CINXE.COM
Search results for: cascade system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cascade system</title> <meta name="description" content="Search results for: cascade system"> <meta name="keywords" content="cascade system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cascade system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cascade system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17649</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cascade system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17649</span> Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanpop%20Saion">Kanpop Saion</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakreya%20Chitwong"> Sakreya Chitwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20with%20feed%20forward" title="cascade with feed forward">cascade with feed forward</a>, <a href="https://publications.waset.org/abstracts/search?q=boiler" title=" boiler"> boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=superheated%20steam%20temperature%20control" title=" superheated steam temperature control"> superheated steam temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20balance" title=" enthalpy balance"> enthalpy balance</a> </p> <a href="https://publications.waset.org/abstracts/55760/implemented-cascade-with-feed-forward-by-enthalpy-balance-superheated-steam-temperature-control-for-a-boiler-with-distributed-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17648</span> Performance Study of Cascade Refrigeration System Using Alternative Refrigerants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulshan%20Sachdeva">Gulshan Sachdeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Jain"> Vaibhav Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Kachhwaha"> S. S. Kachhwaha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cascade refrigeration systems employ series of single stage vapor compression units which are thermally coupled with evaporator/condenser cascades. Different refrigerants are used in each of the circuit depending on the optimum characteristics shown by the refrigerant for a particular application. In the present research study, a steady state thermodynamic model is developed which simulates the working of an actual cascade system. The model provides COP and all other system parameters like total compressor work, temperature, pressure, enthalpy and entropy at different state points. The working fluid in Low Temperature Circuit (LTC) is CO2 (R744) while ammonia (R717), propane (R290), propylene (R1270), R404A and R12 are the refrigerants in High Temperature Circuit (HTC). The performance curves of ammonia, propane, propylene, and R404A are compared with R12 to find its nearest substitute. Results show that ammonia is the best substitute of R12. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20system" title="cascade system">cascade system</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerants" title=" refrigerants"> refrigerants</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20model" title=" thermodynamic model"> thermodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20engineering" title=" production engineering"> production engineering</a> </p> <a href="https://publications.waset.org/abstracts/4923/performance-study-of-cascade-refrigeration-system-using-alternative-refrigerants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17647</span> Fractional-Order PI Controller Tuning Rules for Cascade Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Truong%20Nguyen%20Luan%20Vu">Truong Nguyen Luan Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Hieu%20Giang"> Le Hieu Giang</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Linh"> Le Linh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bode%E2%80%99s%20ideal%20transfer%20function" title="Bode’s ideal transfer function">Bode’s ideal transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%E2%80%93order%20proportional%20integral%20%28FOPI%29%20controller" title=" fractional–order proportional integral (FOPI) controller"> fractional–order proportional integral (FOPI) controller</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control%20system" title=" cascade control system"> cascade control system</a> </p> <a href="https://publications.waset.org/abstracts/48740/fractional-order-pi-controller-tuning-rules-for-cascade-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17646</span> Thermodynamic Analysis of Cascade Refrigeration System Using R12-R13, R290-R23 and R404A-23</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Tailor"> P. R. Tailor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Montreal protocol and Kyoto protocol underlined the need of substitution of CFC’s and HCFC’s due to their adverse impact on atmospheric ozone layer which protects earth from U.V rays. The CFCs have been entirely ruled out since 1995 and a long-term basis HCFCs must be replaced by 2020. All this events motivated HFC refrigerants which are harmless to ozone layer. In this paper thermodynamic analysis of cascade refrigeration system has been done using three different refrigerant pairs R13-R12, R290-R23, and R404A-R23. Effect of various operating parameters i.e evaporator temperature, condenser temperature, temperature difference in cascade condenser and low temperature cycle condenser temperature on performance parameters viz. COP, exergetic efficiency and refrigerant mass flow ratio have been studied. Thermodynamic