CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 77 results for author: <span class="mathjax">Chen, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-lat" aria-role="search"> Searching in archive <strong>hep-lat</strong>. <a href="/search/?searchtype=author&query=Chen%2C+J">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chen, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chen%2C+J&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chen, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20461">arXiv:2412.20461</a> <span> [<a href="https://arxiv.org/pdf/2412.20461">pdf</a>, <a href="https://arxiv.org/format/2412.20461">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> One-loop Matching Factors for Singlet Quasi-Parton Distribution Functions in the Hybrid-Ratio Scheme </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Y">Yi-Xian Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20461v2-abstract-short" style="display: inline;"> The one loop matching kernels between parton distribution functions (PDFs) for parton $i=u,d,s,g$ and their corresponding quasi-PDFs are computed at one loop in the hybrid-ratio scheme. We found that, in addition to the conservation of the quasi-quark number for each flavor, the second moment $\langle x \rangle_{\tilde{i}}=\langle x \rangle_i$ of quasi-PDF of parton $i$ (denoted as $\tilde{i}$) an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20461v2-abstract-full').style.display = 'inline'; document.getElementById('2412.20461v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20461v2-abstract-full" style="display: none;"> The one loop matching kernels between parton distribution functions (PDFs) for parton $i=u,d,s,g$ and their corresponding quasi-PDFs are computed at one loop in the hybrid-ratio scheme. We found that, in addition to the conservation of the quasi-quark number for each flavor, the second moment $\langle x \rangle_{\tilde{i}}=\langle x \rangle_i$ of quasi-PDF of parton $i$ (denoted as $\tilde{i}$) and PDF of parton $i$ is the same in our approach. This is demonstrated numerically using the CTEQ14 global analysis as input. However, because the quark-quark mixing kernels are not flavor blind, the notion of non-singlet quasi-PDFs is no longer valid. One has to work with the four sets of quasi-PDFs simultaneously to extract the corresponding PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20461v2-abstract-full').style.display = 'none'; document.getElementById('2412.20461v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures; Moving comments on the others' results to the Introduction</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18796">arXiv:2412.18796</a> <span> [<a href="https://arxiv.org/pdf/2412.18796">pdf</a>, <a href="https://arxiv.org/format/2412.18796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> A Discrete Formulation of Second Stiefel-Whitney Class for Band Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Shiozaki%2C+K">Ken Shiozaki</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18796v1-abstract-short" style="display: inline;"> Topological invariants in band theory are often formulated assuming that Bloch wave functions are smoothly defined over the Brillouin zone (BZ). However, first-principles band calculations typically provide Bloch states only at discrete points in the BZ, rendering standard continuum-based approaches inapplicable. In this work, we focus on the second Stiefel-Whitney class $w_2$, a key… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18796v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18796v1-abstract-full" style="display: none;"> Topological invariants in band theory are often formulated assuming that Bloch wave functions are smoothly defined over the Brillouin zone (BZ). However, first-principles band calculations typically provide Bloch states only at discrete points in the BZ, rendering standard continuum-based approaches inapplicable. In this work, we focus on the second Stiefel-Whitney class $w_2$, a key $\mathbb{Z}_2$ topological invariant under PT symmetry that characterizes various higher-order topological insulators and nodal-line semimetals. We develop a fully discrete, gauge-fixing-free formula for $w_2$ which depends solely on the Bloch states sampled at discrete BZ points. Furthermore, we clarify how our discrete construction connects to lattice field theory, providing a unifying perspective that benefits both high-energy and condensed matter approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18796v1-abstract-full').style.display = 'none'; document.getElementById('2412.18796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07195">arXiv:2411.07195</a> <span> [<a href="https://arxiv.org/pdf/2411.07195">pdf</a>, <a href="https://arxiv.org/format/2411.07195">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> An Explicit Categorical Construction of Instanton Density in Lattice Yang-Mills Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+P">Peng Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07195v1-abstract-short" style="display: inline;"> Since the inception of lattice QCD, a natural definition for the Yang-Mills instanton on lattice has been long sought for. In a recent work, one of authors showed the natural solution has to be organized in terms of bundle gerbes in higher homotopy theory / higher category theory, and introduced the principles for such a categorical construction. To pave the way towards actual numerical implementa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07195v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07195v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07195v1-abstract-full" style="display: none;"> Since the inception of lattice QCD, a natural definition for the Yang-Mills instanton on lattice has been long sought for. In a recent work, one of authors showed the natural solution has to be organized in terms of bundle gerbes in higher homotopy theory / higher category theory, and introduced the principles for such a categorical construction. To pave the way towards actual numerical implementation in the near future, nonetheless, an explicit construction is necessary. In this paper we provide such an explicit construction for $SU(2)$ gauge theory, with technical aspects inspired by L眉scher's 1982 geometrical construction. We will see how the latter is in a suitable sense a saddle point approximation to the full categorical construction. The generalization to $SU(N)$ will be discussed. The construction also allows for a natural definition of lattice Chern-Simons-Yang-Mills theory in three spacetime dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07195v1-abstract-full').style.display = 'none'; document.getElementById('2411.07195v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13515">arXiv:2410.13515</a> <span> [<a href="https://arxiv.org/pdf/2410.13515">pdf</a>, <a href="https://arxiv.org/format/2410.13515">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-55042-y">10.1038/s41467-024-55042-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a rare beta decay of the charmed baryon with a Graph Neural Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/hep-lat?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (637 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13515v2-abstract-short" style="display: inline;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'inline'; document.getElementById('2410.13515v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13515v2-abstract-full" style="display: none;"> The beta decay of the lightest charmed baryon $螞_c^+$ provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay $螞_c^+ \rightarrow n e^+ 谓_{e}$, utilizing $4.5~\mathrm{fb}^{-1}$ of electron-positron annihilation data collected with the BESIII detector. A novel Graph Neural Network based technique effectively separates signals from dominant backgrounds, notably $螞_c^+ \rightarrow 螞e^+ 谓_{e}$, achieving a statistical significance exceeding $10蟽$. The absolute branching fraction is measured to be $(3.57\pm0.34_{\mathrm{stat.}}\pm0.14_{\mathrm{syst.}})\times 10^{-3}$. For the first time, the CKM matrix element $\left|V_{cd}\right|$ is extracted via a charmed baryon decay as $0.208\pm0.011_{\rm exp.}\pm0.007_{\rm LQCD}\pm0.001_{蟿_{螞_c^+}}$. This work highlights a new approach to further understand fundamental interactions in the charmed baryon sector, and showcases the power of modern machine learning techniques in experimental high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13515v2-abstract-full').style.display = 'none'; document.getElementById('2410.13515v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 16, 681 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11034">arXiv:2410.11034</a> <span> [<a href="https://arxiv.org/pdf/2410.11034">pdf</a>, <a href="https://arxiv.org/format/2410.11034">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Lattice Chern-Simons-Maxwell Theory and its Chirality </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Xu%2C+Z">Ze-An Xu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11034v1-abstract-short" style="display: inline;"> We define and solve the $\text{U(1)}$ Chern-Simons-Maxwell theory on spacetime lattice, with an emphasis on the chirality of the theory. Realizing Chern-Simons theory on lattice has been a problem of interest for decades, and over the years it has gradually become clear that there are two key points: 1) Some non-topological term, such as a Maxwell term, is necessary -- this is true even in the con… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11034v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11034v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11034v1-abstract-full" style="display: none;"> We define and solve the $\text{U(1)}$ Chern-Simons-Maxwell theory on spacetime lattice, with an emphasis on the chirality of the theory. Realizing Chern-Simons theory on lattice has been a problem of interest for decades, and over the years it has gradually become clear that there are two key points: 1) Some non-topological term, such as a Maxwell term, is necessary -- this is true even in the continuum, but more manifestly on the lattice; 2) the $\text{U(1)}$ gauge field should be implemented in the Villainized form to retain its topological properties. Putting the two ideas together seriously, we show all interesting properties of a chiral Chern-Simons theory are reproduced in an explicitly regularized manner on the lattice. These include the bosonic and fermionic level quantization, the bulk and chiral edge spectrum, the Wilson loop flux attachment (with point-split framing or geometric framing depending on the Maxwell coupling), the Wilson loop spin, the ground state degeneracy, and, most non-trivially, the chiral gravitational anomaly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11034v1-abstract-full').style.display = 'none'; document.getElementById('2410.11034v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.06673">arXiv:2406.06673</a> <span> [<a href="https://arxiv.org/pdf/2406.06673">pdf</a>, <a href="https://arxiv.org/format/2406.06673">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Instanton Density Operator in Lattice QCD from Higher Category Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing-Yuan Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.06673v2-abstract-short" style="display: inline;"> A natural definition for instanton density operator in lattice QCD has been long desired. We show this problem is, and has to be, resolved by higher category theory. The problem is resolved by refining at a conceptual level the Yang-Mills theory on lattice, in order to recover the homotopy information in the continuum, which would have been lost if we put the theory on lattice in the traditional w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06673v2-abstract-full').style.display = 'inline'; document.getElementById('2406.06673v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.06673v2-abstract-full" style="display: none;"> A natural definition for instanton density operator in lattice QCD has been long desired. We show this problem is, and has to be, resolved by higher category theory. The problem is resolved by refining at a conceptual level the Yang-Mills theory on lattice, in order to recover the homotopy information in the continuum, which would have been lost if we put the theory on lattice in the traditional way. The refinement needed is a generalization -- through the lens of higher category theory -- of the familiar process of Villainization that captures winding in lattice XY model and Dirac quantization in lattice Maxwell theory. The apparent difference is that Villainization is in the end described by principal bundles, hence familiar, but more general topological operators can only be captured on the lattice by more flexible structures beyond the usual group theory and fibre bundles, hence the language of categories becomes natural and necessary. The key structure we need for our particular problem is called multiplicative bundle gerbe, based upon which we can construct suitable structures to naturally define the 2d Wess-Zumino-Witten term, 3d skyrmion density operator and 4d hedgehog defect for lattice $S^3$ (pion vacua) non-linear sigma model, and the 3d Chern-Simons term, 4d instanton density operator and 5d Yang monopole defect for lattice $SU(N)$ Yang-Mills theory. In a broader perspective, higher category theory enables us to rethink more systematically the relation between continuum quantum field theory and lattice quantum field theory. We sketch a proposal towards a general machinery that constructs the suitably refined lattice degrees of freedom for a given non-linear sigma model or gauge theory in the continuum, realizing the desired topological operators on the lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.06673v2-abstract-full').style.display = 'none'; document.getElementById('2406.06673v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">133 pages. v2: References added, including the follow-up elaboration on the physical model, 2411.07195. Some discussions updated; in particular separated the original Section 5.4 into 5.4 and 5.5, and particularly revised the contents in Section 5.5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09281">arXiv:2309.09281</a> <span> [<a href="https://arxiv.org/pdf/2309.09281">pdf</a>, <a href="https://arxiv.org/format/2309.09281">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13069-x">10.1140/epjc/s10052-024-13069-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the effects of external imaginary electric field and chiral chemical potential on quark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jian-Xing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09281v2-abstract-short" style="display: inline;"> The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09281v2-abstract-full').style.display = 