CINXE.COM

Search results for: wood density

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wood density</title> <meta name="description" content="Search results for: wood density"> <meta name="keywords" content="wood density"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wood density" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wood density"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3960</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wood density</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3960</span> Validation of the X-Ray Densitometry Method for Radial Density Pattern Determination of Acacia seyal var. seyal Tree Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanadi%20Mohamed%20Shawgi%20Gamal">Hanadi Mohamed Shawgi Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Claus%20Thomas%20Bues"> Claus Thomas Bues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood density is a variable influencing many of the technological and quality properties of wood. Understanding the pattern of wood density radial variation is important for its end-use. The X-ray technique, traditionally applied to softwood species to assess the wood quality properties, due to its simple and relatively uniform wood structure. On the other hand, very limited information is available about the validation of using this technique for hardwood species. The suitability of using the X-ray technique for the determination of hardwood density has a special significance in countries like Sudan, where only a few timbers are well known. This will not only save the time consumed by using the traditional methods, but it will also enhance the investigations of the great number of the lesser known species, the thing which will fill the huge cap of lake information of hardwood species growing in Sudan. The current study aimed to evaluate the validation of using the X-ray densitometry technique to determine the radial variation of wood density of Acacia seyal var. seyal. To this, a total of thirty trees were collected randomly from four states in Sudan. The wood density radial trend was determined using the basic density as well as density obtained by the X-ray densitometry method in order to assess the validation of X-ray technique in wood density radial variation determination. The results showed that the pattern of radial trend of density obtained by X-ray technique is very similar to that achieved by basic density. These results confirmed the validation of using the X-ray technique for Acacia seyal var. seyal density radial trend determination. It also promotes the suitability of using this method in other hardwood species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=x-ray%20densitometry" title="x-ray densitometry">x-ray densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20density" title=" wood density"> wood density</a>, <a href="https://publications.waset.org/abstracts/search?q=Acacia%20seyal%20var.%20seyal" title=" Acacia seyal var. seyal"> Acacia seyal var. seyal</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20variation" title=" radial variation"> radial variation</a> </p> <a href="https://publications.waset.org/abstracts/127038/validation-of-the-x-ray-densitometry-method-for-radial-density-pattern-determination-of-acacia-seyal-var-seyal-tree-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3959</span> Improving Fire Resistance of Wood and Wood-Based Composites and Fire Testing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadir%20Ayrilmis">Nadir Ayrilmis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood and wood-based panels are one of the oldest structural materials used in the construction industry due to their significant advantages such as good mechanical properties, low density, renewable material, low-cost, recycling, etc. However, they burn when exposed to a flame source or high temperatures. This is very important when the wood products are used as structural or hemi-structural materials in the construction industry, furniture industry, so on. For this reason, the fire resistance is demanded property for wood products. They can be impregnated with fire retardants to improve their fire resistance. The most used fire retardants, fire-retardant mechanism, and fire-testing systems, and national and international fire-durability classifications and standard requirements for fire-durability of wood and wood-based panels were given in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title="fire resistance">fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title=" cone calorimeter"> cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/130377/improving-fire-resistance-of-wood-and-wood-based-composites-and-fire-testing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3958</span> Assessment of Hygroscopic Characteristics of Hevea brasiliensis Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Tosin%20Aladejana">John Tosin Aladejana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood behave differently under different environmental conditions. The knowledge of the hygroscopic nature of wood becomes a key factor in selecting wood for use and required treatment. This study assessed the hygroscopic behaviour of Hevea brasiliensis (Rubber) wood. Void volume, volumetric swelling in the tangential, radial and longitudinal directions and volumetric shrinkage were used to assess the response of the wood when loosing or taking up moisture. Hevea brasiliensis wood samples cut into 20 × 20 × 60 mm taken longitudinally and transversely were used for the study and dried in the oven at 103 ± 2⁰C. The mean values for moisture content in green Hevea brasiliensis wood were 49.74 %, 51.14 % and 54.36 % for top, middle and bottom portion respectively while 51.77 %, 50.02 % and 53.45 % were recorded for outer, middle and inner portions respectively for the tree. The values obtained for volumetric shrinkage and swelling indicated that shrinkage and swelling were higher at the top part of H. brasiliensis. It was also observed that the longitudinal shrinkage was negligible while tangential direction showed the highest shrinkage among the wood direction. The values of the void volume obtained were 43.0 %, 39.0 % and 38.0 % at the top, middle and bottom respectively. The result