analysis shows that out of three refrigerant pairs R12-R13, R290-R23 and R404A-R23 the COP of R290-R23 refrigerant pair is highest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20analysis" title="thermodynamic analysis">thermodynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title=" cascade refrigeration system"> cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=COP" title=" COP"> COP</a>, <a href="https://publications.waset.org/abstracts/search?q=exergetic%20efficiency" title=" exergetic efficiency"> exergetic efficiency</a> </p> <a href="https://publications.waset.org/abstracts/12727/thermodynamic-analysis-of-cascade-refrigeration-system-using-r12-r13-r290-r23-and-r404a-23" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17645</span> Multiphase Flow Model for 3D Numerical Model Using ANSYS for Flow over Stepped Cascade with End Sill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Hussien%20Abood"> Hanan Hussien Abood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stepped cascade has been utilized as a hydraulic structure for years. It has proven to be the least costly aeration system in replenishing dissolved oxygen. Numerical modeling of stepped cascade with end sill is very complicated and challenging because of the high roughness and velocity re circulation regions. Volume of fluid multiphase flow model (VOF) is used .The realizable k-ξ model is chosen to simulate turbulence. The computational results are compared with lab-scale stepped cascade data. The lab –scale model was constructed in the hydraulic laboratory, Al-Mustansiriya University, Iraq. The stepped cascade was 0.23 m wide and consisted of 3 steps each 0.2m high and 0.6 m long with variable end sill. The discharge was varied from 1 to 4 l/s. ANSYS has been employed to simulate the experimental data and their related results. This study shows that ANSYS is able to predict results almost the same as experimental findings in some regions of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title="stepped cascade weir">stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow%20model" title=" multiphase flow model"> multiphase flow model</a>, <a href="https://publications.waset.org/abstracts/search?q=ansys" title=" ansys"> ansys</a> </p> <a href="https://publications.waset.org/abstracts/30556/multiphase-flow-model-for-3d-numerical-model-using-ansys-for-flow-over-stepped-cascade-with-end-sill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17644</span> Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dao%20Phuong%20Nam">Dao Phuong Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Do%20Trong%20Tan"> Do Trong Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pham%20Tam%20Thanh"> Pham Tam Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Duy%20Tung"> Le Duy Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Hoang%20Anh"> Tran Hoang Anh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=H%20infinity" title=" H infinity"> H infinity</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-parametric%20programming" title=" multi-parametric programming"> multi-parametric programming</a>, <a href="https://publications.waset.org/abstracts/search?q=MPP" title=" MPP"> MPP</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles"> unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=UAVs" title=" UAVs"> UAVs</a> </p> <a href="https://publications.waset.org/abstracts/81434/genetic-algorithm-and-multi-parametric-programming-based-cascade-control-system-for-unmanned-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17643</span> Production of Ultra-Low Temperature by the Vapor Compression Refrigeration Cycles with Environment Friendly Working Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Frikha">Sameh Frikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salah%20Abid"> Mohamed Salah Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the performance of an integrated cascade (IC) refrigeration system which uses environment friendly zeotropic mixtures. Computational calculation has been carried out by varying pressure level at the evaporator and the condenser of the system. Effects of mass flow rate of the refrigerant on the coefficient of performance (COP) are presented. We show that the integrated cascade system produces ultra-low temperatures in the evaporator by using environment friendly zeotropic mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20performance" title="coefficient of performance">coefficient of performance</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20friendly%20zeotropic%20mixture" title=" environment friendly zeotropic mixture"> environment friendly zeotropic mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20cascade" title=" integrated cascade"> integrated cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20low%20temperature" title=" ultra low temperature"> ultra low temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=vapor%20compression%20refrigeration%20cycles" title=" vapor compression refrigeration cycles"> vapor compression refrigeration cycles</a> </p> <a href="https://publications.waset.org/abstracts/40244/production-of-ultra-low-temperature-by-the-vapor-compression-refrigeration-cycles-with-environment-friendly-working-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17642</span> Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuekun%20Chen">Yuekun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Sardahi"> Yousef Sardahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salam%20Hajjar"> Salam Hajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Greer"> Christopher Greer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-Loop%20control%20systems" title=" multi-Loop control systems"> multi-Loop control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multiobjective%20optimization" title=" multiobjective optimization"> multiobjective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a> </p> <a href="https://publications.waset.org/abstracts/113986/multi-objective-optimal-design-of-a-cascade-control-system-for-a-class-of-underactuated-mechanical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17641</span> Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaing%20Yadana%20Swe">Khaing Yadana Swe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillie%20Dewan"> Lillie Dewan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the cascade PID control is widely used to control the super-heating temperature (main steam temperature). As the main steam temperature has the characteristics of large inertia, large time-delay, and time varying, etc., conventional PID control strategy can not achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model-free%20adaptive%20control" title="model-free adaptive control">model-free adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title=" cascade control"> cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a> </p> <a href="https://publications.waset.org/abstracts/19926/application-of-model-free-adaptive-control-in-main-steam-temperature-system-of-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17640</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/12558/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17639</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/10978/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17638</span> Cascade Control for Pressure Calibration by Fieldbus Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chatchaval%20Pornpatkul">Chatchaval Pornpatkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wipawan%20Suksathid"> Wipawan Suksathid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is to study and control the pressure of the water inside the open tank using a cascade control with the communication in the process by fieldbus system for the pressure calibration. The plant model is to be used in experiments to control the level and flow process of the water by using Syscon program to create functions. We used to control by Intouch runtime program to create the graphic display on the screen. In this case we used PI control the level and the flow process of water in the open tank in the range of 0 – 10 L/m. The output signal of the level and the flow transmitter are the digital standard signal by fieldbus system. And all information displayed on the computer with the communication between the computer and plant model can be communication to each other through just one cable pair. And in this paper, the PI tuning, we used calculate by Ziegler-Nichols reaction curve method to control the plant model by PI controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=fieldbus%20system" title=" fieldbus system"> fieldbus system</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20calibration" title=" pressure calibration"> pressure calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=microelectronics%20systems" title=" microelectronics systems"> microelectronics systems</a> </p> <a href="https://publications.waset.org/abstracts/6419/cascade-control-for-pressure-calibration-by-fieldbus-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17637</span> Investigation of Cascade Loop Heat Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandy%20Putra">Nandy Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Atrialdipa%20Duanovsah"> Atrialdipa Duanovsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristofer%20Haliansyah"> Kristofer Haliansyah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 <sup>o</sup>C/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20loop%20heat%20pipe" title=" cascade loop heat pipe"> cascade loop heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20mesh" title=" screen mesh"> screen mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20Cu" title=" sintered Cu"> sintered Cu</a> </p> <a href="https://publications.waset.org/abstracts/30592/investigation-of-cascade-loop-heat-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17636</span> Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20El-Awad">M. M. El-Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20optimisation" title="thermodynamic optimisation">thermodynamic optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=excel" title=" excel"> excel</a>, <a href="https://publications.waset.org/abstracts/search?q=VBA" title=" VBA"> VBA</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title=" cascade refrigeration system"> cascade refrigeration system</a> </p> <a href="https://publications.waset.org/abstracts/4046/excel-vba-as-modelling-platform-for-thermodynamic-optimisation-of-an-r290r600a-cascade-refrigeration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17635</span> Analysis of Cascade Control Structure in Train Dynamic Braking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Moaveni">B. Moaveni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Morovati"> S. Morovati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20control" title="cascade