'inline'; document.getElementById('2309.09281v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09281v2-abstract-full" style="display: none;"> The behavior of quark matter with both external electric field and chiral chemical potential is theoretically and experimentally interesting to consider. In this paper, the case of simultaneous presence of imaginary electric field and chiral chemical potential is investigated using the lattice QCD approach with $N_f=1+1$ dynamical staggered fermions. We find that overall both the imaginary electric field and the chiral chemical potential can exacerbate chiral symmetry breaking, which is consistent with theoretical predictions. However we also find a non-monotonic behavior of chiral condensation at specific electric field strengths and chiral chemical potentials. In addition to this, we find that the behavior of Polyakov loop in the complex plane is not significantly affected by chiral chemical potential in the region of the parameters consider in this paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09281v2-abstract-full').style.display = 'none'; document.getElementById('2309.09281v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 20 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2024) 84:746 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04862">arXiv:2305.04862</a> <span> [<a href="https://arxiv.org/pdf/2305.04862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> AdS/CFT Correspondence in Hyperbolic Lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jingming Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+F">Feiyu Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+L">Linyun Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yuting Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+Z">Zihan Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Wu%2C+Y">Ying Wu</a>, <a href="/search/hep-lat?searchtype=author&query=Meng%2C+Y">Yan Meng</a>, <a href="/search/hep-lat?searchtype=author&query=Yan%2C+B">Bei Yan</a>, <a href="/search/hep-lat?searchtype=author&query=Xi%2C+X">Xiang Xi</a>, <a href="/search/hep-lat?searchtype=author&query=Zhu%2C+Z">Zhenxiao Zhu</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+M">Minqi Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+G">Gui-Geng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Shum%2C+P+P">Perry Ping Shum</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+R">Rong-Gen Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+R">Run-Qiu Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yihao Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Gao%2C+Z">Zhen Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04862v2-abstract-short" style="display: inline;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strong… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'inline'; document.getElementById('2305.04862v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04862v2-abstract-full" style="display: none;"> The celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence1-3, also known as the gravity/gauge duality, posits a dual relationship between the quantum gravity in an AdS spacetime and the CFT defined on its lower-dimensional boundary. This correspondence not only offers profound insights into the enigmatic nature of quantum gravity but also shows mighty power in addressing strongly-correlated systems. However, despite its importance in contemporary physics, the AdS/CFT correspondence remains a conjecture, and further experimental investigation is highly sought after. Here, we present the first experimental exploration of this conjecture by testing its core corollary: the leading-order effects of a strongly-coupled CFT can be exactly described by a weakly-coupled classical field in a higher-dimensional AdS spacetime. Through measuring the bulk entanglement entropy (BEE) and boundary-boundary correlation function (BBCF) of scalar fields in both conventional type-I and previously overlooked type-II hyperbolic lattices, serving as the discretized regularizations of spatial geometries of pure AdS2+1 spacetime and AdS2+1 black hole, respectively, we experimentally confirm that BEE exhibits a logarithmic scaling with the subsystem size, following the Ryu-Takayanagi (RT) formula, while BBCF showcases an exponential law dependence on the boundary separation, the scaling dimension of which conforms to the Klebanov-Witten (KW) relation, both of which align remarkably well with the established CFT outcomes. This heuristic experimental effort opens a new avenue for in-depth investigations on the gravity/gauge duality and extensive exploration of quantum-gravity-inspired phenomena in classical systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04862v2-abstract-full').style.display = 'none'; document.getElementById('2305.04862v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.11940">arXiv:2209.11940</a> <span> [<a href="https://arxiv.org/pdf/2209.11940">pdf</a>, <a href="https://arxiv.org/format/2209.11940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.107.024908">10.1103/PhysRevC.107.024908 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in $\sqrt{s_{\mathrm{NN}}}$ = 3 GeV Au+Au Collisions at the RHIC STAR Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Abdallah%2C+M+S">M. S. Abdallah</a>, <a href="/search/hep-lat?searchtype=author&query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-lat?searchtype=author&query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-lat?searchtype=author&query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-lat?searchtype=author&query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-lat?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/hep-lat?searchtype=author&query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/hep-lat?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-lat?searchtype=author&query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-lat?searchtype=author&query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-lat?searchtype=author&query=Baker%2C+W">W. Baker</a>, <a href="/search/hep-lat?searchtype=author&query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-lat?searchtype=author&query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-lat?searchtype=author&query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&query=Brandenburg%2C+J+D">J. D. Brandenburg</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X+Z">X. Z. Cai</a> , et al. (349 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.11940v2-abstract-short" style="display: inline;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'inline'; document.getElementById('2209.11940v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.11940v2-abstract-full" style="display: none;"> We report a measurement of cumulants and correlation functions of event-by-event proton multiplicity distributions from fixed-target Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3 GeV measured by the STAR experiment. Protons are identified within the rapidity ($y$) and transverse momentum ($p_{\rm T}$) region $-0.9 < y<0$ and $0.4 < p_{\rm T} <2.0 $ GeV/$c$ in the center-of-mass frame. A systematic analysis of the proton cumulants and correlation functions up to sixth-order as well as the corresponding ratios as a function of the collision centrality, $p_{\rm T}$, and $y$ are presented. The effect of pileup and initial volume fluctuations on these observables and the respective corrections are discussed in detail. The results are compared to calculations from the hadronic transport UrQMD model as well as a hydrodynamic model. In the most central 5\% collisions, the value of proton cumulant ratio $C_4/C_2$ is negative, drastically different from the values observed in Au+Au collisions at higher energies. Compared to model calculations including Lattice QCD, a hadronic transport model, and a hydrodynamic model, the strong suppression in the ratio of $C_4/C_2$ at 3 GeV Au+Au collisions indicates an energy regime dominated by hadronic interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.11940v2-abstract-full').style.display = 'none'; document.getElementById('2209.11940v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 20 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 107, 024908(2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08464">arXiv:2209.08464</a> <span> [<a href="https://arxiv.org/pdf/2209.08464">pdf</a>, <a href="https://arxiv.org/ps/2209.08464">ps</a>, <a href="https://arxiv.org/format/2209.08464">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2022)033">10.1007/JHEP12(2022)033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+D">D. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a> , et al. (555 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08464v3-abstract-short" style="display: inline;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'inline'; document.getElementById('2209.08464v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08464v3-abstract-full" style="display: none;"> Based on $e^+e^-$ collision samples corresponding to an integrated luminosity of 4.4 $\mbox{fb$^{-1}$}$ collected with the BESIII detector at center-of-mass energies between $4.6\,\,\mathrm{GeV}$ and $4.7\,\,\mathrm{GeV}$, a partial wave analysis of the charmed baryon hadronic decay $螞_c^+\to螞蟺^+蟺^0$ is performed, and the decays $螞_c^+\to螞蟻(770)^{+}$ and $螞_c^+\to危(1385)蟺$ are studied for the first time. Making use of the world-average branching fraction $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$, their branching fractions are determined to be \begin{eqnarray*} \begin{aligned} \mathcal{B}(螞_c^+\to螞蟻(770)^+)=&(4.06\pm0.30\pm0.35\pm0.23)\times10^{-2},\\ \mathcal{B}(螞_c^+\to危(1385)^+蟺^0)=&(5.86\pm0.49\pm0.52\pm0.35)\times10^{-3},\\ \mathcal{B}(螞_c^+\to危(1385)^0蟺^+)=&(6.47\pm0.59\pm0.66\pm0.38)\times10^{-3},\\ \end{aligned} \end{eqnarray*} where the first uncertainties are statistical, the second are systematic, and the third are from the uncertainties of the branching fractions $\mathcal{B}(螞_c^+\to螞蟺^+蟺^0)$ and $\mathcal{B}(危(1385)\to螞蟺)$. In addition, %according to amplitudes determined from the partial wave analysis, the decay asymmetry parameters are measured to be $伪_{螞蟻(770)^+}=-0.763\pm0.053\pm0.045$, $伪_{危(1385)^{+}蟺^0}=-0.917\pm0.069\pm0.056$, and $伪_{危(1385)^{0}蟺^+}=-0.789\pm0.098\pm0.056$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08464v3-abstract-full').style.display = 'none'; document.getElementById('2209.08464v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08008">arXiv:2208.08008</a> <span> [<a href="https://arxiv.org/pdf/2208.08008">pdf</a>, <a href="https://arxiv.org/format/2208.08008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity Distribution in the Continuum and Physical Mass Limit from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yao%2C+F">Fei Yao</a>, <a href="/search/hep-lat?searchtype=author&query=Walter%2C+L">Lisa Walter</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Hua%2C+J">Jun Hua</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lahrtz%2C+S">Sebastian Lahrtz</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+L">Lingquan Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Mohanta%2C+P">Protick Mohanta</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Shu%2C+H">Hai-Tao Shu</a>, <a href="/search/hep-lat?searchtype=author&query=Su%2C+Y">Yushan Su</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Xiong%2C+X">Xiaonu Xiong</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08008v2-abstract-short" style="display: inline;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-pert… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'inline'; document.getElementById('2208.08008v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08008v2-abstract-full" style="display: none;"> We report a state-of-the-art lattice QCD calculation of the isovector quark transversity distribution of the proton in the continuum and physical mass limit using large-momentum effective theory. The calculation is done at four lattice spacings $a=\{0.098,0.085,0.064,0.049\}$~fm and various pion masses ranging between $220$ and $350$ MeV, with proton momenta up to $2.8$ GeV. The result is non-perturbatively renormalized in the hybrid scheme with self renormalization which treats the infrared physics at large correlation distance properly, and extrapolated to the continuum, physical mass and infinite momentum limit. We also compare with recent global analyses for the nucleon isovector quark transversity distribution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08008v2-abstract-full').style.display = 'none'; document.getElementById('2208.08008v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.11796">arXiv:2207.11796</a> <span> [<a href="https://arxiv.org/pdf/2207.11796">pdf</a>, <a href="https://arxiv.org/format/2207.11796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2022)053">10.1007/JHEP10(2022)053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the Roberge-Weiss phase caused by external uniform classical electric field using lattice QCD approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yang%2C+J">Ji-Chong Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Chang%2C+X">Xiao-Ting Chang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jian-Xing Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.11796v3-abstract-short" style="display: inline;"> The effect of an external electric field on the quark matter is an important question due to the presence of strong electric fields in heavy ion collisions. In the lattice QCD approach, the case of a real electric field suffers from the `sign problem', and a classical electric field is often used similar as the case of chemical potential. Interestingly, in axial gauge a uniform classical electric… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11796v3-abstract-full').style.display = 'inline'; document.getElementById('2207.11796v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.11796v3-abstract-full" style="display: none;"> The effect of an external electric field on the quark matter is an important question due to the presence of strong electric fields in heavy ion collisions. In the lattice QCD approach, the case of a real electric field suffers from the `sign problem', and a classical electric field is often used similar as the case of chemical potential. Interestingly, in axial gauge a uniform classical electric field actually can correspond to an inhomogeneous imaginary chemical potential that varies with coordinate. On the other hand, with imaginary chemical potential, Roberge-Weiss~(R-W) phase transition occurs. In this work, the case of a uniform classical electric field is studied by using lattice QCD approach, with the emphasis on the properties of the R-W phase. Novel phenomena show up at high temperatures. It is found that, the chiral condensation oscillates with $z$ at high temperatures, and so is the absolute value of the Polyakov loop. It is verified that the charge density also oscillates with $z$ at