CINXE.COM

Search results for: biodegradable Mg

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: biodegradable Mg</title> <meta name="description" content="Search results for: biodegradable Mg"> <meta name="keywords" content="biodegradable Mg"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="biodegradable Mg" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="biodegradable Mg"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 391</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: biodegradable Mg</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> Study of Hot Press Molding Method of Biodegradable Composite, Polypropylene Reinforced Coconut Coir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Herman%20Ruswan%20Suwarman">Herman Ruswan Suwarman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rivai"> Ahmad Rivai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mochamad%20Saidiman"> Mochamad Saidiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuncoro%20Diharjo"> Kuncoro Diharjo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dody%20Ariawan"> Dody Ariawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biodegradable composite to solve ecological and environmental problems has currently risen as a trend. With the increasing use of biodegradable composite comes an increasing need to fabricate it properly. Yet this understanding has remained a challenge for the design engineer. Therefore, this study aims to explore how to combine coconut coir as a reinforcing material and polypropylene (PP) as a biodegradable polymer matrix. By using Hotpress Molding, two methods were developed and compared. The difference between these two methods is not only the step of fabrication but also the raw material. The first method involved a PP sheet and the second used PP pellets directly. Based on the results, it can be concluded that PP pellets yield better results, where the composite was produced in a shorter time, with an evenly distributed coconut coir and a smaller number of voids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20coir" title=" coconut coir"> coconut coir</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20press%20molding" title=" hot press molding"> hot press molding</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/146760/study-of-hot-press-molding-method-of-biodegradable-composite-polypropylene-reinforced-coconut-coir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Torchilin"> Vladimir P. Torchilin</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H<sub>2</sub>N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of &alpha;-amino acid &ndash; L-phenylalanine. The obtained copolymer formed micelles of 70&plusmn;4 nm size at 10 mg/mL concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amino%20acids" title="amino acids">amino acids</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20poly%20%28ester%20amide%29" title=" biodegradable poly (ester amide)"> biodegradable poly (ester amide)</a>, <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20triblock-copolymer" title=" amphiphilic triblock-copolymer"> amphiphilic triblock-copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=micelles" title=" micelles"> micelles</a> </p> <a href="https://publications.waset.org/abstracts/85545/amino-acid-based-biodegradable-amphiphilic-polymers-and-micelles-as-drug-delivery-systems-synthesis-and-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> AI-based Optimization Model for Plastics Biodegradable Substitutes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Almahmoud">Zaid Almahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Mahmoud"> Rana Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To mitigate the environmental impacts of throwing away plastic waste, there has been a recent interest in manufacturing and producing biodegradable plastics. Here, we study a new class of biodegradable plastics which are mixed with external natural additives, including catalytic additives that lead to a successful degradation of the resulting material. To recommend the best alternative among multiple materials, we propose a multi-objective AI model that evaluates the material against multiple objectives given the material properties. As a proof of concept, the AI model was implemented in an expert system and evaluated using multiple materials. Our findings showed that Polyethylene Terephalate is potentially the best biodegradable plastic substitute based on its material properties. Therefore, it is recommended that governments shift the attention to the use of Polyethylene Terephalate in the manufacturing of bottles to gain a great environmental and sustainable benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plastic%20bottles" title="plastic bottles">plastic bottles</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20model" title=" multi-objective model"> multi-objective model</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20substitutes" title=" biodegradable substitutes"> biodegradable substitutes</a> </p> <a href="https://publications.waset.org/abstracts/158655/ai-based-optimization-model-for-plastics-biodegradable-substitutes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Sumayli">Abdulrahman Sumayli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-based%20alloys" title="Zn-based alloys">Zn-based alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20and%20biocompatible%20materials" title=" biodegradable and biocompatible materials"> biodegradable and biocompatible materials</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20test" title=" cytotoxicity test"> cytotoxicity test</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20synchrotron%20imaging" title=" neutron synchrotron imaging"> neutron synchrotron imaging</a> </p> <a href="https://publications.waset.org/abstracts/110848/melting-and-making-zn-based-alloys-and-examine-their-biodegradable-and-biocompatible-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Development of Biodegradable Plastic as Mango Fruit Bag</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20M.