control">cascade control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20braking%20system" title=" dynamic braking system"> dynamic braking system</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20traction%20motors" title=" DC traction motors"> DC traction motors</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20control" title=" slip control"> slip control</a> </p> <a href="https://publications.waset.org/abstracts/45361/analysis-of-cascade-control-structure-in-train-dynamic-braking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17634</span> Sliding Mode Controlled Quadratic Boost Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viji%20Vijayakumar">Viji Vijayakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Divya"> R. Divya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vivek"> A. Vivek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a quadratic boost converter which belongs to cascade boost family, controlled by sliding mode controller. In the cascade boost family, quadratic boost converter is the best trade-off when circuit complexity and modulator saturation is considered. Sliding mode control being a nonlinear control results in a robust and stable system when applied to switching converters which are inherently variable structured systems. The stability of this system is analyzed through Lyapunov’s approach. Analysis is done for load regulation, line regulation and step response of the system. Also these results are compared with that of PID controller based system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20converter" title="DC-DC converter">DC-DC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic%20boost%20converter" title=" quadratic boost converter"> quadratic boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20control" title=" PID control"> PID control</a> </p> <a href="https://publications.waset.org/abstracts/7140/sliding-mode-controlled-quadratic-boost-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">993</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17633</span> Analysis of Bank Characteristics in a Hydrogen Refueling Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Hyun%20Kim">Bo Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarng%20Woo%20Karng"> Sarng Woo Karng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In constructing a hydrogen refueling station, minimizing the volume and reducing the number of banks enable lessening the construction cost. This study aims at performing the dynamic simulation on 250 kg/day of a refueling station for light-duty vehicles. The primary compressor boosts hydrogen from a tube trailer of 250 to 480 bar and stores it in a medium-pressure bank. Then, additional compression of hydrogen from 480 to 900 bar is carried out and stored in a high-pressure bank. Economic analysis was conducted considering the amount of electricity consumed by compression corresponding to the volume and the number of banks (cascade system) in charging mode. NIST REFPROP was selected as the equation of state on the ASPEN HYSYS for thermodynamic analysis of the tube-trailer, the compressors, the chillers, and the banks. Compared to a single high-pressure bank system of 3000 L, the volume of the cascade high-pressure banks (bank1: 250 L and bank 2: 1850 L) was reduced by 30%, and the power consumption of the chiller for precooling was also decreased by 16%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light-duty%20vehicles" title="light-duty vehicles">light-duty vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title=" economic analysis"> economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20system" title=" cascade system"> cascade system</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20refueling%20station" title=" hydrogen refueling station"> hydrogen refueling station</a> </p> <a href="https://publications.waset.org/abstracts/158858/analysis-of-bank-characteristics-in-a-hydrogen-refueling-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17632</span> Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Katsoulas">Nikolaos Katsoulas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioannis%20Naounoulis"> Ioannis Naounoulis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Faliagka"> Sofia Faliagka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title="hydroponics">hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiencu" title=" water use efficiencu"> water use efficiencu</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20use%20efficiency" title=" nutrients use efficiency"> nutrients use efficiency</a> </p> <a href="https://publications.waset.org/abstracts/175832/drainage-management-in-a-cascade-hydroponic-system-combination-of-cucumber-and-melon-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17631</span> Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tathiana%20Yesenia%20Coy%20Mondrag%C3%B3n">Tathiana Yesenia Coy Mondragón</a>, <a href="https://publications.waset.org/abstracts/search?q=Jossitt%20William%20Vargas%20Cruz"> Jossitt William Vargas Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Leonardo%20Guti%C3%A9rrez%20G%C3%B3mez"> Cristian Leonardo Gutiérrez Gómez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CORSIKA" title="CORSIKA">CORSIKA</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20rays" title=" cosmic rays"> cosmic rays</a>, <a href="https://publications.waset.org/abstracts/search?q=eas" title=" eas"> eas</a>, <a