high temperatures. The Polyakov loop can be described by an ansatz $A_p+\sum _{q=u,d} C_q\exp\left(L_蟿 Q_q iazeE_z\right)$, where $A_p$ is a complex number and $C_d>0,C_u\geq 0$ are real numbers that are fitted for different temperatures and electric field strengths. As a consequence, the behavior of the phase of Polyakov loop is different depending on whether the Polyakov loop encloses the origin, which implies a possible phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.11796v3-abstract-full').style.display = 'none'; document.getElementById('2207.11796v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 33 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of High Energy Physics volume 2022, Article number: 53 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08343">arXiv:2204.08343</a> <span> [<a href="https://arxiv.org/pdf/2204.08343">pdf</a>, <a href="https://arxiv.org/format/2204.08343">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.014507">10.1103/PhysRevD.106.014507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One-Loop Hybrid Renormalization Matching Kernels for Quasi-Parton Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chou%2C+C">Chien-Yu Chou</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08343v4-abstract-short" style="display: inline;"> Large momentum effective theory allows extraction of hadron parton distribution functions in lattice QCD by matching them to quark bilinear matrix elements of hadrons with large momenta. We calculate the matching kernels for the unpolarized, helicity, and transversity isovector parton distribution functions and skewless generalized parton distributions of all hadrons in the hybrid-RI/MOM scheme. T… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08343v4-abstract-full').style.display = 'inline'; document.getElementById('2204.08343v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08343v4-abstract-full" style="display: none;"> Large momentum effective theory allows extraction of hadron parton distribution functions in lattice QCD by matching them to quark bilinear matrix elements of hadrons with large momenta. We calculate the matching kernels for the unpolarized, helicity, and transversity isovector parton distribution functions and skewless generalized parton distributions of all hadrons in the hybrid-RI/MOM scheme. This renormalization scheme uses RI/MOM when the Wilson line length is less then $z_s$, otherwise a mass subtraction scheme is used. By design, the non-hybrid scheme is recovered as $z_s \to \infty$. In the opposite limit, $z \to 0$, the self renormalization scheme is obtained. When the parameters $p_z^R=0$ and $渭^R z_s \ll 1$, the hybrid-RI/MOM scheme coincides with the hybrid-ratio scheme times the charge of the PDF. We also discuss the subtlety related to the commutativity of Fourier transform and $蔚$ expansion in the $\bar{\text{MS}}$ scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08343v4-abstract-full').style.display = 'none'; document.getElementById('2204.08343v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.00734">arXiv:2107.00734</a> <span> [<a href="https://arxiv.org/pdf/2107.00734">pdf</a>, <a href="https://arxiv.org/format/2107.00734">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Flow-based sampling for multimodal distributions in lattice field theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Hackett%2C+D+C">Daniel C. Hackett</a>, <a href="/search/hep-lat?searchtype=author&query=Hsieh%2C+C">Chung-Chun Hsieh</a>, <a href="/search/hep-lat?searchtype=author&query=Albergo%2C+M+S">Michael S. Albergo</a>, <a href="/search/hep-lat?searchtype=author&query=Boyda%2C+D">Denis Boyda</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+K">Kai-Feng Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cranmer%2C+K">Kyle Cranmer</a>, <a href="/search/hep-lat?searchtype=author&query=Kanwar%2C+G">Gurtej Kanwar</a>, <a href="/search/hep-lat?searchtype=author&query=Shanahan%2C+P+E">Phiala E. Shanahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.00734v1-abstract-short" style="display: inline;"> Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for targets with multiple separated modes (i.e. theories with multiple vacua). We demonstrate the application of these methods to modeling two-dimensional r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00734v1-abstract-full').style.display = 'inline'; document.getElementById('2107.00734v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.00734v1-abstract-full" style="display: none;"> Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of methods to construct flow models for targets with multiple separated modes (i.e. theories with multiple vacua). We demonstrate the application of these methods to modeling two-dimensional real scalar field theory in its symmetry-broken phase. In this context we investigate the performance of different flow-based sampling algorithms, including a composite sampling algorithm where flow-based proposals are occasionally augmented by applying updates using traditional algorithms like HMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.00734v1-abstract-full').style.display = 'none'; document.getElementById('2107.00734v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 29 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/5312 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09131">arXiv:2104.09131</a> <span> [<a href="https://arxiv.org/pdf/2104.09131">pdf</a>, <a href="https://arxiv.org/ps/2104.09131">ps</a>, <a href="https://arxiv.org/format/2104.09131">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.012006">10.1103/PhysRevD.104.012006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the decay $D^+\to K^*(892)^+ K_S^0$ in $D^+\to K^+ K_S^0 蟺^0$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+Collaboration"> BESIII Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+M+R">M. R. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+X+H">X. H. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Bloms%2C+J">J. Bloms</a>, <a href="/search/hep-lat?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a> , et al. (492 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09131v3-abstract-short" style="display: inline;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'inline'; document.getElementById('2104.09131v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09131v3-abstract-full" style="display: none;"> Based on an $e^{+}e^{-}$ collision data sample corresponding to an integrated luminosity of 2.93 $\mathrm{fb}^{-1}$ collected with the BESIII detector at $\sqrt{s}=3.773 \mathrm{GeV}$, the first amplitude analysis of the singly Cabibbo-suppressed decay $D^{+}\to K^+ K_S^0 蟺^0$ is performed. From the amplitude analysis, the $K^*(892)^+ K_S^0$ component is found to be dominant with a fraction of $(57.1\pm2.6\pm4.2)\%$, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$ measured by BESIII, we obtain $\mathcal{B}(D^+\to K^*(892)^+ K_S^0)=(8.69\pm0.40\pm0.64\pm0.51)\times10^{-3}$, where the third uncertainty is due to the branching fraction $\mathcal{B}(D^+\to K^+ K_S^0 蟺^0)$. The precision of this result is significantly improved compared to the previous measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09131v3-abstract-full').style.display = 'none'; document.getElementById('2104.09131v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 012006 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.14971">arXiv:2011.14971</a> <span> [<a href="https://arxiv.org/pdf/2011.14971">pdf</a>, <a href="https://arxiv.org/format/2011.14971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice Nucleon Isovector Unpolarized Parton Distribution in the Physical-Continuum Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.14971v1-abstract-short" style="display: inline;"> We present the first lattice-QCD calculation of the nucleon isovector unpolarized parton distribution functions (PDFs) at the physical-continuum limit using Large-Momentum Effective Theory (LaMET). The lattice results are calculated using ensembles with multiple sea pion masses with the lightest one around 135~MeV, 3 lattice spacings $a\in[0.06,0.12]$~fm, and multiple volumes with $M_蟺L$ ranging 3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14971v1-abstract-full').style.display = 'inline'; document.getElementById('2011.14971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.14971v1-abstract-full" style="display: none;"> We present the first lattice-QCD calculation of the nucleon isovector unpolarized parton distribution functions (PDFs) at the physical-continuum limit using Large-Momentum Effective Theory (LaMET). The lattice results are calculated using ensembles with multiple sea pion masses with the lightest one around 135~MeV, 3 lattice spacings $a\in[0.06,0.12]$~fm, and multiple volumes with $M_蟺L$ ranging 3.3 to 5.5. We perform a simultaneous chiral-continuum extrapolation to obtain RI/MOM renormalized nucleon matrix elements with various Wilson-link displacements in the continuum limit at physical pion mass. Then, we apply one-loop perturbative matching to the quasi-PDFs to obtain the lightcone PDFs. We find the lattice-spacing dependence to be much larger than the dependence on pion mass and lattice volume for these LaMET matrix elements. Our physical-continuum limit unpolarized isovector nucleon PDFs are found to be consistent with global-PDF results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.14971v1-abstract-full').style.display = 'none'; document.getElementById('2011.14971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-20-019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13536">arXiv:2011.13536</a> <span> [<a href="https://arxiv.org/pdf/2011.13536">pdf</a>, <a href="https://arxiv.org/format/2011.13536">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.054508">10.1103/PhysRevD.104.054508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral Perturbation for Large Momentum Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+W">Wei-Yang Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13536v3-abstract-short" style="display: inline;"> Large momentum effective field theory (LaMET) enables the extraction of parton distribution functions (PDFs) directly on a Euclidean lattice through a factorization theorem that relates the computed quasi-PDFs to PDFs. We apply chiral perturbation theory (ChPT) to LaMET to further separate soft scales, such as light quark masses and lattice size, to obtain leading model independent extrapolation f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13536v3-abstract-full').style.display = 'inline'; document.getElementById('2011.13536v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13536v3-abstract-full" style="display: none;"> Large momentum effective field theory (LaMET) enables the extraction of parton distribution functions (PDFs) directly on a Euclidean lattice through a factorization theorem that relates the computed quasi-PDFs to PDFs. We apply chiral perturbation theory (ChPT) to LaMET to further separate soft scales, such as light quark masses and lattice size, to obtain leading model independent extrapolation formulas for extrapolations to physical quark masses and infinite volume. We find that the finite volume effect is reduced when the nucleon carries a finite momentum. For nucleon momentum greater than $1$ GeV and the lattice size $L$ and pion mass $ m_蟺$ satisfying $m_蟺L\geq 3$, the finite volume effect is less than $1\%$ and is negligible for the current precision of lattice computations. This can be interpreted as a Lorentz contraction of the nucleon size in the $z$-direction which makes the lattice size effectively larger in that direction. We also find that the quark mass dependence in the infinite volume limit computed with non-zero nucleon momentum reproduces the previous result computed at zero momentum, as expected. Our approach can be generalized to other parton observables in LaMET straight forwardly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13536v3-abstract-full').style.display = 'none'; document.getElementById('2011.13536v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 054508 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06802">arXiv:2006.06802</a> <span> [<a href="https://arxiv.org/pdf/2006.06802">pdf</a>, <a href="https://arxiv.org/format/2006.06802">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> QCD2019 Workshop Summary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Brodsky%2C+S+J">S. J. Brodsky</a>, <a href="/search/hep-lat?searchtype=author&query=Burkert%2C+V+D">V. D. Burkert</a>, <a href="/search/hep-lat?searchtype=author&query=Carman%2C+D+S">D. S. Carman</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J+P">J. P. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cui%2C+Z+-">Z. -F. Cui</a>, <a href="/search/hep-lat?searchtype=author&query=D%C3%B6ring%2C+M">M. D枚ring</a>, <a href="/search/hep-lat?searchtype=author&query=Dosch%2C+H+G">H. G. Dosch</a>, <a href="/search/hep-lat?searchtype=author&query=Draayer%2C+J+P">J. P. Draayer</a>, <a href="/search/hep-lat?searchtype=author&query=Elouadrhiri%2C+L">L. Elouadrhiri</a>, <a href="/search/hep-lat?searchtype=author&query=Glazier%2C+D+I">D. I. Glazier</a>, <a href="/search/hep-lat?searchtype=author&query=Blin%2C+A+N+H">A. N. Hiller Blin</a>, <a href="/search/hep-lat?searchtype=author&query=Horn%2C+T">T. Horn</a>, <a href="/search/hep-lat?searchtype=author&query=Joo%2C+K">K. Joo</a>, <a href="/search/hep-lat?searchtype=author&query=Kim%2C+H+C">H. C. Kim</a>, <a href="/search/hep-lat?searchtype=author&query=Kubarovsky%2C+V">V. Kubarovsky</a>, <a href="/search/hep-lat?searchtype=author&query=Kuhn%2C+S+E">S. E. Kuhn</a>, <a href="/search/hep-lat?searchtype=author&query=Lu%2C+Y">Y. Lu</a>, <a href="/search/hep-lat?searchtype=author&query=Melnitchouk%2C+W">W. Melnitchouk</a>, <a href="/search/hep-lat?searchtype=author&query=Mezrag%2C+C">C. Mezrag</a>, <a href="/search/hep-lat?searchtype=author&query=Mokeev%2C+V+I">V. I. Mokeev</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+J+W">J. W. Qiu</a>, <a href="/search/hep-lat?searchtype=author&query=Radici%2C+M">M. Radici</a>, <a href="/search/hep-lat?searchtype=author&query=Richards%2C+D">D. Richards</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+C+D">C. D. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Rodr%C3%ADguez-Quintero%2C+J">J. Rodr铆guez-Quintero</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06802v2-abstract-short" style="display: inline;"> The topical workshop {\it Strong QCD from Hadron Structure Experiments} took place at Jefferson Lab from Nov. 6-9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the {\it ab initio} QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06802v2-abstract-full').style.display = 'inline'; document.getElementById('2006.06802v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06802v2-abstract-full" style="display: none;"> The topical workshop {\it Strong QCD from Hadron Structure Experiments} took place at Jefferson Lab from Nov. 6-9, 2019. Impressive progress in relating hadron structure observables to the strong QCD mechanisms has been achieved from the {\it ab initio} QCD description of hadron structure in a diverse array of methods in order to expose emergent phenomena via quasi-particle formation. The wealth of experimental data and the advances in hadron structure theory make it possible to gain insight into strong interaction dynamics in the regime of large quark-gluon coupling (the strong QCD regime), which will address the most challenging problems of the Standard Model on the nature of the dominant part of hadron mass, quark-gluon confinement, and the emergence of the ground and excited state hadrons, as well as atomic nuclei, from QCD. This workshop aimed to develop plans and to facilitate the future synergistic efforts between experimentalists, phenomenologists, and theorists working on studies of hadron spectroscopy and structure with the goal to connect the properties of hadrons and atomic nuclei available from data to the strong QCD dynamics underlying their emergence from QCD. These results pave the way for a future breakthrough extension in the studies of QCD with an Electron-Ion Collider in the U.S. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06802v2-abstract-full').style.display = 'none'; document.getElementById('2006.06802v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Summary and outlook of the "Strong QCD from Hadron Structure Experiment" topical Workshop at Jefferson Lab, November 4-8, 2019, Newport News, VA, USA, 65 pages, 57 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-20-3204, DOE/OR/23177-4985, NJU-INP 015/20 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.13955">arXiv:2005.13955</a> <span> [<a href="https://arxiv.org/pdf/2005.13955">pdf</a>, <a href="https://arxiv.org/format/2005.13955">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.094519">10.1103/PhysRevD.102.094519 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion and Kaon Distribution Amplitudes in the Continuum Limit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Honkala%2C+C">Carson Honkala</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.13955v1-abstract-short" style="display: inline;"> We present a lattice-QCD calculation of the pion, kaon and $畏_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC collaboration, at 310 MeV pion mass with 0.06, 0.09 and 0.12 fm lattice spacings. We use clover fermion action for the valence qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13955v1-abstract-full').style.display = 'inline'; document.getElementById('2005.13955v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.13955v1-abstract-full" style="display: none;"> We present a lattice-QCD calculation of the pion, kaon and $畏_s$ distribution amplitudes using large-momentum effective theory (LaMET). Our calculation is carried out using three ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC collaboration, at 310 MeV pion mass with 0.06, 0.09 and 0.12 fm lattice spacings. We use clover fermion action for the valence quarks and tune the quark mass to match the lightest light and strange masses in the sea. The resulting lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and extrapolated to the continuum. We use two approaches to extract the $x$-dependence of the meson distribution amplitudes: 1) we fit the renormalized matrix elements in coordinate space to an assumed distribution form through a one-loop matching kernel; 2) we use a machine-learning algorithm trained on pseudo lattice-QCD data to make predictions on the lattice data. We found the results are consistent between these methods with the latter method giving a less smooth shape. Both approaches suggest that as the quark mass increases, the distribution amplitude becomes narrower. Our pion distribution amplitude has broader distribution than predicted by light-front constituent-quark model, and the moments of our pion distributions agree with previous lattice-QCD results using the operator production expansion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.13955v1-abstract-full').style.display = 'none'; document.getElementById('2005.13955v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-20-010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.14128">arXiv:2003.14128</a> <span> [<a href="https://arxiv.org/pdf/2003.14128">pdf</a>, <a href="https://arxiv.org/format/2003.14128">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.014516">10.1103/PhysRevD.103.014516 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Valence-Quark Distribution of the Kaon and Pion from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Fan%2C+Z">Zhouyou Fan</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.14128v2-abstract-short" style="display: inline;"> We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 lattice spacings $a=0.06$ and 0.12 fm, $(M_蟺)_\text{min} L \approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calcul… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.14128v2-abstract-full').style.display = 'inline'; document.getElementById('2003.14128v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.14128v2-abstract-full" style="display: none;"> We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 lattice spacings $a=0.06$ and 0.12 fm, $(M_蟺)_\text{min} L \approx 5.5$, and high statistics ranging from 11,600 to 61,312 measurements. We also calculate the valence-quark distribution of pion and find it to be consistent with the FNAL E615 experimental results, and our ratio of the $u$ quark PDF in the kaon to that in the pion agrees with the CERN NA3 experiment. We also make predictions of the strange-quark distribution of the kaon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.14128v2-abstract-full').style.display = 'none'; document.getElementById('2003.14128v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-20-006 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 014516 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12376">arXiv:1904.12376</a> <span> [<a href="https://arxiv.org/pdf/1904.12376">pdf</a>, <a href="https://arxiv.org/format/1904.12376">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2020.114940">10.1016/j.nuclphysb.2020.114940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion generalized parton distribution from lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12376v3-abstract-short" style="display: inline;"> We present the first lattice calculation of the valence-quark generalized parton distribution (GPD) of the pion using the large-momentum effective theory (LaMET) approach. We focus on the zero-skewness limit, where the GPD has a probability-density interpretation in the longitudinal Bjorken $x$ and the transverse impact-parameter distributions. Our calculation is done using clover valence fermions… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12376v3-abstract-full').style.display = 'inline'; document.getElementById('1904.12376v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12376v3-abstract-full" style="display: none;"> We present the first lattice calculation of the valence-quark generalized parton distribution (GPD) of the pion using the large-momentum effective theory (LaMET) approach. We focus on the zero-skewness limit, where the GPD has a probability-density interpretation in the longitudinal Bjorken $x$ and the transverse impact-parameter distributions. Our calculation is done using clover valence fermions on an ensemble of gauge configurations with $2+1+1$ flavors (degenerate up/down, strange and charm) of highly improved staggered quarks (HISQ) with lattice spacing $a \approx 0.12$ fm, box size $L \approx 3$ fm and pion mass $m_蟺\approx 310$ MeV. The parton distribution function and the form factor are reproduced as special limits of the GPD as expected. Due to the large errors, this exploratory study does not show a clear preference among different model assumptions about the kinematic dependence of the GPD. To discriminate between these assumptions, future studies using higher-statistics data will be crucial. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12376v3-abstract-full').style.display = 'none'; document.getElementById('1904.12376v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version published in Nucl. Phys. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys. B952 (2020) 114940 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.05043">arXiv:1810.05043</a> <span> [<a href="https://arxiv.org/pdf/1810.05043">pdf</a>, <a href="https://arxiv.org/format/1810.05043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Nucleon Transversity Distribution at the Physical Pion Mass from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.05043v1-abstract-short" style="display: inline;"> We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distributions using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.05043v1-abstract-full').style.display = 'inline'; document.getElementById('1810.05043v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.05043v1-abstract-full" style="display: none;"> We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distributions using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.05043v1-abstract-full').style.display = 'none'; document.getElementById('1810.05043v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-18-019,MIT-CTP/5033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06496">arXiv:1809.06496</a> <span> [<a href="https://arxiv.org/pdf/1809.06496">pdf</a>, <a href="https://arxiv.org/ps/1809.06496">ps</a>, <a href="https://arxiv.org/format/1809.06496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.122.062001">10.1103/PhysRevLett.122.062001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of $D^+ \to f_0(500) e^+谓_e$ and Improved Measurements of $D \to蟻e^+谓_e$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Ahmed%2C+S">S. Ahmed</a>, <a href="/search/hep-lat?searchtype=author&query=Albrecht%2C+M">M. Albrecht</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+M">M. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+D+W">D. W. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/hep-lat?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a> , et al. (438 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06496v2-abstract-short" style="display: inline;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'inline'; document.getElementById('1809.06496v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06496v2-abstract-full" style="display: none;"> Using a data sample corresponding to an integrated luminosity of 2.93~fb$^{-1}$ recorded by the BESIII detector at a center-of-mass energy of $3.773$ GeV, we present an analysis of the decays $\bar{D}^0\to蟺^+蟺^0 e^-\bar谓_e$ and $D^+\to蟺^-蟺^+ e^+谓_e$. By performing a partial wave analysis, the $蟺^+蟺^-$ $S$-wave contribution to $D^+\to蟺^-蟺^+ e^+谓_e$ is observed to be $(25.7\pm1.6\pm1.1)$% with a statistical significance greater than 10$蟽$, besides the dominant $P$-wave contribution. This is the first observation of the $S$-wave contribution. We measure the branching fractions $\mathcal{B}(D^{0} \to 蟻^- e^+ 谓_e) = (1.445\pm 0.058 \pm 0.039) \times10^{-3}$, $\mathcal{B}(D^{+} \to 蟻^0 e^+ 谓_e) = (1.860\pm 0.070 \pm 0.061) \times10^{-3}$, and $\mathcal{B}(D^{+} \to f_0(500) e^+ 谓_e, f_0(500)\to蟺^+蟺^-) = (6.30\pm 0.43 \pm 0.32) \times10^{-4}$. An upper limit of $\mathcal{B}(D^{+} \to f_0(980) e^+ 谓_e, f_0(980)\to蟺^+蟺^-) < 2.8 \times10^{-5}$ is set at the 90% confidence level. We also obtain the hadronic form factor ratios of $D\to 蟻e^+谓_e$ at $q^{2}=0$ assuming the single-pole dominance parameterization: $r_{V}=\frac{V(0)}{A_{1}(0)}=1.695\pm0.083\pm0.051$, $r_{2}=\frac{A_{2}(0)}{A_{1}(0)}=0.845\pm0.056\pm0.039$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06496v2-abstract-full').style.display = 'none'; document.getElementById('1809.06496v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 122, 062001 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.07431">arXiv:1807.07431</a> <span> [<a href="https://arxiv.org/pdf/1807.07431">pdf</a>, <a href="https://arxiv.org/format/1807.07431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.242003">10.1103/PhysRevLett.121.242003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton Isovector Helicity Distribution on the Lattice at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Li%2C+R">Ruizi Li</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.07431v2-abstract-short" style="display: inline;"> We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unpreceden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07431v2-abstract-full').style.display = 'inline'; document.getElementById('1807.07431v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.07431v2-abstract-full" style="display: none;"> We present a state-of-the-art calculation of the isovector quark helicity Bjorken-$x$ distribution in the proton using lattice-QCD ensembles at the physical pion mass. We compute quasi-distributions at proton momenta $P_z \in \{2.2, 2.6, 3.0\}$~GeV on the lattice, and match them systematically to the physical parton distribution using large-momentum effective theory (LaMET). We reach an unprecedented precision through high statistics in simulations, large-momentum proton matrix elements, and control of excited-state contamination. The resulting distribution with combined statistical and systematic errors is in agreement with the latest phenomenological analysis of the spin-dependent experimental data; in particular, $螖\bar{u}(x)>螖\bar{d}(x)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.07431v2-abstract-full').style.display = 'none'; document.getElementById('1807.07431v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-18-013, MIT-CTP/5032 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 121 (2018) no.24, 242003 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.06566">arXiv:1807.06566</a> <span> [<a href="https://arxiv.org/pdf/1807.06566">pdf</a>, <a href="https://arxiv.org/format/1807.06566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.034020">10.1103/PhysRevD.101.034020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unpolarized isovector quark distribution function from Lattice QCD: A systematic analysis of renormalization and matching </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Huo%2C+Y">Yi-Kai Huo</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Schlemmer%2C+M">Maximilian Schlemmer</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+Q">Qi-An Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+K">Kuan Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.06566v2-abstract-short" style="display: inline;"> We present a detailed Lattice QCD study of the unpolarized isovector quark Parton Distribution Function (PDF) using large-momentum effective theory framework. We choose a quasi-PDF defined by a spatial correlator which is free from mixing with other operators of the same dimension. In the lattice simulation, we use a Gaussian-momentum-smeared source at $M_蟺=356$ MeV and $P_z \in \{1.8,2.3\}$ GeV.