%20Tuates%20Jr.">Andres M. Tuates Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ofero%20A.%20Caparino"> Ofero A. Caparino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastics have achieved a dominant position in agriculture because of their transparency, lightness in weight, impermeability to water and their resistance to microbial attack. However, this generates a higher quantity of wastes that are difficult to dispose of by farmers. To address these problems, the project aim to develop and evaluate the biodegradable film for mango fruit bag during development. The PBS and starch were melt-blended in a twin-screw extruder and then blown into film extrusion machine. The physic-chemical-mechanical properties of biodegradable fruit bag were done following standard methods of test. Field testing of fruit bag was also conducted to evaluate its durability and efficiency field condition. The PHilMech-FiC fruit bag is made of biodegradable material measuring 6 x 8 inches with a thickness of 150 microns. The tensile strength is within the range of LDPE while the elongation is within the range of HDPE. It is projected that after thirty-six (36) weeks, the film will be totally degraded. Results of field testing show that the quality of harvested fruits using PHilMech-FiC biodegradable fruit bag in terms of percent marketable, non-marketable and export, peel color at the ripe stage, flesh color, TSS, oBrix, percent edible portion is comparable with the existing bagging materials such as Chinese brown paper bag and old newspaper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cassava%20starch" title="cassava starch">cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=PBS" title=" PBS"> PBS</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical" title=" chemical"> chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/45679/development-of-biodegradable-plastic-as-mango-fruit-bag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Influence of Coenzyme as a Corrosion Barrier for Biodegradable Magnesium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minjung%20Park">Minjung Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimin%20Park"> Jimin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngwoon%20Kim"> Youngwoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungseop%20Han"> Hyungseop Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Myoungryul%20Ok"> Myoungryul Ok</a>, <a href="https://publications.waset.org/abstracts/search?q=Hojeong%20Jeon"> Hojeong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunkwang%20Seok"> Hyunkwang Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchan%20Kim"> Yuchan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium is an essential element in human body and has unique characteristics such as bioabsorbable and biodegradable properties. Therefore, there has been much attention on studies on the implants based on magnesium to avoid subsequent surgery. However, high amount of hydrogen gas is generated by relatively severe corrosion of magnesium especially in aqueous condition with chloride ions. And it contributes to the causes of swelling of skin and causes consequent inflammation of soft tissue where is directly in contact with implants. Therefore, there is still concern about the safety of the using biodegradable magnesium alloys, which is limited to various applications. In this study, we analyzed the influence of coenzyme on corrosion behavior of magnesium. The analysis of corrosion rate was held by using Hanks’ balanced salt solution (HBSS) as a body stimulated fluid and in condition of 37°C. Thus, with deferring the concentration of the coenzyme used in this study, corrosion rates from 0.0654ml/ cm² to 0.0438ml/cm² were observed in immersion tests. Also, comparable results were obtained in electrochemical tests. Results showed that hydrogen gas produced from corrosion of magnesium can be controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20magnesium" title="biodegradable magnesium">biodegradable magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title=" biomaterials"> biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=coenzyme" title=" coenzyme"> coenzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a> </p> <a href="https://publications.waset.org/abstracts/71704/influence-of-coenzyme-as-a-corrosion-barrier-for-biodegradable-magnesium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20T.%20Essa">Abdulrahman T. Essa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aied"> Ahmed Aied</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hamid"> Omar Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Felicity%20R.%20A.%20J.%20Rose"> Felicity R. A. J. Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20M.%20Shakesheff"> Kevin M. Shakesheff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title=" biomaterial"> biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=elastomer" title=" elastomer"> elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28serinol%20sebacate%29" title=" poly(serinol sebacate)"> poly(serinol sebacate)</a> </p> <a href="https://publications.waset.org/abstracts/61270/synthesis-and-characterization-of-biodegradable-elastomeric-polyester-amide-for-tissue-engineering-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Trash Dash: An Educational Android Game Application for Proper Waste Segregation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marylene%20S.%20Eder">Marylene S. Eder</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorothy%20M.%20Jao"> Dorothy M. Jao</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Marc%20Nicolas%20S.%20Laspi%C3%B1as"> Paolo Marc Nicolas S. Laspiñas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pukilan%20A.%20Malim"> Pukilan A. Malim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Jean%20D.