href="https://publications.waset.org/abstracts/search?q=Colombia" title=" Colombia"> Colombia</a> </p> <a href="https://publications.waset.org/abstracts/163412/study-of-atmospheric-cascades-generated-by-primary-comic-rays-from-simulations-in-corsika-for-the-city-of-tunja-in-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17630</span> Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Masood%20Hussain">Syed Masood Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quzi-Z%20source%20inverter" title="Quzi-Z source inverter">Quzi-Z source inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=Photo%20voltaic%20power%20system" title=" Photo voltaic power system"> Photo voltaic power system</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20vector%20modulation" title=" space vector modulation"> space vector modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20multilevel%20inverter" title=" cascade multilevel inverter "> cascade multilevel inverter </a> </p> <a href="https://publications.waset.org/abstracts/35893/cascade-multilevel-inverter-based-grid-tie-single-phase-and-three-phase-photovoltaic-power-system-controlling-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17629</span> Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=toxic%20matter" title="toxic matter">toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=marginal%20water" title=" marginal water"> marginal water</a>, <a href="https://publications.waset.org/abstracts/search?q=trickling%20filter" title=" trickling filter"> trickling filter</a>, <a href="https://publications.waset.org/abstracts/search?q=stepped%20cascade%20weir" title=" stepped cascade weir"> stepped cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/32593/reduction-of-toxic-matter-from-marginal-water-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17628</span> Reduction of Toxic Matter from Marginal Water Treatment Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Tawfeeq%20Baqer"> Ali Mohammed Tawfeeq Baqer</a>, <a href="https://publications.waset.org/abstracts/search?q=Eitizaz%20Awad%20Jasim"> Eitizaz Awad Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the Environmental Hydraulic Laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marginal%20water" title="Marginal water ">Marginal water </a>, <a href="https://publications.waset.org/abstracts/search?q=Toxic%20matter" title="Toxic matter">Toxic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepped%20Cascade%20weir" title=" Stepped Cascade weir"> Stepped Cascade weir</a>, <a href="https://publications.waset.org/abstracts/search?q=limestone%20trickling%20filter" title=" limestone trickling filter"> limestone trickling filter</a> </p> <a href="https://publications.waset.org/abstracts/33447/reduction-of-toxic-matter-from-marginal-water-treatment-using-sludge-recycling-from-combination-of-stepped-cascade-weir-with-limestone-trickling-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17627</span> Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong%20Li">Rong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20D.%20Wirth"> Brian D. Wirth</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Liu"> Bing Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphite%20damage%20cascade" title="graphite damage cascade">graphite damage cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20morphology" title=" cascade morphology"> cascade morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20distribution" title=" cascade distribution"> cascade distribution</a> </p> <a href="https://publications.waset.org/abstracts/72796/molecular-dynamics-simulation-of-irradiation-induced-damage-cascades-in-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17626</span> Biosynthesis of L-Xylose from Xylitol Using a Dual Enzyme Cascade in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Angaw%20Tesfay">Mesfin Angaw Tesfay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-xylose is an important intermediate in the pharmaceutical industry, playing a key role in the production of various antiviral and anticancer drugs. Despite its significance, L-xylose is a rare and costly sugar with limited availability in nature. In recent years, enzymatic production methods have garnered considerable attention due to their benefits over conventional chemical synthesis. In this research, a dual enzyme cascade system was developed to synthesize L-xylose from an inexpensive substrate, xylitol. The study involved cloning and co-expressing two key genes: the L-fucose isomerase (L-fucI) gene from Escherichia coli K-12 and the xylitol-4-dehydrogenase (xdh) gene from Pantoea ananatis ATCC 43072 in Escherichia coli. The resulting recombinant cells, engineered with the PET28a-xdh/L-fucI vector, were able to effectively convert xylitol to L-xylose. The system showed optimal performance at 40°C and a pH of 10.0. Moreover, Zn²⁺ (7.5 mM) enhanced the catalytic activity by 1.34 times. This approach yielded 52.2 g/L of L-xylose from an initial 80 g/L xylitol concentration, with a 65% conversion efficiency and a productivity rate of 1.86. The study highlights a practical method for producing L-xylose from xylitol through a co-expression system carrying the L-fucI and xdh genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=l-fucose%20isomerase" title="l-fucose isomerase">l-fucose isomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol-4-dehydrogenase" title=" xylitol-4-dehydrogenase"> xylitol-4-dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=l-xylose" title=" l-xylose"> l-xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a>, <a href="https://publications.waset.org/abstracts/search?q=co-expression" title=" co-expression"> co-expression</a> </p> <a href="https://publications.waset.org/abstracts/192338/biosynthesis-of-l-xylose-from-xylitol-using-a-dual-enzyme-cascade-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17625</span> Characterization of Atmospheric Aerosols by Developing a Cascade Impactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sapan%20Bhatnagar">Sapan Bhatnagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micron size particles emitted from different sources and produced by combustion have serious negative effects on human health and environment. They can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Cascade impactor is used to collect the atmospheric particulates and by gravimetric analysis, their concentration in the atmosphere of different size ranges can be determined. Cascade impactors have been used for the classification of particles by aerodynamic size. They operate on the principle of inertial impaction. It consists of a number of stages each having an impaction plate and a nozzle. Collection plates are connected in series with smaller and smaller cutoff diameter. Air stream passes through the nozzle and the plates. Particles in the stream having large enough inertia impact upon the plate and smaller particles pass onto the next stage. By designing each successive stage with higher air stream velocity in the nozzle, smaller diameter particles will be collected at each stage. Particles too small to be impacted on the last collection plate will be collected on a backup filter. Impactor consists of 4 stages each made of steel, having its cut-off diameters less than 10 microns. Each stage is having collection plates, soaked with oil to prevent bounce and allows the impactor to function at high mass concentrations. Even after the plate is coated with particles, the incoming particle will still have a wet surface which significantly reduces particle bounce. The particles that are too small to be impacted on the last collection plate are then collected on a backup filter (microglass fiber filter), fibers provide larger surface area to which particles may adhere and voids in filter media aid in reducing particle re-entrainment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20diameter" title="aerodynamic diameter">aerodynamic diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade" title=" cascade"> cascade</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=particulates" title=" particulates"> particulates</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entrainment" title=" re-entrainment"> re-entrainment</a> </p> <a href="https://publications.waset.org/abstracts/30255/characterization-of-atmospheric-aerosols-by-developing-a-cascade-impactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17624</span> Reusability of Coimmobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20%C5%81ochowicz">Aleksandra Łochowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20%C5%9Awi%C4%99tochowska"> Daria Świętochowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Loredano%20Pollegioni"> Loredano Pollegioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazim%20Ocal"> Nazim Ocal</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Charmantray"> Franck Charmantray</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Hecquet"> Laurence Hecquet</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Szyma%C5%84ska"> Katarzyna Szymańska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multienzymatic cascade reactions are nowadays widely used in pharmaceutical, chemical and cosmetics industries to produce high valuable compounds. They can be carried out in two ways, step by step and one-pot. If two or more enzymes are in the same reaction vessel is necessary to work out the compromise to run the reaction in optimal conditions for each enzyme. So far most of the reports of multienzymatic cascades concern on usage of free enzymes. Unfortunately using free enzymes as catalysts of reactions accomplish high cost. What is more, free enzymes are soluble in solvents which makes reuse impossible. To overcome this obstacle enzymes can be immobilized what provides heterogeneity of biocatalyst that enables reuse and easy separation of the enzyme from solvents and reaction products. Usually, immobilization increase also the thermal and operational stability of enzyme. The advantages of using immobilized multienzymes are enhanced enzyme stability, improved cascade enzymatic activity via substrate channeling, and ease of recovery for reuse. The one-pot immobilized multienzymatic cascade can be carried out in mixed or coimmobilized type. When biocatalysts are coimmobilized on the same carrier the are in close contact to each other which increase the reaction rate and catalytic efficiency, and eliminate the lag time. However, in this type providing the optimal conditions both in the process of immobilization and cascade reaction for each enzyme is complicated. Herein, we examined immobilization of 3 enzymes: D-amino acid oxidase from Rhodotorula gracilis, commercially available catalase and transketolase from Geobacillus stearothermophilus. As a support we used silica monoliths with hierarchical structure of pores. Then we checked their stability and reusability