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06566v2-abstract-full').style.display = 'inline'; document.getElementById('1807.06566v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.06566v2-abstract-full" style="display: none;"> We present a detailed Lattice QCD study of the unpolarized isovector quark Parton Distribution Function (PDF) using large-momentum effective theory framework. We choose a quasi-PDF defined by a spatial correlator which is free from mixing with other operators of the same dimension. In the lattice simulation, we use a Gaussian-momentum-smeared source at $M_蟺=356$ MeV and $P_z \in \{1.8,2.3\}$ GeV. To control the systematics associated with the excited states, we explore {five different source-sink separations}. The nonperturbative renormalization is conducted in a regularization-independent momentum subtraction scheme, and the matching between the renormalized quasi-PDF and $\bar{\rm MS}$ PDF is calculated based on perturbative QCD up to one-loop order. Systematic errors due to renormalization and perturbative matching are also analyzed in detail. Our results for lightcone PDF are in reasonable agreement with the latest phenomenological analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.06566v2-abstract-full').style.display = 'none'; document.getElementById('1807.06566v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 034020 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.01483">arXiv:1804.01483</a> <span> [<a href="https://arxiv.org/pdf/1804.01483">pdf</a>, <a href="https://arxiv.org/format/1804.01483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.034505">10.1103/PhysRevD.100.034505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First direct lattice-QCD calculation of the $x$-dependence of the pion parton distribution function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.01483v3-abstract-short" style="display: inline;"> We present the first direct lattice-QCD calculation of the Bjorken-$x$ dependence of the valence quark distribution of the pion. Using large-momentum effective theory (LaMET), we calculate the boosted pion state with long Wilson link operators. After implementing the one-loop matching and meson mass corrections, our result at $m_蟺\approx 310$ MeV is in agreement with those extracted from experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01483v3-abstract-full').style.display = 'inline'; document.getElementById('1804.01483v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.01483v3-abstract-full" style="display: none;"> We present the first direct lattice-QCD calculation of the Bjorken-$x$ dependence of the valence quark distribution of the pion. Using large-momentum effective theory (LaMET), we calculate the boosted pion state with long Wilson link operators. After implementing the one-loop matching and meson mass corrections, our result at $m_蟺\approx 310$ MeV is in agreement with those extracted from experimental data as well as from Dyson-Schwinger equation in small $x$ region, but a sizeable discrepancy in the large $x$ region. This discrepancy provides a nice opportunity to systematically study and disentangle the artifacts in the LaMET approach, which will eventually help to discern various existing analyses in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01483v3-abstract-full').style.display = 'none'; document.getElementById('1804.01483v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, version accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 034505 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.04393">arXiv:1803.04393</a> <span> [<a href="https://arxiv.org/pdf/1803.04393">pdf</a>, <a href="https://arxiv.org/format/1803.04393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Lattice Calculation of Parton Distribution Function from LaMET at Physical Pion Mass with Large Nucleon Momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.04393v2-abstract-short" style="display: inline;"> We present a lattice-QCD calculation of the unpolarized isovector parton distribution function (PDF) using ensembles at the physical pion mass with large proton boost momenta $P_z \in \{2.2,2.6,3.0\}$~GeV within the framework of large-momentum effective theory (LaMET). In contrast to our previous physical-pion PDF result, we increase the statistics significantly, double the boost momentum, increas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04393v2-abstract-full').style.display = 'inline'; document.getElementById('1803.04393v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.04393v2-abstract-full" style="display: none;"> We present a lattice-QCD calculation of the unpolarized isovector parton distribution function (PDF) using ensembles at the physical pion mass with large proton boost momenta $P_z \in \{2.2,2.6,3.0\}$~GeV within the framework of large-momentum effective theory (LaMET). In contrast to our previous physical-pion PDF result, we increase the statistics significantly, double the boost momentum, increase the investment in excited-state contamination systematics, and switch to $纬_t$ operator to avoid mixing with scalar matrix elements. We use four source-sink separations in our analysis to control the systematics associated with excited-state contamination. The one-loop LaMET matching corresponding to the new operator is calculated and applied to our lattice data. We detail the systematics that affect PDF calculations, providing guidelines to improve the precision of future lattice PDF calculations. We find our final parton distribution to be in reasonable agreement with the PDF provided by the latest phenomenological analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.04393v2-abstract-full').style.display = 'none'; document.getElementById('1803.04393v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-18-003, MIT-CTP/4991 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.03023">arXiv:1801.03023</a> <span> [<a href="https://arxiv.org/pdf/1801.03023">pdf</a>, <a href="https://arxiv.org/format/1801.03023">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.074508">10.1103/PhysRevD.97.074508 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distribution functions from reduced Ioffe-time distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Monahan%2C+C">Christopher Monahan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.03023v2-abstract-short" style="display: inline;"> We show that the correct way to extract parton distribution functions from the reduced Ioffe-time distribution (RITD), a ratio of the Ioffe-time distribution for a moving hadron and a hadron at rest, is through a factorization formula. This factorization exists because, at small distances, forming the ratio does not change the infrared behavior of the numerator, which is factorizable. We illustrat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03023v2-abstract-full').style.display = 'inline'; document.getElementById('1801.03023v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.03023v2-abstract-full" style="display: none;"> We show that the correct way to extract parton distribution functions from the reduced Ioffe-time distribution (RITD), a ratio of the Ioffe-time distribution for a moving hadron and a hadron at rest, is through a factorization formula. This factorization exists because, at small distances, forming the ratio does not change the infrared behavior of the numerator, which is factorizable. We illustrate the effect of such a factorization by applying it to results in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.03023v2-abstract-full').style.display = 'none'; document.getElementById('1801.03023v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 074508 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.10025">arXiv:1712.10025</a> <span> [<a href="https://arxiv.org/pdf/1712.10025">pdf</a>, <a href="https://arxiv.org/format/1712.10025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Kaon Distribution Amplitude from Lattice QCD and the Flavor SU(3) Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Sch%C3%A4fer%2C+A">Andreas Sch盲fer</a>, <a href="/search/hep-lat?searchtype=author&query=Sun%2C+P">Peng Sun</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+R">Rui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.10025v2-abstract-short" style="display: inline;"> We present the first lattice-QCD calculation of the kaon distribution amplitude using the large-momentum effective theory (LaMET) approach. The momentum-smearing technique has been implemented to improve signals at large meson momenta. We subtract the power divergence due to Wilson line to high precision using multiple lattice spacings. The kaon structure clearly shows an asymmetry of the distribu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.10025v2-abstract-full').style.display = 'inline'; document.getElementById('1712.10025v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.10025v2-abstract-full" style="display: none;"> We present the first lattice-QCD calculation of the kaon distribution amplitude using the large-momentum effective theory (LaMET) approach. The momentum-smearing technique has been implemented to improve signals at large meson momenta. We subtract the power divergence due to Wilson line to high precision using multiple lattice spacings. The kaon structure clearly shows an asymmetry of the distribution amplitude around $x=1/2$, a clear sign of its skewness. We also study the leading SU(3) flavor symmetry breaking relations for the pion, kaon and eta meson distribution amplitudes, and the results are consistent with the prediction from chiral perturbation theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.10025v2-abstract-full').style.display = 'none'; document.getElementById('1712.10025v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-17-023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.07916">arXiv:1711.07916</a> <span> [<a href="https://arxiv.org/pdf/1711.07916">pdf</a>, <a href="https://arxiv.org/format/1711.07916">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2018.01.007">10.1016/j.ppnp.2018.01.007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton distributions and lattice QCD calculations: a community white paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Nocera%2C+E+R">Emanuele R. Nocera</a>, <a href="/search/hep-lat?searchtype=author&query=Olness%2C+F">Fred Olness</a>, <a href="/search/hep-lat?searchtype=author&query=Orginos%2C+K">Kostas Orginos</a>, <a href="/search/hep-lat?searchtype=author&query=Rojo%2C+J">Juan Rojo</a>, <a href="/search/hep-lat?searchtype=author&query=Accardi%2C+A">Alberto Accardi</a>, <a href="/search/hep-lat?searchtype=author&query=Alexandrou%2C+C">Constantia Alexandrou</a>, <a href="/search/hep-lat?searchtype=author&query=Bacchetta%2C+A">Alessandro Bacchetta</a>, <a href="/search/hep-lat?searchtype=author&query=Bozzi%2C+G">Giuseppe Bozzi</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Collins%2C+S">Sara Collins</a>, <a href="/search/hep-lat?searchtype=author&query=Cooper-Sarkar%2C+A">Amanda Cooper-Sarkar</a>, <a href="/search/hep-lat?searchtype=author&query=Constantinou%2C+M">Martha Constantinou</a>, <a href="/search/hep-lat?searchtype=author&query=Del+Debbio%2C+L">Luigi Del Debbio</a>, <a href="/search/hep-lat?searchtype=author&query=Engelhardt%2C+M">Michael Engelhardt</a>, <a href="/search/hep-lat?searchtype=author&query=Green%2C+J">Jeremy Green</a>, <a href="/search/hep-lat?searchtype=author&query=Gupta%2C+R">Rajan Gupta</a>, <a href="/search/hep-lat?searchtype=author&query=Harland-Lang%2C+L+A">Lucian A. Harland-Lang</a>, <a href="/search/hep-lat?searchtype=author&query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&query=Kusina%2C+A">Aleksander Kusina</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+K">Keh-Fei Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liuti%2C+S">Simonetta Liuti</a>, <a href="/search/hep-lat?searchtype=author&query=Monahan%2C+C">Christopher Monahan</a>, <a href="/search/hep-lat?searchtype=author&query=Nadolsky%2C+P">Pavel Nadolsky</a>, <a href="/search/hep-lat?searchtype=author&query=Qiu%2C+J">Jian-Wei Qiu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.07916v3-abstract-short" style="display: inline;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic obs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'inline'; document.getElementById('1711.07916v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.07916v3-abstract-full" style="display: none;"> In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.07916v3-abstract-full').style.display = 'none'; document.getElementById('1711.07916v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">80 pages, 15 figures, 28 tables, minor typos corrected, published in Progress in Particle and Nuclear Physics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 17-185, IFJPAN-IV-2017-19, INT-PUB-17-042, MSUHEP-17-017, Nikhef-2017-047, OUTP-17-15P, SMU-HEP-17-08 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.01089">arXiv:1710.01089</a> <span> [<a href="https://arxiv.org/pdf/1710.01089">pdf</a>, <a href="https://arxiv.org/format/1710.01089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Symmetry Properties of Nonlocal Quark Bilinear Operators on a Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.01089v3-abstract-short" style="display: inline;"> Using symmetry properties, we determine the mixing pattern of a class of nonlocal quark bilinear operators containing a straight Wilson line along a spatial direction. We confirm the previous study that mixing among the lowest dimensional operators, which have mass dimension equals three, can occur if chiral symmetry is broken in the lattice action. For higher dimensional operators, we find that t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01089v3-abstract-full').style.display = 'inline'; document.getElementById('1710.01089v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.01089v3-abstract-full" style="display: none;"> Using symmetry properties, we determine the mixing pattern of a class of nonlocal quark bilinear operators containing a straight Wilson line along a spatial direction. We confirm the previous study that mixing among the lowest dimensional operators, which have mass dimension equals three, can occur if chiral symmetry is broken in the lattice action. For higher dimensional operators, we find that the dimension three operators will always mix with dimension four operators even if chiral symmetry is preserved. Also, the number of dimension four operators involved in the mixing is large hence it is impractical to remove the mixing by the improvement procedure. Our result is important to determining the Bjorken-$x$ dependence parton distribution functions using the quasi-distribution method on a Euclidean lattice. The requirement of using large hadron momentum in this approach makes the control of errors from dimension four operators even more important. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.01089v3-abstract-full').style.display = 'none'; document.getElementById('1710.01089v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 1 figure; version to be published in Chinese Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-17-015, MIT-CTP/4942 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.05301">arXiv:1708.05301</a> <span> [<a href="https://arxiv.org/pdf/1708.05301">pdf</a>, <a href="https://arxiv.org/format/1708.05301">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.98.054504">10.1103/PhysRevD.98.054504 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved Parton Distribution Functions at Physical Pion Mass </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.05301v1-abstract-short" style="display: inline;"> We present the first lattice results on isovector unpolarized and longitudinally polarized parton distribution functions (PDFs) at physical pion mass. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken-$x$ dependence of finite-momentum PDFs, called "quasi-PDFs", can be calculated on the lattice. The quasi-PDF nucleon matrix elements are r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05301v1-abstract-full').style.display = 'inline'; document.getElementById('1708.05301v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.05301v1-abstract-full" style="display: none;"> We present the first lattice results on isovector unpolarized and longitudinally polarized parton distribution functions (PDFs) at physical pion mass. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the full Bjorken-$x$ dependence of finite-momentum PDFs, called "quasi-PDFs", can be calculated on the lattice. The quasi-PDF nucleon matrix elements are renormalized nonperturbatively in RI/MOM-scheme. However, the recent renormalized quasi-PDFs suffer from unphysical oscillations that alter the shape of the true distribution as a function of Bjorken-$x$. In this paper, we propose two possible solutions to overcome this problem, and demonstrate the efficacy of the methods on the 2+1+1-flavor lattice data at physical pion mass with lattice spacing 0.09~fm and volume $(5.76\mbox{ fm})^3$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.05301v1-abstract-full').style.display = 'none'; document.getElementById('1708.05301v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-17-014 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 98, 054504 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.03455">arXiv:1706.03455</a> <span> [<a href="https://arxiv.org/pdf/1706.03455">pdf</a>, <a href="https://arxiv.org/format/1706.03455">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/34/5/050503">10.1088/0256-307X/34/5/050503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase transition of the q-state clock model: duality and tensor renormalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liao%2C+H">Hai-Jun Liao</a>, <a href="/search/hep-lat?searchtype=author&query=Xie%2C+H">Hai-Dong Xie</a>, <a href="/search/hep-lat?searchtype=author&query=Han%2C+X">Xing-Jie Han</a>, <a href="/search/hep-lat?searchtype=author&query=Huang%2C+R">Rui-Zhen Huang</a>, <a href="/search/hep-lat?searchtype=author&query=Cheng%2C+S">Song Cheng</a>, <a href="/search/hep-lat?searchtype=author&query=Wei%2C+Z">Zhong-Chao Wei</a>, <a href="/search/hep-lat?searchtype=author&query=Xie%2C+Z">Zhi-Yuan Xie</a>, <a href="/search/hep-lat?searchtype=author&query=Xiang%2C+T">Tao Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.03455v1-abstract-short" style="display: inline;"> We investigate the critical behavior and the duality property of the ferromagnetic $q$-state clock model on the square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in the original and dual lattices, we obtain the exact self-dual points for the model with $q \leq 5 $ and approximate self-dual points for $q \geq 6$. We calculate accurately the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03455v1-abstract-full').style.display = 'inline'; document.getElementById('1706.03455v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.03455v1-abstract-full" style="display: none;"> We investigate the critical behavior and the duality property of the ferromagnetic $q$-state clock model on the square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in the original and dual lattices, we obtain the exact self-dual points for the model with $q \leq 5 $ and approximate self-dual points for $q \geq 6$. We calculate accurately the lower and upper critical temperatures for the six-state clock model from the fixed-point tensors determined using the higher-order tensor renormalization group method and compare with other numerical results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.03455v1-abstract-full').style.display = 'none'; document.getElementById('1706.03455v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 34, 050503 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.01295">arXiv:1706.01295</a> <span> [<a href="https://arxiv.org/pdf/1706.01295">pdf</a>, <a href="https://arxiv.org/format/1706.01295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.014505">10.1103/PhysRevD.97.014505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Parton Distribution Function with Non-perturbative Renormalization from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ishikawa%2C+T">Tomomi Ishikawa</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Yang%2C+Y">Yi-Bo Yang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.01295v4-abstract-short" style="display: inline;"> We present lattice results for the isovector unpolarized parton distribution with nonperturbative RI/MOM-scheme renormalization on the lattice. In the framework of large-momentum effective field theory (LaMET), the full Bjorken-$x$ dependence of a momentum-dependent quasi-distribution is calculated on the lattice and matched to the ordinary lightcone parton distribution at one-loop order, with pow… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01295v4-abstract-full').style.display = 'inline'; document.getElementById('1706.01295v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.01295v4-abstract-full" style="display: none;"> We present lattice results for the isovector unpolarized parton distribution with nonperturbative RI/MOM-scheme renormalization on the lattice. In the framework of large-momentum effective field theory (LaMET), the full Bjorken-$x$ dependence of a momentum-dependent quasi-distribution is calculated on the lattice and matched to the ordinary lightcone parton distribution at one-loop order, with power corrections included. The important step of RI/MOM renormalization that connects the lattice and continuum matrix elements is detailed in this paper. A few consequences of the results are also addressed here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.01295v4-abstract-full').style.display = 'none'; document.getElementById('1706.01295v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, version accepted by Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MSUHEP-17-007, MIT-CTP/4912 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 014505 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1702.00008">arXiv:1702.00008</a> <span> [<a href="https://arxiv.org/pdf/1702.00008">pdf</a>, <a href="https://arxiv.org/format/1702.00008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.95.094514">10.1103/PhysRevD.95.094514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pion Distribution Amplitude from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Jin%2C+L">Luchang Jin</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1702.00008v2-abstract-short" style="display: inline;"> We present the first lattice-QCD calculation of the pion distribution amplitude using the large- momentum effective field theory (LaMET) approach, which allows us to extract lightcone parton observables from a Euclidean lattice. The mass corrections needed to extract the pion distribution amplitude from this approach are calculated to all orders in $m^2_蟺 /P_z^2$. We also implement the Wilson- lin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00008v2-abstract-full').style.display = 'inline'; document.getElementById('1702.00008v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1702.00008v2-abstract-full" style="display: none;"> We present the first lattice-QCD calculation of the pion distribution amplitude using the large- momentum effective field theory (LaMET) approach, which allows us to extract lightcone parton observables from a Euclidean lattice. The mass corrections needed to extract the pion distribution amplitude from this approach are calculated to all orders in $m^2_蟺 /P_z^2$. We also implement the Wilson- line renormalization which is crucial to remove the power divergences in this approach, and find that it reduces the oscillation at the end points of the distribution amplitude. Our exploratory result at 310-MeV pion mass favors a single-hump form broader than the asymptotic form of the pion distribution amplitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1702.00008v2-abstract-full').style.display = 'none'; document.getElementById('1702.00008v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 95, 094514 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1609.08102">arXiv:1609.08102</a> <span> [<a href="https://arxiv.org/pdf/1609.08102">pdf</a>, <a href="https://arxiv.org/ps/1609.08102">ps</a>, <a href="https://arxiv.org/format/1609.08102">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2016.12.004">10.1016/j.nuclphysb.2016.12.004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved quasi parton distribution through Wilson line renormalization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1609.08102v1-abstract-short" style="display: inline;"> Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08102v1-abstract-full').style.display = 'inline'; document.getElementById('1609.08102v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1609.08102v1-abstract-full" style="display: none;"> Recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. We show that to all orders in the coupling expansion, the power divergence can be removed by a "mass" counterterm in the auxiliary $z$-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improved such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1609.08102v1-abstract-full').style.display = 'none'; document.getElementById('1609.08102v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.03065">arXiv:1607.03065</a> <span> [<a href="https://arxiv.org/pdf/1607.03065">pdf</a>, <a href="https://arxiv.org/format/1607.03065">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.262502">10.1103/PhysRevLett.119.262502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Short Range Correlations and the EMC Effect in Effective Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Detmold%2C+W">William Detmold</a>, <a href="/search/hep-lat?searchtype=author&query=Lynn%2C+J+E">Joel E. Lynn</a>, <a href="/search/hep-lat?searchtype=author&query=Schwenk%2C+A">Achim Schwenk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.03065v2-abstract-short" style="display: inline;"> We show that the empirical linear relation between the magnitude of the EMC effect in deep inelastic scattering on nuclei and the short range correlation scaling factor $a_2$ extracted from high-energy quasi-elastic scattering at $x\ge 1$ is a natural consequence of scale separation and derive the relationship using effective field theory. While the scaling factor $a_2$ is a ratio of nuclear matri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03065v2-abstract-full').style.display = 'inline'; document.getElementById('1607.03065v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.03065v2-abstract-full" style="display: none;"> We show that the empirical linear relation between the magnitude of the EMC effect in deep inelastic scattering on nuclei and the short range correlation scaling factor $a_2$ extracted from high-energy quasi-elastic scattering at $x\ge 1$ is a natural consequence of scale separation and derive the relationship using effective field theory. While the scaling factor $a_2$ is a ratio of nuclear matrix elements that individually depend on the calculational scheme, we show that the ratio is independent of this choice. We perform Green's function Monte Carlo calculations with both chiral and Argonne-Urbana potentials to verify this and determine the scaling factors for light nuclei. The resulting values for $^3$He and $^4$He are in good agreement with experimental values. We also present results for $^9$Be and $^{12}$C extracted from variational Monte Carlo calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.03065v2-abstract-full').style.display = 'none'; document.getElementById('1607.03065v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, including the Supplemental Material, PRL version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/4798 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 262502 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.06664">arXiv:1603.06664</a> <span> [<a href="https://arxiv.org/pdf/1603.06664">pdf</a>, <a href="https://arxiv.org/format/1603.06664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2016.07.033">10.1016/j.nuclphysb.2016.07.033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon Helicity and Transversity Parton Distributions from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a>, <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Zhang%2C+J">Jian-Hui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.06664v1-abstract-short" style="display: inline;"> We present the first lattice-QCD calculation of the isovector polarized parton distribution functions (both helicity and transversity) using the large-momentum effective field theory (LaMET) approach for direct Bjorken-$x$ dependence. We first review the detailed steps of the procedure in the unpolarized case, then generalize to the helicity and transversity cases. We also derive a new mass-correc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06664v1-abstract-full').style.display = 'inline'; document.getElementById('1603.06664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.06664v1-abstract-full" style="display: none;"> We present the first lattice-QCD calculation of the isovector polarized parton distribution functions (both helicity and transversity) using the large-momentum effective field theory (LaMET) approach for direct Bjorken-$x$ dependence. We first review the detailed steps of the procedure in the unpolarized case, then generalize to the helicity and transversity cases. We also derive a new mass-correction formulation for all three cases. We then compare the effects of each finite-momentum correction using lattice data calculated at $M_蟺\approx 310$ MeV. Finally, we discuss the implications of these results for the poorly known antiquark structure and predict the sea-flavor asymmetry in the transversely polarized nucleon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.06664v1-abstract-full').style.display = 'none'; document.getElementById('1603.06664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MIT-CTP/4776,INT-PUB-16-009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1507.00875">arXiv:1507.00875</a> <span> [<a href="https://arxiv.org/pdf/1507.00875">pdf</a>, <a href="https://arxiv.org/ps/1507.00875">ps</a>, <a href="https://arxiv.org/format/1507.00875">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.93.094019">10.1103/PhysRevD.93.094019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase diagram and thermal properties of strong-interaction matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Gao%2C+F">Fei Gao</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jing Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Xin Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+S">Si-Xue Qin</a>, <a href="/search/hep-lat?searchtype=author&query=Roberts%2C+C+D">Craig D. Roberts</a>, <a href="/search/hep-lat?searchtype=author&query=Schmidt%2C+S+M">Sebastian M. Schmidt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1507.00875v2-abstract-short" style="display: inline;"> We introduce a novel procedure for computing the (mu,T)-dependent pressure in continuum QCD; and therefrom obtain a complex phase diagram and predictions for thermal properties of the system, providing the in-medium behaviour of the trace anomaly, speed of sound, latent heat and heat capacity. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1507.00875v2-abstract-full" style="display: none;"> We introduce a novel procedure for computing the (mu,T)-dependent pressure in continuum QCD; and therefrom obtain a complex phase diagram and predictions for thermal properties of the system, providing the in-medium behaviour of the trace anomaly, speed of sound, latent heat and heat capacity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1507.00875v2-abstract-full').style.display = 'none'; document.getElementById('1507.00875v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Minor amendments in the version accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 93, 094019 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.01766">arXiv:1503.01766</a> <span> [<a href="https://arxiv.org/pdf/1503.01766">pdf</a>, <a href="https://arxiv.org/ps/1503.01766">ps</a>, <a href="https://arxiv.org/format/1503.01766">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2019.114892">10.1016/j.nuclphysb.2019.114892 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Coupling Expansion of the Entanglement Entropy of Yang-Mills Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Dai%2C+S">Shou-Huang Dai</a>, <a href="/search/hep-lat?searchtype=author&query=Pang%2C+J">Jin-Yi Pang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.01766v4-abstract-short" style="display: inline;"> We propose a novel prescription for calculating the entanglement entropy of the $SU(N)$ Yang-Mills gauge theories on the lattice under the strong coupling expansion in powers of $尾=2N/g^{2}$, where $g$ is the coupling constant. Using the replica method, our Lagrangian formalism maintains gauge invariance on the lattice. At $O(尾^{2})$ and $O(尾^{3})$, the entanglement entropy is solely contributed b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01766v4-abstract-full').style.display = 'inline'; document.getElementById('1503.01766v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.01766v4-abstract-full" style="display: none;"> We propose a novel prescription for calculating the entanglement entropy of the $SU(N)$ Yang-Mills gauge theories on the lattice under the strong coupling expansion in powers of $尾=2N/g^{2}$, where $g$ is the coupling constant. Using the replica method, our Lagrangian formalism maintains gauge invariance on the lattice. At $O(尾^{2})$ and $O(尾^{3})$, the entanglement entropy is solely contributed by the central plaquettes enclosing the conical singularity of the $n$-sheeted Riemann surface. The area law emerges naturally to the highest order $O(尾^{3})$ of our calculation. The leading $O(尾)$ term is negative, which could in principle be canceled by taking into account the "cosmological constant" living in interface of the two entangled subregions. This unknown cosmological constant resembles the ambiguity of edge modes in the Hamiltonian formalism. We further speculate this unknown cosmological constant can show up in the entanglement entropy of scalar and spinor field theories as well. Furthermore, it could play the role of a counterterm to absorb the ultraviolet divergence of entanglement entropy and make entanglement entropy a finite physical quantity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.01766v4-abstract-full').style.display = 'none'; document.getElementById('1503.01766v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21pp, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Phys.B 951 (2020) 114892 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.1738">arXiv:1411.1738</a> <span> [<a href="https://arxiv.org/pdf/1411.1738">pdf</a>, <a href="https://arxiv.org/format/1411.1738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Heat kernels on 2d Liouville quantum gravity: a numerical study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Bonik%2C+G">Grigory Bonik</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J+P">Joe P. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Teplyaev%2C+A">Alexander Teplyaev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.1738v1-abstract-short" style="display: inline;"> We numerically compute the heat kernel on a square lattice torus equipped with the measure corresponding to Liouville quantum gravity (LQG). From the on-diagonal heat kernel we verify that the spectral dimension of LQG is 2. Furthermore, when diffusion is started from a high point of the underlying Gaussian free field, our numerics indicates superdiffusive space-time scaling with respect to the Eu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1738v1-abstract-full').style.display = 'inline'; document.getElementById('1411.1738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.1738v1-abstract-full" style="display: none;"> We numerically compute the heat kernel on a square lattice torus equipped with the measure corresponding to Liouville quantum gravity (LQG). From the on-diagonal heat kernel we verify that the spectral dimension of LQG is 2. Furthermore, when diffusion is started from a high point of the underlying Gaussian free field, our numerics indicates superdiffusive space-time scaling with respect to the Euclidean metric in the small space-to-time regime. The implications of this result require further investigation, but seem to coincide with the notion that the Euclidean metric is not the right geodesic for characterizing the geometry of LQG. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.1738v1-abstract-full').style.display = 'none'; document.getElementById('1411.1738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Preliminary report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1402.1462">arXiv:1402.1462</a> <span> [<a href="https://arxiv.org/pdf/1402.1462">pdf</a>, <a href="https://arxiv.org/format/1402.1462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.91.054510">10.1103/PhysRevD.91.054510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flavor Structure of the Nucleon Sea from Lattice QCD </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Lin%2C+H">Huey-Wen Lin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Cohen%2C+S+D">Saul D. Cohen</a>, <a href="/search/hep-lat?searchtype=author&query=Ji%2C+X">Xiangdong Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1402.1462v2-abstract-short" style="display: inline;"> We present the first direct lattice calculation of the isovector sea-quark parton distributions using the formalism developed recently by one of the authors. We use $N_f=2+1+1$ HISQ lattice gauge ensembles (generated by MILC Collaboration) and clover valence fermions with pion mass 310 MeV. We are able to obtain the qualitative features of the nucleon sea flavor structure even at this large pion m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1462v2-abstract-full').style.display = 'inline'; document.getElementById('1402.1462v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1402.1462v2-abstract-full" style="display: none;"> We present the first direct lattice calculation of the isovector sea-quark parton distributions using the formalism developed recently by one of the authors. We use $N_f=2+1+1$ HISQ lattice gauge ensembles (generated by MILC Collaboration) and clover valence fermions with pion mass 310 MeV. We are able to obtain the qualitative features of the nucleon sea flavor structure even at this large pion mass: We observe violation of the Gottfried sum rule, indicating $\overline{d}(x) > \overline{u}(x)$; the helicity distribution obeys $螖\overline{u}(x) > 螖\overline{d}(x)$, which is consistent with the STAR data at large and small leptonic pseudorapidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1402.1462v2-abstract-full').style.display = 'none'; document.getElementById('1402.1462v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, version to appear at PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> NT@UW-14-03, INT-PUB-14-002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 91, 054510 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.5681">arXiv:1309.5681</a> <span> [<a href="https://arxiv.org/pdf/1309.5681">pdf</a>, <a href="https://arxiv.org/ps/1309.5681">ps</a>, <a href="https://arxiv.org/format/1309.5681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.032302">10.1103/PhysRevLett.112.032302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-lat?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/hep-lat?searchtype=author&query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/hep-lat?searchtype=author&query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-lat?searchtype=author&query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-lat?searchtype=author&query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/hep-lat?searchtype=author&query=Alford%2C+J">J. Alford</a>, <a href="/search/hep-lat?searchtype=author&query=Anson%2C+C+D">C. D. Anson</a>, <a href="/search/hep-lat?searchtype=author&query=Aparin%2C+A">A. Aparin</a>, <a href="/search/hep-lat?searchtype=author&query=Arkhipkin%2C+D">D. Arkhipkin</a>, <a href="/search/hep-lat?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-lat?searchtype=author&query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/hep-lat?searchtype=author&query=Balewski%2C+J">J. Balewski</a>, <a href="/search/hep-lat?searchtype=author&query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/hep-lat?searchtype=author&query=Barnovska%2C+Z">Z. Barnovska</a>, <a href="/search/hep-lat?searchtype=author&query=Beavis%2C+D+R">D. R. Beavis</a>, <a href="/search/hep-lat?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-lat?searchtype=author&query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-lat?searchtype=author&query=Bhati%2C+A+K">A. K. Bhati</a>, <a href="/search/hep-lat?searchtype=author&query=Bhattarai%2C+P">P. Bhattarai</a>, <a href="/search/hep-lat?searchtype=author&query=Bichsel%2C+H">H. Bichsel</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-lat?searchtype=author&query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-lat?searchtype=author&query=Bland%2C+L+C">L. C. Bland</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.5681v1-abstract-short" style="display: inline;"> We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (蟽), skewness (S), and kurtosis (魏) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5681v1-abstract-full').style.display = 'inline'; document.getElementById('1309.5681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.5681v1-abstract-full" style="display: none;"> We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (蟽), skewness (S), and kurtosis (魏) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S蟽and 魏蟽^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.5681v1-abstract-full').style.display = 'none'; document.getElementById('1309.5681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages and 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112 (2014) 032302 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1309.4963">arXiv:1309.4963</a> <span> [<a href="https://arxiv.org/pdf/1309.4963">pdf</a>, <a href="https://arxiv.org/ps/1309.4963">ps</a>, <a href="https://arxiv.org/format/1309.4963">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.89.013308">10.1103/PhysRevE.89.013308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tensor renormalization group study of classical XY model on the square lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Yu%2C+J+F">J. F. Yu</a>, <a href="/search/hep-lat?searchtype=author&query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/hep-lat?searchtype=author&query=Meurice%2C+Y">Y. Meurice</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yuzhi Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Denbleyker%2C+A">A. Denbleyker</a>, <a href="/search/hep-lat?searchtype=author&query=Zou%2C+H">Haiyuan Zou</a>, <a href="/search/hep-lat?searchtype=author&query=Qin%2C+M+P">M. P. Qin</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">J. Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Xiang%2C+T">T. Xiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1309.4963v1-abstract-short" style="display: inline;"> Using the tensor renormalization group method based on the higher-order singular value decom- position, we have studied the thermodynamic properties of the continuous XY model on the square lattice. The temperature dependence of the free energy, the internal energy and the specific heat agree with the Monte Carlo calculations. From the field dependence of the magnetic susceptibility, we find the K… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4963v1-abstract-full').style.display = 'inline'; document.getElementById('1309.4963v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1309.4963v1-abstract-full" style="display: none;"> Using the tensor renormalization group method based on the higher-order singular value decom- position, we have studied the thermodynamic properties of the continuous XY model on the square lattice. The temperature dependence of the free energy, the internal energy and the specific heat agree with the Monte Carlo calculations. From the field dependence of the magnetic susceptibility, we find the Kosterlitz-Thouless transition temperature to be 0.8921 \pm 0.0019, consistent with the Monte Carlo as well as the high temperature series expansion results. At the transition temperature, the critical exponent 未is estimated as 14.5, close to the analytic value by Kosterlitz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1309.4963v1-abstract-full').style.display = 'none'; document.getElementById('1309.4963v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 89, 013308 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2945">arXiv:1308.2945</a> <span> [<a href="https://arxiv.org/pdf/1308.2945">pdf</a>, <a href="https://arxiv.org/ps/1308.2945">ps</a>, <a href="https://arxiv.org/format/1308.2945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.88.085039">10.1103/PhysRevD.88.085039 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative Off-Diagonal Conductivities in a Weakly Coupled Quark Gluon Plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yen-Fu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Pu%2C+S">Shi Pu</a>, <a href="/search/hep-lat?searchtype=author&query=Song%2C+Y">Yu-Kun Song</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Q">Qun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2945v1-abstract-short" style="display: inline;"> We calculate the conductivity matrix of a weakly coupled quark-gluon plasma at the leading-log order. By setting all quark chemical potentials to be identical, the diagonal conductivities become degenerate and positive, while the off-diagonal ones become degenerate but negative (or zero when the chemical potential vanishes). This means a potential gradient of a certain fermion flavor can drive bac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2945v1-abstract-full').style.display = 'inline'; document.getElementById('1308.2945v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2945v1-abstract-full" style="display: none;"> We calculate the conductivity matrix of a weakly coupled quark-gluon plasma at the leading-log order. By setting all quark chemical potentials to be identical, the diagonal conductivities become degenerate and positive, while the off-diagonal ones become degenerate but negative (or zero when the chemical potential vanishes). This means a potential gradient of a certain fermion flavor can drive backward currents of other flavors. A simple explanation is provided for this seemingly counter intuitive phenomenon. It is speculated that this phenomenon is generic and most easily measured in cold atom experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2945v1-abstract-full').style.display = 'none'; document.getElementById('1308.2945v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 88, 085039 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.2760">arXiv:1308.2760</a> <span> [<a href="https://arxiv.org/pdf/1308.2760">pdf</a>, <a href="https://arxiv.org/ps/1308.2760">ps</a>, <a href="https://arxiv.org/format/1308.2760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.112.132001">10.1103/PhysRevLett.112.132001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a charged charmoniumlike structure in $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at $\sqrt{s}=4.26$GeV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=BESIII+collaboration"> BESIII collaboration</a>, <a href="/search/hep-lat?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/hep-lat?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/hep-lat?searchtype=author&query=Albayrak%2C+O">O. Albayrak</a>, <a href="/search/hep-lat?searchtype=author&query=Ambrose%2C+D+J">D. J. Ambrose</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+F+F">F. F. An</a>, <a href="/search/hep-lat?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/hep-lat?searchtype=author&query=Bai%2C+J+Z">J. Z. Bai</a>, <a href="/search/hep-lat?searchtype=author&query=Ferroli%2C+R+B">R. Baldini Ferroli</a>, <a href="/search/hep-lat?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/hep-lat?searchtype=author&query=Becker%2C+J">J. Becker</a>, <a href="/search/hep-lat?searchtype=author&query=Bennett%2C+J+V">J. V. Bennett</a>, <a href="/search/hep-lat?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/hep-lat?searchtype=author&query=Bian%2C+J+M">J. M. Bian</a>, <a href="/search/hep-lat?searchtype=author&query=Boger%2C+E">E. Boger</a>, <a href="/search/hep-lat?searchtype=author&query=Bondarenko%2C+O">O. Bondarenko</a>, <a href="/search/hep-lat?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/hep-lat?searchtype=author&query=Braun%2C+S">S. Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/hep-lat?searchtype=author&query=Bytev%2C+V">V. Bytev</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cai%2C+X">X. Cai</a>, <a href="/search/hep-lat?searchtype=author&query=Cakir%2C+O">O. Cakir</a>, <a href="/search/hep-lat?searchtype=author&query=Calcaterra%2C+A">A. Calcaterra</a>, <a href="/search/hep-lat?searchtype=author&query=Cao%2C+G+F">G. F. Cao</a> , et al. (336 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.2760v2-abstract-short" style="display: inline;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'inline'; document.getElementById('1308.2760v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.2760v2-abstract-full" style="display: none;"> We study the process $e^+e^- \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp$ at a center-of-mass energy of 4.26GeV using a 827pb$^{-1}$ data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be $(137\pm9\pm15)$pb. We observe a structure near the $(D^{*} \bar{D}^{*})^{\pm}$ threshold in the $蟺^\mp$ recoil mass spectrum, which we denote as the $Z^{\pm}_c(4025)$. The measured mass and width of the structure are $(4026.3\pm2.6\pm3.7)$MeV/c$^2$ and $(24.8\pm5.6\pm7.7)$MeV, respectively. Its production ratio $\frac{蟽(e^+e^-\to Z^{\pm}_c(4025)蟺^\mp \to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}{蟽(e^+e^-\to (D^{*} \bar{D}^{*})^{\pm} 蟺^\mp)}$ is determined to be $0.65\pm0.09\pm0.06$. The first uncertainties are statistical and the second are systematic. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.2760v2-abstract-full').style.display = 'none'; document.getElementById('1308.2760v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, 1 table; version accepted to be published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 112, 132001 (2014) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1306.0798">arXiv:1306.0798</a> <span> [<a href="https://arxiv.org/pdf/1306.0798">pdf</a>, <a href="https://arxiv.org/format/1306.0798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/41/5/055110">10.1088/0954-3899/41/5/055110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi gases with imaginary mass imbalance and the sign problem in Monte Carlo calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Roscher%2C+D">Dietrich Roscher</a>, <a href="/search/hep-lat?searchtype=author&query=Braun%2C+J">Jens Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Drut%2C+J+E">Joaqu铆n E. Drut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1306.0798v1-abstract-short" style="display: inline;"> Fermi gases in strongly coupled regimes, such as the unitary limit, are inherently challenging for many-body methods. Although much progress has been made with purely analytic methods, quantitative results require ab initio numerical approaches, such as Monte Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0798v1-abstract-full').style.display = 'inline'; document.getElementById('1306.0798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1306.0798v1-abstract-full" style="display: none;"> Fermi gases in strongly coupled regimes, such as the unitary limit, are inherently challenging for many-body methods. Although much progress has been made with purely analytic methods, quantitative results require ab initio numerical approaches, such as Monte Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. It was recently pointed out that the sign problem, for finite spin imbalance, can be circumvented by resorting to imaginary polarizations and analytic continuation. Large parts of the phase diagram spanned by temperature and polarization then become accessible to MC calculations. We propose to apply a similar strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. In particular, our analysis suggests that a detection of a (tri-)critical point in this phase diagram is possible. We also discuss calculations in the zero-temperature limit with our approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1306.0798v1-abstract-full').style.display = 'none'; document.getElementById('1306.0798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1212.5308">arXiv:1212.5308</a> <span> [<a href="https://arxiv.org/pdf/1212.5308">pdf</a>, <a href="https://arxiv.org/ps/1212.5308">ps</a>, <a href="https://arxiv.org/format/1212.5308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.87.036002">10.1103/PhysRevD.87.036002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yen-Fu Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Song%2C+Y">Yu-Kun Song</a>, <a href="/search/hep-lat?searchtype=author&query=Wang%2C+Q">Qun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1212.5308v1-abstract-short" style="display: inline;"> We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5308v1-abstract-full').style.display = 'inline'; document.getElementById('1212.5308v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1212.5308v1-abstract-full" style="display: none;"> We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1212.5308v1-abstract-full').style.display = 'none'; document.getElementById('1212.5308v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1209.3319">arXiv:1209.3319</a> <span> [<a href="https://arxiv.org/pdf/1209.3319">pdf</a>, <a href="https://arxiv.org/format/1209.3319">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.110.130404">10.1103/PhysRevLett.110.130404 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Imaginary polarization as a way to surmount the sign problem in ab initio calculations of spin-imbalanced Fermi gases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Braun%2C+J">Jens Braun</a>, <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Deng%2C+J">Jian Deng</a>, <a href="/search/hep-lat?searchtype=author&query=Drut%2C+J+E">Joaqu铆n E. Drut</a>, <a href="/search/hep-lat?searchtype=author&query=Friman%2C+B">Bengt Friman</a>, <a href="/search/hep-lat?searchtype=author&query=Ma%2C+C">Chen-Te Ma</a>, <a href="/search/hep-lat?searchtype=author&query=Tsai%2C+Y">Yu-Dai Tsai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1209.3319v2-abstract-short" style="display: inline;"> From ultracold atoms to quantum chromodynamics, reliable ab initio studies of strongly interacting fermions require numerical methods, typically in some form of quantum Monte Carlo calculation. Unfortunately, (non)relativistic systems at finite density (spin polarization) generally have a sign problem, such that those ab initio calculations are impractical. It is well-known, however, that in the r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.3319v2-abstract-full').style.display = 'inline'; document.getElementById('1209.3319v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1209.3319v2-abstract-full" style="display: none;"> From ultracold atoms to quantum chromodynamics, reliable ab initio studies of strongly interacting fermions require numerical methods, typically in some form of quantum Monte Carlo calculation. Unfortunately, (non)relativistic systems at finite density (spin polarization) generally have a sign problem, such that those ab initio calculations are impractical. It is well-known, however, that in the relativistic case imaginary chemical potentials solve this problem, assuming the data can be analytically continued to the real axis. Is this feasible for nonrelativistic systems? Are the interesting features of the phase diagram accessible in this manner? By introducing complex chemical potentials, for real total particle number and imaginary polarization, the sign problem is avoided in the nonrelativistic case. To give a first answer to the above questions, we perform a mean-field study of the finite-temperature phase diagram of spin-1/2 fermions with imaginary polarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1209.3319v2-abstract-full').style.display = 'none'; document.getElementById('1209.3319v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures; published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 110, 130404 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1012.0453">arXiv:1012.0453</a> <span> [<a href="https://arxiv.org/pdf/1012.0453">pdf</a>, <a href="https://arxiv.org/ps/1012.0453">ps</a>, <a href="https://arxiv.org/format/1012.0453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.86.054001">10.1103/PhysRevC.86.054001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Quark Mass Dependence of Two Nucleon Observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-lat?searchtype=author&query=Chen%2C+J">Jiunn-Wei Chen</a>, <a href="/search/hep-lat?searchtype=author&query=Lee%2C+T">Tze-Kei Lee</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+C+-">C. -P. Liu</a>, <a href="/search/hep-lat?searchtype=author&query=Liu%2C+Y">Yu-Sheng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1012.0453v1-abstract-short" style="display: inline;"> We study the implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths at unphysical light quark masses. It is found that with the help of nuclear effective field theory (NEFT), not only the quark mass dependence of the effective range parameters, but also the leading quark mass dependence of all the low energy deuteron matrix elements can be obtained. The quark m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0453v1-abstract-full').style.display = 'inline'; document.getElementById('1012.0453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1012.0453v1-abstract-full" style="display: none;"> We study the implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths at unphysical light quark masses. It is found that with the help of nuclear effective field theory (NEFT), not only the quark mass dependence of the effective range parameters, but also the leading quark mass dependence of all the low energy deuteron matrix elements can be obtained. The quark mass dependence of deuteron charge radius, magnetic moment, polarizability and the deuteron photodisintegration cross section are shown based on the NPLQCD lattice calculation of the scattering lengths at 354 MeV pion mass and the NEFT power counting scheme of Beane, Kaplan and Vuorinen. Further improvement can be obtained by performing the lattice calculation at smaller quark masses. Our result can be used to constrain the time variation of isoscalar combination of u and d quark mass m_q, to help the anthropic principle study to find the m_q range which allows the existence of life, and to provide a weak test of the multiverse conjecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1012.0453v1-abstract-full').style.display = 'none'; document.getElementById('1012.0453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Chen%2C+J&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Chen%2C+J&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Chen%2C+J&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>