%20Raterta"> Sarah Jean D. Raterta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trash Dash is an android game application developed to serve as an alternative tool to practice proper waste segregation for children ages 3 years old and above. The researchers designed the application using Unity 3D and developed the text file that served as the database of the game application. An observation of a pre-school teacher shows that children know how to throw their garbage but they do not know yet how to segregate wastes. After launching the mobile application to K-2 pupils 4 – 5 years of age, the researchers have noticed that children within this age are active and motivated to learn the difference between biodegradable and non-biodegradable. Based on the result of usability test conducted, it was concluded that the game is easy to use and children will most likely use this application frequently. Furthermore, the children may need assistance from their parents and teachers when playing the game. An actual testing of the application has been conducted to different devices as well as functionality test by Thwack Application and it can be concluded that the mobile application can be launched and installed on a device with a minimum API requirement of Gingerbread (2.3.1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20segregation" title="waste segregation">waste segregation</a>, <a href="https://publications.waset.org/abstracts/search?q=android%20application" title=" android application"> android application</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=non-biodegradable" title=" non-biodegradable"> non-biodegradable</a> </p> <a href="https://publications.waset.org/abstracts/37949/trash-dash-an-educational-android-game-application-for-proper-waste-segregation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> PLA Plastic as Biodegradable Material for 3D Printers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juraj%20Beniak">Juraj Beniak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%BDubom%C3%ADr%20%C5%A0oo%C5%A1"> Ľubomír Šooš</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Kri%C5%BEan"> Peter Križan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Mat%C3%BA%C5%A1"> Miloš Matúš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20plastic" title=" biodegradable plastic"> biodegradable plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20plastic" title=" PLA plastic"> PLA plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title=" rapid prototyping"> rapid prototyping</a> </p> <a href="https://publications.waset.org/abstracts/37301/pla-plastic-as-biodegradable-material-for-3d-printers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Macroscopic Lesions and Histological Changes Caused by Non-Biodegradable Foreign Bodies in the Rumen of Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rouabah%20Zahra">Rouabah Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Tlidjane%20Madjid"> Tlidjane Madjid</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Lilia"> Belkacem Lilia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafid%20Nadia"> Hafid Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mallem%20Mouna"> Mallem Mouna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the current study was to evaluate the gross and histopathological changes caused by the presence of non-biodegradable foreign bodies (plastic bags) in the rumen-reticulum of cattle. To identify this problem, we conducted this study at a slaughterhouse on a total of 212 cattle without any previous selection. After slaughter and draining of the rumen, foreign bodies and macroscopic lesions were investigated, and rumen samples were taken for histopathological examination. Gross examination of the rumen-reticulum with non-biodegradable foreign bodies revealed congestion, hemorrhage, stunting, sagging, atrophy, and thinning of the papillae had been observed. Areas of erosion and ulceration were also observed in the rumen-reticulum of all cattle harboring a large quantity of plastic bags. Ulcerations and nodular formations were also present. The rumen-reticulum wall was thinner than normal and had a light-mottled wall and compressed papillae. The histopathological examination revealed a wide variety of lesions. We observed especially lesions of fragmentary or segmental ruptures, destruction, necrosis, degeneration and focal hyperplasia of the keratinized epithelium. The papillae are shortened, enlarged, atrophied, folded, and compressed. The length of the taste buds was reduced. These observed histopathological changes can be attributed to mechanical irritation induced by plastic bags or released chemicals by these non-biodegradable foreign bodies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cattle" title="cattle">cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=non-biodegradable%20foreign%20bodies" title=" non-biodegradable foreign bodies"> non-biodegradable foreign bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=lesions" title=" lesions"> lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a> </p> <a href="https://publications.waset.org/abstracts/183968/macroscopic-lesions-and-histological-changes-caused-by-non-biodegradable-foreign-bodies-in-the-rumen-of-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Biodegradable Polymer Composites of MOF-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anoff%20Anim">Anoff Anim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lila%20A.%20M.%20Mahmoud"> Lila A. M. Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Katsikogianni"> Maria Katsikogianni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Nayak"> Sanjit Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title=" biodegradable polymers"> biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cephalexin" title=" cephalexin"> cephalexin</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20metronidazole" title=" drug release metronidazole"> drug release metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF-5" title=" MOF-5"> MOF-5</a>, <a href="https://publications.waset.org/abstracts/search?q=PCL" title=" PCL"> PCL</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a> </p> <a href="https://publications.waset.org/abstracts/170686/biodegradable-polymer-composites-of-mof-5-for-efficient-and-sustained-delivery-of-cephalexin-and-metronidazole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Chemical Oxygen Demand Fractionation of Primary Wastewater Effluent for Process Optimization and Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thandeka%20Y.