in one-pot cascade of L-erythrulose and hydroxypuryvate acid synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysts" title="biocatalysts">biocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20immobilization" title=" enzyme immobilization"> enzyme immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=multienzymatic%20reaction" title=" multienzymatic reaction"> multienzymatic reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20carriers" title=" silica carriers"> silica carriers</a> </p> <a href="https://publications.waset.org/abstracts/152282/reusability-of-coimmobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17623</span> Comparative Analysis of Feature Extraction and Classification Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20Ujjwal">R. L. Ujjwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Jain"> Abhishek Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title="computer vision">computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20group" title=" age group"> age group</a>, <a href="https://publications.waset.org/abstracts/search?q=face%20detection" title=" face detection"> face detection</a> </p> <a href="https://publications.waset.org/abstracts/58670/comparative-analysis-of-feature-extraction-and-classification-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17622</span> Cascade Screening for Beta-Thalassemia in Pakistan: Relatives’ Experiences of a Decision Support Intervention in Routine Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shenaz%20Ahmed">Shenaz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Jafri"> Hussain Jafri</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Faran"> Muhammed Faran</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajeeha%20Naseer%20Ahmed"> Wajeeha Naseer Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20Rashid"> Yasmin Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmin%20Ehsan"> Yasmin Ehsan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shabnam%20Bashir"> Shabnam Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mushtaq%20Ahmed"> Mushtaq Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low uptake of cascade screening for βeta-Thalassaemia Major (β-TM) in the ‘Punjab Thalassaemia Prevention Project’ (PTPP) in Pakistan led to the development of a ‘decision support intervention for relatives’ (DeSIRe). This paper presents the experiences of relatives of children with β-TM of the DeSIRe following its use by PTPP field officers in routine clinical practice. Fifty-four semi-structured qualitative interviews were conducted (April to June 2021) with relatives in seven cities in the Punjab province (Lahore, Sheikhupura, Nankana Sahab, Kasur, Gujranwala, Multan, and Faisalabad). Thematic analysis shows that participants were satisfied with the content of the DeSIRe and its delivery by the field officers in a family meeting. They understood the main purpose of the DeSIRe was to improve their knowledge of β-TM and its inheritance, to enable them to make decisions about thalassemia carrier testing, particularly before marriage. While participants raised concerns about the stigma of testing positive, they believed the DeSIRe was an appropriate intervention, which supported relatives to make informed decisions. Our findings show the DeSIRe is appropriate for use by healthcare professionals in routine practice in a low-middle income country and has the potential to facilitate shared decision-making about cascade screening for thalassemia. Further research is needed to prove the efficacy of the DeSIRe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thalassemia" title="thalassemia">thalassemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20screening" title=" cascade screening"> cascade screening</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20support" title=" decision support"> decision support</a> </p> <a href="https://publications.waset.org/abstracts/141259/cascade-screening-for-beta-thalassemia-in-pakistan-relatives-experiences-of-a-decision-support-intervention-in-routine-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17621</span> Training of Future Computer Science Teachers Based on Machine Learning Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meruert%20Serik">Meruert Serik</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassipzhan%20Duisegaliyeva"> Nassipzhan Duisegaliyeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Danara%20Tleumagambetova"> Danara Tleumagambetova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/170539/training-of-future-computer-science-teachers-based-on-machine-learning-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17620</span> River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin">S. Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title="HEC-RAS">HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HMS" title=" HMS"> HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping%20stations" title=" pumping stations"> pumping stations</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20weirs" title=" cascade weirs "> cascade weirs </a> </p> <a href="https://publications.waset.org/abstracts/12884/river-analysis-system-model-for-proposed-weirs-at-downstream-of-large-dam-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=588">588</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=589">589</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cascade%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>