lead fresh air into a mine and others lead expended air back to the surface. This is essential for humans and machines working deep underground. Nevertheless, mines are widely ramified. Thus the air flow rate at the far end of a tunnel is sensed to be close to zero. In recent years, conventional mining was supplemented by mining with heavy diesel machines. These very flat machines called Load Haul Dump (LHD) vehicles accelerate and ease work in areas favourable for heavy machines. On the other hand, they emit non-filtered diesel exhaust, which constitutes an occupational hazard for the miners. Combined with a low air exchange, high humidity and inorganic dust from the mining it leads to 'black smog' underneath the earth. This work focuses on the air quality in mines employing LHDs. Therefore we performed personal sampling (samplers worn by miners during their work), stationary sampling and aethalometer (Microaeth MA200, Aethlabs) measurements in a platinum mine in around 1000 meters under the earth’s surface. We compared areas of high diesel exhaust emission with areas of conventional mining where no diesel machines were operated. For a better assessment of health risks caused by air pollution we applied a separated gas-/particle-sampling tool (or system), with first denuder section collecting intermediate VOCs. These multi-channel silicone rubber denuders are able to trap IVOCs while allowing particles ranged from 10 nm to 1 µm in diameter to be transmitted with an efficiency of nearly 100%. The second section is represented by a quartz fibre filter collecting particles and adsorbed semi-volatile organic compounds (SVOC). The third part is a graphitized carbon black adsorber – collecting the SVOCs that evaporate from the filter. The compounds collected on these three sections were analyzed in our labs with different thermal desorption techniques coupled with gas chromatography and mass spectrometry (GC-MS). VOCs and IVOCs were measured with a Shimadzu Thermal Desorption Unit (TD20, Shimadzu, Japan) coupled to a GCMS-System QP 2010 Ultra with a quadrupole mass spectrometer (Shimadzu). The GC was equipped with a 30m, BP-20 wax column (0.25mm ID, 0.25µm film) from SGE (Australia). Filters were analyzed with In-situ derivatization thermal desorption gas chromatography time-of-flight-mass spectrometry (IDTD-GC-TOF-MS). The IDTD unit is a modified GL sciences Optic 3 system (GL Sciences, Netherlands). The results showed black carbon concentrations measured with the portable aethalometers up to several mg per m³. The organic chemistry was dominated by very high concentrations of alkanes. Typical diesel engine exhaust markers like alkylated polycyclic aromatic hydrocarbons were detected as well as typical lubrication oil markers like hopanes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20emission" title="diesel emission">diesel emission</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20sampling" title=" personal sampling"> personal sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=aethalometer" title=" aethalometer"> aethalometer</a>, <a href="https://publications.waset.org/abstracts/search?q=mining" title=" mining"> mining</a> </p> <a href="https://publications.waset.org/abstracts/86968/sampling-and-chemical-characterization-of-particulate-matter-in-a-platinum-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoria%20L.%20Chester">Victoria L. Chester</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Kuruganti"> Usha Kuruganti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=forestry" title=" forestry"> forestry</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20factors" title=" human factors"> human factors</a>, <a href="https://publications.waset.org/abstracts/search?q=wrist%20biomechanics" title=" wrist biomechanics"> wrist biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/87853/measuring-the-biomechanical-effects-of-worker-skill-level-and-joystick-crane-speed-on-forestry-harvesting-performance-using-a-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denis%20Jordan">Denis Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Golkowski"> Daniel Golkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Lukas"> Mathias Lukas</a>, <a href="https://publications.waset.org/abstracts/search?q=Katharina%20Merz"> Katharina Merz</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Mlynarcik"> Caroline Mlynarcik</a>, <a href="https://publications.waset.org/abstracts/search?q=Max%20Maurer"> Max Maurer</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Riedl"> Valentin Riedl</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Foerster"> Stefan Foerster</a>, <a href="https://publications.waset.org/abstracts/search?q=Eberhard%20F.%20Kochs"> Eberhard F. Kochs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bender"> Andreas Bender</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruediger%20Ilg"> Ruediger Ilg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coma%20states%20and%20prognosis" title="coma states and prognosis">coma states and prognosis</a>, <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram" title=" electroencephalogram"> electroencephalogram</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20magnetic%20resonance%20imaging" title=" functional magnetic resonance imaging"> functional magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title=" positron emission tomography"> positron emission tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a> </p> <a href="https://publications.waset.org/abstracts/55193/multimodal-integration-of-eeg-fmri-and-positron-emission-tomography-data-using-principal-component-analysis-for-prognosis-in-coma-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Ghosh">Rajkumar Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ananya%20Mukhopadhyay"> Ananya Mukhopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid-connected%20solar%20PV%20system" title="grid-connected solar PV system">grid-connected solar PV system</a>, <a href="https://publications.waset.org/abstracts/search?q=rooftop%20rainwater%20harvesting" title=" rooftop rainwater harvesting"> rooftop rainwater harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flood" title=" urban flood"> urban flood</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20flooding" title=" urban flooding"> urban flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20zero%20carbon%20emission" title=" net zero carbon emission"> net zero carbon emission</a> </p> <a href="https://publications.waset.org/abstracts/172670/adaptable-path-to-net-zero-carbon-feasibility-study-of-grid-connected-rooftop-solar-pv-systems-with-rooftop-rainwater-harvesting-to-decrease-urban-flooding-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Malic">L. Malic</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20Zhang"> X. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Brassard"> D. Brassard</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Clime"> L. Clime</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Daoud"> J. Daoud</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Luebbert"> C. Luebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Barrere"> V. Barrere</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boutin"> A. Boutin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bidawid"> S. Bidawid</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Corneau"> N. Corneau</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Farber"> J. Farber</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Veres"> T. Veres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array%20of%20pillars" title="array of pillars">array of pillars</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20isolation" title=" bacteria isolation"> bacteria isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomagnetic%20sample%20preparation" title=" immunomagnetic sample preparation"> immunomagnetic sample preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20microfluidic%20device" title=" polymer microfluidic device "> polymer microfluidic device </a> </p> <a href="https://publications.waset.org/abstracts/30384/ultra-rapid-and-efficient-immunomagnetic-separation-of-listeria-monocytogenes-from-complex-samples-in-high-gradient-magnetic-field-using-disposable-magnetic-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohini%20Das">Rohini Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasish%20Das"> Subhasish Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Smruti%20Rekha%20Sahoo"> Smruti Rekha Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagupta%20Yesmin"> Shagupta Yesmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kolhan%20basin" title="Kolhan basin">Kolhan basin</a>, <a href="https://publications.waset.org/abstracts/search?q=petrology" title=" petrology"> petrology</a>, <a href="https://publications.waset.org/abstracts/search?q=sandstone" title=" sandstone"> sandstone</a>, <a href="https://publications.waset.org/abstracts/search?q=tectonics" title=" tectonics"> tectonics</a> </p> <a href="https://publications.waset.org/abstracts/35436/sandstone-petrology-of-the-kolhan-basin-eastern-india-implications-for-the-tectonic-evolution-of-a-half-graben" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Agostini">M. Agostini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sonato"> A. Sonato</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Greco"> G. Greco</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Travagliati"> M. Travagliati</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ruffato"> G. Ruffato</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gazzola"> E. Gazzola</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Liuni"> D. Liuni</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Romanato"> F. Romanato</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cecchini"> M. Cecchini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20acoustic%20wave" title=" surface acoustic wave"> surface acoustic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a> </p> <a href="https://publications.waset.org/abstracts/44761/surface-acoustic-wave-saw-induced-mixing-enhances-biomolecules-kinetics-in-a-novel-phase-interrogation-surface-plasmon-resonance-spr-microfluidic-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lizinis%20Cassendra%20Frederick%20Dony">Lizinis Cassendra Frederick Dony</a>, <a href="https://publications.waset.org/abstracts/search?q=Jirom%20Jeremy%20Frederick%20Dony"> Jirom Jeremy Frederick Dony</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Supain%20Christopher"> Cyril Supain Christopher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20resources%20practices%20implementation%20%28hrpi%29" title="human resources practices implementation (hrpi)">human resources practices implementation (hrpi)</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20of%20competitive%20advantage%20in%20people%E2%80%99s%20development%20%28socaipd%29" title=" source of competitive advantage in people’s development (socaipd)"> source of competitive advantage in people’s development (socaipd)</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility%20%28csr%29" title=" corporate social responsibility (csr)"> corporate social responsibility (csr)</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20quality%20at%20front%20desk%20stations%20%28sqafd%29" title=" service quality at front desk stations (sqafd)"> service quality at front desk stations (sqafd)</a>, <a href="https://publications.waset.org/abstracts/search?q=impacts%20of%20petronas%20leadership%20%28iopl%29" title=" impacts of petronas leadership (iopl)"> impacts of petronas leadership (iopl)</a> </p> <a href="https://publications.waset.org/abstracts/31332/impacts-of-transformational-leadership-petronas-stations-in-sabah-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=44" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=38">38</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=39">39</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=40">40</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aeronautical%20channel&page=44">44</a></li> <li class="page-item active"><span class="page-link">45</span></li> <li class="page-item disabled"><span class="page-link">›</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>