%20S.%20Jwara">Thandeka Y. S. Jwara</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Musonge"> Paul Musonge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, the complexity associated with implementing and controlling biological nutrient removal (BNR) in wastewater works (WWW) has been primarily in terms of balancing competing requirements for nitrogen and phosphorus removal, particularly with respect to the use of influent chemical oxygen demand (COD) as a carbon source for the microorganisms. Successful BNR optimization and modelling using WEST (Worldwide Engine for Simulation and Training) depend largely on the accurate fractionation of the influent COD. The different COD fractions have differing effects on the BNR process, and therefore, the influent characteristics need to be well understood. This study presents the fractionation results of primary wastewater effluent COD at one of South Africa’s wastewater works treating 65ML/day of mixed industrial and domestic effluent. The method used for COD fractionation was the oxygen uptake rate/respirometry method. The breakdown of the results of the analysis is as follows: 70.5% biodegradable COD (bCOD) and 29.5% of non-biodegradable COD (iCOD) in terms of the total COD. Further fractionation led to a readily biodegradable soluble fraction (SS) of 75%, a slowly degradable particulate fraction (XS) of 24%, a particulate non-biodegradable fraction (XI) of 50.8% and a non-biodegradable soluble fraction (SI) of 49.2%. The fractionation results demonstrate that the primary effluent has good COD characteristics, as shown by the high level of the bCOD fraction with Ss being higher than Xs. This means that the microorganisms have sufficient substrate for the BNR process and that these components can now serve as inputs to the WEST Model for the plant under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title="chemical oxygen demand">chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20fractionation" title=" COD fractionation"> COD fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20modelling" title=" wastewater modelling"> wastewater modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20optimization" title=" wastewater optimization"> wastewater optimization</a> </p> <a href="https://publications.waset.org/abstracts/117893/chemical-oxygen-demand-fractionation-of-primary-wastewater-effluent-for-process-optimization-and-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Reducing Antimicrobial Resistance Using Biodegradable Polymer Composites of Mof-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anoff%20Anim">Anoff Anim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lila%20Mahmound"> Lila Mahmound</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Katsikogianni"> Maria Katsikogianni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Nayak"> Sanjit Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs, and can be a potential strategy to integrate them in biomedical devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title=" biodegradable polymers"> biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cephalexin" title=" cephalexin"> cephalexin</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20metronidazole" title=" drug release metronidazole"> drug release metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF-5" title=" MOF-5"> MOF-5</a>, <a href="https://publications.waset.org/abstracts/search?q=PCL" title=" PCL"> PCL</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a> </p> <a href="https://publications.waset.org/abstracts/170695/reducing-antimicrobial-resistance-using-biodegradable-polymer-composites-of-mof-5-for-efficient-and-sustained-delivery-of-cephalexin-and-metronidazole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Study of the Influence of the Different Treatments in Almond Shell-Based Masterbatches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ib%C3%A1%C3%B1ez">A. Ibáñez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mart%C3%ADnez"> A. Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S%C3%A1nchez"> A. Sánchez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Le%C3%B3n"> M. A. León</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is focused on the development of a series of biodegradable and eco-friendly masterbatches based on polylactic acid (PLA) filled with almond shell to study the influence of almond shell in the properties of injected biodegradable parts. These innovative masterbatches have 20 wt % of the almond shell. Different treatments were carried out with sodium hydroxide (NaOH) and maleic anhydride (MA) to obtain better interfacial bonding between fibre and matrix. The masterbatches were produced by varying the fibre treatments (type of treatment, concentration and temperature). The masterbatches have been injected to obtain standardised test samples in order to study mechanical properties. The results show that, the some of the treated fibres present slightly higher flexural modulus and impact strength than untreated fibres. This study is part of a LIFE project (MASTALMOND) aimed to create and test at preindustrial level new coloured masterbatches based on biodegradable polymers and containing in its formulation a high percentage of almond shell, a natural waste material, which firstly will permit to cover technical requirements of two traditional industrial sectors: toy and furniture, although the results achieved could be extended to other industrial sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additivation" title="additivation">additivation</a>, <a href="https://publications.waset.org/abstracts/search?q=almond%20shell" title=" almond shell"> almond shell</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=masterbatch" title=" masterbatch"> masterbatch</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA" title=" PLA"> PLA</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20moulding" title=" injection moulding "> injection moulding </a> </p> <a href="https://publications.waset.org/abstracts/18973/study-of-the-influence-of-the-different-treatments-in-almond-shell-based-masterbatches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuncang%20Li">Yuncang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuie%20Wen"> Cuie Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20biodegrade%20properties" title=" mechanical and biodegrade properties"> mechanical and biodegrade properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a> </p> <a href="https://publications.waset.org/abstracts/113098/biodegradable-magnesium-alloys-with-addition-of-rare-earth-elements-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sena%20Su">Sena Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Ozbek"> Burak Ozbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20M.%20Sahin"> Yesim M. Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevil%20Yucel"> Sevil Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilek%20Kazan"> Dilek Kazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faik%20N.%20Oktar"> Faik N. Oktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazmi%20Ekren"> Nazmi Ekren</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Gunduz"> Oguzhan Gunduz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title="edible film">edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20sarcoplasmic%20protein" title=" fish sarcoplasmic protein"> fish sarcoplasmic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofiber" title=" nanofiber"> nanofiber</a> </p> <a href="https://publications.waset.org/abstracts/68672/process-optimization-of-electrospun-fish-sarcoplasmic-protein-based-nanofibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20E.%20Fortun%C4%83">Maria E. Fortună</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Ungureanu"> Elena Ungureanu</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C4%83zvan%20Rotaru"> Răzvan Rotaru</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeria%20Harabagiu"> Valeria Harabagiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20stability" title=" biological stability"> biological stability</a>, <a href="https://publications.waset.org/abstracts/search?q=copolymers" title=" copolymers"> copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane" title=" polydimethylsiloxane"> polydimethylsiloxane</a> </p> <a href="https://publications.waset.org/abstracts/191885/biodegradable-poly-e-caprolactone-based-siloxane-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Preparation of Nanocomposites Based on Biodegradable Polycaprolactone by Melt Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amine%20Zenasni">Mohamed Amine Zenasni</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahia%20Meroufel"> Bahia Meroufel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Merlin"> André Merlin</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benfarhi"> Said Benfarhi</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Molina"> Stéphane Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9atrice%20George"> Béatrice George </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The introduction of nano-fillers into polymers field lead to the creation of the nano composites. This creation is starting up a new revolution into the world of materials. Nano composites are similar to traditional composite of a polymer blend and filler with at least one nano-scopic dimension. In our project, we worked with nano composites of biodegradable polymer: polycaprolactone, combined with nano-clay (Maghnite) and with different nano-organo-clays. These nano composites have been prepared by melt mixture method. The advantage of this polymer is its degradability and bio compatibility. A study of the relationship between development, micro structure and physico chemical properties of nano composites, clays modified with 3-aminopropyltriethoxysilane (APTES) and Hexadecyltriméthy ammonium bromide (CTAB) and untreated clays were made. Melt mixture method is most suitable methods to get a better dispersion named exfoliation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title=" polycaprolactone"> polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20mixture" title=" melt mixture"> melt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=APTES" title=" APTES"> APTES</a>, <a href="https://publications.waset.org/abstracts/search?q=CTAB" title=" CTAB"> CTAB</a> </p> <a href="https://publications.waset.org/abstracts/18860/preparation-of-nanocomposites-based-on-biodegradable-polycaprolactone-by-melt-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anoff%20Anim">Anoff Anim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lila%20Mahmoud"> Lila Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Katsikogianni"> Maria Katsikogianni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Nayak"> Sanjit Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title="antimicrobial resistance">antimicrobial resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title=" biodegradable polymers"> biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cephalexin" title=" cephalexin"> cephalexin</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20release%20metronidazole" title=" drug release metronidazole"> drug release metronidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF-5" title=" MOF-5"> MOF-5</a>, <a href="https://publications.waset.org/abstracts/search?q=PCL" title=" PCL"> PCL</a>, <a href="https://publications.waset.org/abstracts/search?q=PLGA" title=" PLGA"> PLGA</a> </p> <a