obtained showed clarification on the wood density of hevea brasiliensis based on the position and portion of the wood species and the variation in moisture content, void volume, volumetric shrinkage and swelling were also revealed. This will provide information in the process of drying hevea brasiliensis wood to ensure better wood quality devoid of defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moisture%20content" title="moisture content">moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling" title=" swelling"> swelling</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20volume" title=" void volume"> void volume</a> </p> <a href="https://publications.waset.org/abstracts/78996/assessment-of-hygroscopic-characteristics-of-hevea-brasiliensis-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3957</span> Variations in Wood Traits across Major Gymnosperm and Angiosperm Tree Species and the Driving Factors in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meixia%20Zhang">Meixia Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chengjun%20Ji"> Chengjun Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxuan%20Han"> Wenxuan Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many wood traits are important functional attributes for tree species, connected with resource competition among species, community dynamics, and ecosystem functions. Large variations in these traits exist among taxonomic categories, but variation in these traits between gymnosperms and angiosperms is still poorly documented. This paper explores the systematic differences in 12 traits between the two tree categories and the potential effects of environmental factors and life form. Based on a database of wood traits for major gymnosperm and angiosperm tree species across China, the values of 12 wood traits and their driving factors in gymnosperms vs. angiosperms were compared. The results are summarized below: i) Means of wood traits were all significantly lower in gymnosperms than in angiosperms. ii) Air-dried density (ADD) and tangential shrinkage coefficient (TSC) reflect the basic information of wood traits for gymnosperms, while ADD and radial shrinkage coefficient (RSC) represent those for angiosperms, providing higher explanation power when used as the evaluation index of wood traits. iii) For both gymnosperm and angiosperm species, life form exhibits the largest explanation rate for large-scale spatial patterns of ADD, TSC (RSC), climatic factors the next, and edaphic factors have the least effect, suggesting that life form is the dominant factor controlling spatial patterns of wood traits. Variations in the magnitude and key traits between gymnosperms and angiosperms and the same dominant factors might indicate the evolutionary divergence and convergence in key functional traits among woody plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allometry" title="allometry">allometry</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20traits" title=" functional traits"> functional traits</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title=" phylogeny"> phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage%20coefficient" title=" shrinkage coefficient"> shrinkage coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20density" title=" wood density"> wood density</a> </p> <a href="https://publications.waset.org/abstracts/70653/variations-in-wood-traits-across-major-gymnosperm-and-angiosperm-tree-species-and-the-driving-factors-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70653.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3956</span> Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20N.%20Olimat">Abdullah N. Olimat</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20S.%20Awad"> Ahmad S. Awad</a>, <a href="https://publications.waset.org/abstracts/search?q=Faisal%20M.%20AL-Ghathian"> Faisal M. AL-Ghathian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m<sup>2</sup> is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extinction%20coefficient" title="extinction coefficient">extinction coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20density" title=" optical density"> optical density</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=visibility" title=" visibility"> visibility</a> </p> <a href="https://publications.waset.org/abstracts/74414/effect-of-fire-retardant-painting-product-on-smoke-optical-density-of-burning-natural-wood-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3955</span> Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Cochet">Y. Cochet</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Achim"> A. Achim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Flatman"> Tom Flatman</a>, <a href="https://publications.waset.org/abstracts/search?q=J-C.%20Domec"> J-C. Domec</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Og%C3%A9e"> J. Ogée</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Wingate"> L. Wingate</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20Oren"> Ram Oren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20density" title="wood density">wood density</a>, <a href="https://publications.waset.org/abstracts/search?q=Duke%20FACE%20%28free-air%20carbon%20dioxide%20enrichment%29" title=" Duke FACE (free-air carbon dioxide enrichment)"> Duke FACE (free-air carbon dioxide enrichment)</a>, <a href="https://publications.waset.org/abstracts/search?q=N%20fertilization" title=" N fertilization"> N fertilization</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20ring" title=" tree ring"> tree ring</a> </p> <a href="https://publications.waset.org/abstracts/67275/quantifying-the-impacts-of-elevated-co2-and-n-fertilization-on-wood-density-in-loblolly-pine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3954</span> Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Estelle%20Arbellay">Estelle Arbellay</a>, <a href="https://publications.waset.org/abstracts/search?q=Lori%20D.%20Daniels"> Lori D. Daniels</a>, <a href="https://publications.waset.org/abstracts/search?q=Shawn%20D.%20Mansfield"> Shawn D. Mansfield</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20S.%20Chang"> Alice S. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elemental%20analysis" title="elemental analysis">elemental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20quality%20analysis" title=" fibre quality analysis"> fibre quality analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lodgepole%20pine" title=" lodgepole pine"> lodgepole pine</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20properties" title=" wood properties"> wood properties</a>, <a href="https://publications.waset.org/abstracts/search?q=wounding" title=" wounding"> wounding</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20densitometry" title=" X-ray densitometry"> X-ray densitometry</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/29662/impact-of-insect-feeding-and-fire-heating-wounding-on-wood-properties-of-lodgepole-pine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3953</span> Study on Parallel Shear Stress of Cement-Wood Composites Using Pinus sp. and Eucalyptus sp. in natura and Treated with CCA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20D.%20S.%20Oliveira">Rodrigo D. S. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20David-Muzel"> Sarah David-Muzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Maristela%20Gava"> Maristela Gava</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20De%20Araujo"> Victor A. De Araujo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glaucia%20A.%20Prates"> Glaucia A. Prates</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Cortez-Barbosa"> Juliana Cortez-Barbosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improper disposal of treated wood waste is a problem of the timber sector, since this residue is toxic, due to the harmful characteristics of the preservative substances. An environmentally friendly alternative is the use of this waste for the production of cement-wood composites. The aim of this work was to study the possibility of using wood treated with CCA (Chromated Cooper Arsenate) in cement-wood. Specimens of Pinus sp. and Eucalyptus sp. were produced with wood raw in natura and treated with CCA. A test was performed to determine the parallel shear stress of samples after 14 days of drying, according to the Brazilian Standard NBR-7215/97. Based on the analyzed results it is concluded that the use of wood treated with CCA is not feasible in cement-wood production, because the composite samples of treated wood showed lower mechanical strength in shear stress than those with wood in natura. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title="waste recovery">waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20composites" title=" wood composites"> wood composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cement-wood" title=" cement-wood"> cement-wood</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20preservation" title=" wood preservation"> wood preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=chromated%20copper%20arsenate" title=" chromated copper arsenate"> chromated copper arsenate</a> </p> <a href="https://publications.waset.org/abstracts/13252/study-on-parallel-shear-stress-of-cement-wood-composites-using-pinus-sp-and-eucalyptus-sp-in-natura-and-treated-with-cca" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3952</span> The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nurrizka%20Ramadhan">Muhammad Nurrizka Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture" title=" furniture"> furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/54368/the-utilization-of-bamboo-for-wood-bamboo-composite-in-lieu-of-materials-furniture-case-study-of-furniture-industry-in-jepara-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3951</span> Single-Element Simulations of Wood Material in LS-DYNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%20Zuo%20Wang">Ren Zuo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to investigate the behavior of the wood structure, the non-linearity of wood material model in LS-DYNA is adopted. It is difficult and less efficient to conduct the experiment of the ancient wood structure, hence LS-DYNA software can be used to simulate nonlinear responses of ancient wood structure. In LS-DYNA software, there is material model called *MAT_WOOD or *MAT_143. This model is to simulate a single-element response of the wood subjected to tension and compression under the parallel and the perpendicular material directions. Comparing with the exact solution and numerical simulations results using LS-DYNA, it demonstrates the accuracy and the efficiency of the proposed simulation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LS-DYNA" title="LS-DYNA">LS-DYNA</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20structure" title=" wood structure"> wood structure</a>, <a href="https://publications.waset.org/abstracts/search?q=single-element%20simulations" title=" single-element simulations"> single-element simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=MAT_143" title=" MAT_143"> MAT_143</a> </p> <a href="https://publications.waset.org/abstracts/66392/single-element-simulations-of-wood-material-in-ls-dyna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">654</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3950</span> Analyzing the Efficiency of Several Gum Extraction Tapping Systems for Wood Apple Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20K.%20D%20Weerasekara">K. M. K. D Weerasekara</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M.%20K.%20M%20Rathnayake"> R. M. K. M Rathnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20U.%20Halwatura"> R. U. Halwatura</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Y.%20Jayasinghe"> G. Y. Jayasinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood apple (Limonia acidissima L.) trees are native to Sri Lanka and India. Wood apple gum is widely used in the food, coating, and pharmaceutical industries. Wood apple gum was a major component in ancient Sri Lankan coating technology as well. It is also used as a suspending agent in liquid syrups and food ingredients such as sauces, emulsifiers, and stabilizers. Industrial applications include adhesives for labeling and packaging, as well as paint binder. It is also used in the production of paper and cosmetics. Extraction of wood apple gum is an important step in ensuring maximum benefits for various uses. It is apparent that an abundance of untapped potential lies in wood apple gum if people are able to mass produce them. Hence, the current study uses a two-factor factorial design with two major variables and four replications to investigate the best gum-extracting tapping system for Wood apple gum. This study's findings will be useful to Wood apple cultivators, researchers, and gum-based industries alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20apple%20gum" title="wood apple gum">wood apple gum</a>, <a href="https://publications.waset.org/abstracts/search?q=limonia%20acidissima%20l." title=" limonia acidissima l."