href="https://publications.waset.org/abstracts/170701/polymer-composites-of-mof-5-for-efficient-and-sustained-delivery-of-cephalexin-and-metronidazole" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Study of Biodegradable Composite Materials Based on Polylactic Acid and Vegetal Reinforcements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Hannachi">Manel Hannachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Nechiche"> Mustapha Nechiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Azem"> Said Azem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on biodegradable materials made from Poly-lactic acid (PLA) and vegetal reinforcements. Three materials are developed from PLA, as a matrix, and : (i) olive kernels (OK); (ii) alfa (α) short fibers and (iii) OK+ α mixture, as reinforcements. After processing of PLA pellets and olive kernels in powder and alfa stems in short fibers, three mixtures, namely PLA-OK, PLA-α, and PLA-OK-α are prepared and homogenized in Turbula®. These mixtures are then compacted at 180°C under 10 MPa during 15 mn. Scanning Electron Microscopy (SEM) examinations show that PLA matrix adheres at surface of all reinforcements and the dispersion of these ones in matrix is good. X-ray diffraction (XRD) analyses highlight an increase of PLA inter-reticular distances, especially for the PLA-OK case. These results are explained by the dissociation of some molecules derived from reinforcements followed by diffusion of the released atoms in the structure of PLA. This is consistent with Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfa%20short%20fibers" title="alfa short fibers">alfa short fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20composite" title=" biodegradable composite"> biodegradable composite</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20kernels" title=" olive kernels"> olive kernels</a>, <a href="https://publications.waset.org/abstracts/search?q=poly-lactic%20acid" title=" poly-lactic acid"> poly-lactic acid</a> </p> <a href="https://publications.waset.org/abstracts/85801/study-of-biodegradable-composite-materials-based-on-polylactic-acid-and-vegetal-reinforcements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibel%20Dikmen%20Kucuk">Sibel Dikmen Kucuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Guner"> Yusuf Guner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPDM" title="EPDM">EPDM</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20materials" title=" green materials"> green materials</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20fillers" title=" biodegradable fillers"> biodegradable fillers</a> </p> <a href="https://publications.waset.org/abstracts/125514/the-potential-of-tempo-oxidized-cellulose-nanofibers-to-replace-ethylene-propylene-diene-monomer-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20I.%20Malag">Arnold I. Malag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20waste" title=" coastal waste"> coastal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collector" title=" waste collector"> waste collector</a> </p> <a href="https://publications.waset.org/abstracts/161892/characterization-of-coastal-solid-waste-basis-for-the-development-of-waste-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungmin%20Park">Sungmin Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyungmok%20Nam"> Gyungmok Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungpyo%20Woo"> Seungpyo Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Choi"> Young Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangheon%20Park"> Sangheon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hee%20Yoon"> Sang-Hee Yoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=R%C2%B3%20UV%20exposure" title="R³ UV exposure">R³ UV exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20model" title=" optical model"> optical model</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20dose" title=" UV dose"> UV dose</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection" title=" reflection"> reflection</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20concentration" title=" solvent concentration"> solvent concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymer%20microneedle" title=" biodegradable polymer microneedle"> biodegradable polymer microneedle</a> </p> <a href="https://publications.waset.org/abstracts/88274/development-of-r3-uv-exposure-for-the-uv-dose-insensitive-and-cost-effective-fabrication-of-biodegradable-polymer-microneedles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Characterization of Domestic Sewage Mixed with Baker&#039;s Yeast Factory Effluent of Beja Wastewater Treatment Plant by Respirometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fezzani%20Boubaker">Fezzani Boubaker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a comprehensive study of respirometric method was performed to assess the biodegradable COD fractions of domestic sewage mixed with baker’s yeast factory effluent treated by wastewater treatment plant (WWTP) of Beja. Three respirometric runs were performed in a closed tank reactor to characterize this mixed raw effluent. Respirometric result indicated that the readily biodegradable fraction (SS) was in range of 6-22%, the slowly biodegradable fraction (Xs) was in range of 33-42%, heterotrophic biomass (XH) was in range of 9-40% and the inert fractions: XI and SI were in range of 2-40% and 6-12% respectively which were high due to the presence of baker’s yeast factory effluent compared to domestic effluent alone. The fractions of the total nitrogen showed that SNO fraction is between 6 and 9% of TKN, the fraction of nitrogen ammonia SNH was ranging from 5 to 68%. The organic fraction divided into two compartments SND (11-85%) and XND (5-20%) the inert particulate nitrogen fraction XNI was between 0.4 and 1% and the inert soluble fraction of nitrogen SNI was ranged from 0.4 to 3%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20characterization" title="wastewater characterization">wastewater characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20fractions" title=" COD fractions"> COD fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=respirometry" title=" respirometry"> respirometry</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20sewage" title=" domestic sewage"> domestic sewage</a> </p> <a href="https://publications.waset.org/abstracts/36157/characterization-of-domestic-sewage-mixed-with-bakers-yeast-factory-effluent-of-beja-wastewater-treatment-plant-by-respirometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maruf%20Yinka%20Kolawole">Maruf Yinka Kolawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Olayiwola%20Aweda"> Jacob Olayiwola Aweda</a>, <a href="https://publications.waset.org/abstracts/search?q=Farasat%20Iqbal"> Farasat Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ali"> Asif Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Abdulkareem"> Sulaiman Abdulkareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 &amp; 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 &deg;C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 &plusmn; 8.878 MPa, 76 &plusmn; 5.707 HV and 45 &plusmn; 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biodegradable%20metal" title="Biodegradable metal">Biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomedical%20application" title=" Biomedical application"> Biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties"> Mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Powder%20Metallurgy" title=" Powder Metallurgy"> Powder Metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc" title=" Zinc"> Zinc</a> </p> <a href="https://publications.waset.org/abstracts/115000/mechanical-properties-of-powder-metallurgy-processed-biodegradable-zn-based-alloy-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masek%20A.">Masek A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Diakowska%20K."> Diakowska K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaborski%20M."> Zaborski M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title="renewable resources">renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactide" title=" polylactide"> polylactide</a> </p> <a href="https://publications.waset.org/abstracts/16425/biodegradable-polymeric-composites-of-polylactide-and-epoxidized-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Investigation of Film and Mechanical Properties of Poly(Lactic Acid)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhan%20%C3%96zdo%C4%9Fan">Reyhan Özdoğan</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Ceylan"> Özgür Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Arif%20Kaya"> Mehmet Arif Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithat%20%C3%87elebi"> Mithat Çelebi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=bioplastics" title=" bioplastics"> bioplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20casting" title=" solution casting"> solution casting</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28lactic%20acid%29" title=" poly(lactic acid)"> poly(lactic acid)</a> </p> <a href="https://publications.waset.org/abstracts/33809/investigation-of-film-and-mechanical-properties-of-polylactic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Azizi">Somayeh Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Ehsani"> Mohammad Hossein Ehsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Zareidoost"> Amir Zareidoost</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28Zr-Nb%29%20thin%20film" title="(Zr-Nb) thin film">(Zr-Nb) thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputtering" title=" magnetron sputtering"> magnetron sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg" title=" biodegradable Mg"> biodegradable Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20rate" title=" degradation rate"> degradation rate</a> </p> <a href="https://publications.waset.org/abstracts/159057/controlling-the-degradation-rate-of-biodegradable-mg-implant-using-magnetron-sputtered-zr-nb-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B%C3%A1rbara%20Cattozatto%20Fortunato">A. Bárbara Cattozatto Fortunato</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20de%20Lucca%20Soave"> D. de Lucca Soave</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Pinheiro%20de%20Mello"> E. Pinheiro de Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Piasentini%20Oliva"> M. Piasentini Oliva</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tavares%20de%20Moraes"> V. Tavares de Moraes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Wolf%20Lebr%C3%A3o"> G. Wolf Lebrão</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Fernandes%20Parra"> D. Fernandes Parra</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Marraccini%20Giampietri%20Lebr%C3%A3o"> S. Marraccini Giampietri Lebrão</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio&reg; (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposites" title="biocomposites">biocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sisal" title=" sisal"> sisal</a>, <a href="https://publications.waset.org/abstracts/search?q=polilactic%20acid" title=" polilactic acid"> polilactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Polylactic%20Acid%20%28PLA%29" title=" Polylactic Acid (PLA)"> Polylactic Acid (PLA)</a> </p> <a href="https://publications.waset.org/abstracts/87364/biodegradability-evaluation-of-polylactic-acid-composite-with-natural-fiber-sisal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emad%20A.%20Jaffar%20Al-Mulla">Emad A. Jaffar Al-Mulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycaprolactone" title="polycaprolactone">polycaprolactone</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title=" biodegradable"> biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/6713/biodegradability-and-thermal-properties-of-polycaprolactonestarch-nanocomposite-as-a-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=biodegradable%20Mg&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10