> limonia acidissima l.</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping" title=" tapping"> tapping</a>, <a href="https://publications.waset.org/abstracts/search?q=tapping%20cuts" title=" tapping cuts"> tapping cuts</a> </p> <a href="https://publications.waset.org/abstracts/174725/analyzing-the-efficiency-of-several-gum-extraction-tapping-systems-for-wood-apple-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3949</span> Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Keonwook%20Nam"> Keonwook Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Roh"> Young Hoon Roh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20waste" title="wood waste">wood waste</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%83PO%E2%82%84-acetone" title=" H₃PO₄-acetone"> H₃PO₄-acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title=" bioethanol"> bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation "> fermentation </a> </p> <a href="https://publications.waset.org/abstracts/84149/fermentation-of-wood-waste-by-treating-with-h3po4-acetone-for-bioethanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3948</span> Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martial%20Pouzet">Martial Pouzet</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Dubois"> Marc Dubois</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Charlet"> Karine Charlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexis%20B%C3%A9akou"> Alexis Béakou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption" title=" water absorption"> water absorption</a> </p> <a href="https://publications.waset.org/abstracts/72715/fluorination-renders-the-wood-surface-hydrophobic-without-any-loos-of-physical-and-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3947</span> Sustainable Wood Stains Derived From Natural Dyes for Green Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexis%20Dorado">Alexis Dorado</a>, <a href="https://publications.waset.org/abstracts/search?q=Aralyn%20Quintos"> Aralyn Quintos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=formulated%20wood%20stain%20%28FWS%29" title="formulated wood stain (FWS)">formulated wood stain (FWS)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20stains" title=" wood stains"> wood stains</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-friendly%20natural%20wood%20stain" title=" eco-friendly natural wood stain"> eco-friendly natural wood stain</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/171729/sustainable-wood-stains-derived-from-natural-dyes-for-green-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3946</span> Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adilah%20Shariff">Adilah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Radin%20Hakim"> Radin Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurhayati%20Abdullah"> Nurhayati Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20wood" title=" rubber wood"> rubber wood</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20pyrolysis" title=" slow pyrolysis"> slow pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/53243/rubber-wood-as-a-potential-biomass-feedstock-for-biochar-via-slow-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3945</span> Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kittiphop%20Promdee">Kittiphop Promdee</a>, <a href="https://publications.waset.org/abstracts/search?q=Somruedee%20Satitkune"> Somruedee Satitkune</a>, <a href="https://publications.waset.org/abstracts/search?q=Chakkrich%20Boonmee"> Chakkrich Boonmee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tharapong%20Vitidsant"> Tharapong Vitidsant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title="pyrolysis">pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20wood" title=" tropical wood"> tropical wood</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-oil" title=" bio-oil"> bio-oil</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20value" title=" heating value"> heating value</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/34906/conversion-of-tropical-wood-to-bio-oil-and-charcoal-by-using-the-process-of-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3944</span> Properties of Rigid Polyurethane Foam for Imitation Wood Blown by Distilled Water and Cyclopentane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratchanon%20Boonachathong">Ratchanon Boonachathong</a>, <a href="https://publications.waset.org/abstracts/search?q=Bordin%20Kaewnok"> Bordin Kaewnok</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Amornraksa"> Suksun Amornraksa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rigid polyurethane foam (RPUF) used for imitation wood is typically prepared by using 1-Dichloro-1-fluoroethane (HCFC-141b) as a blowing agent. However, this chemical is a hydrofluorocarbon which severely causes ozone depletion to the atmosphere. In this work, a more environmental-friendly RPUF was prepared by using distilled water and cyclopentane (CP) as alternative blowing agent. Several properties of the prepared RPUF were investigated and measured such as density (kg/m³), surface hardness (shore D), and glass transition temperature (°C). It was found that when the amount of the blowing agents decreased, the foam density is increased as well as the surface hardness and glass transition temperature. The results showed that the proper amount of water and cylopentane blowing agent is around 0.3–1.2% and 0.5-1.3% respectively. And the new RPUF produced has a good potential to substitute for a conventional RPUF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blowing%20agent" title="blowing agent">blowing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclopentane%20co-blown" title=" cyclopentane co-blown"> cyclopentane co-blown</a>, <a href="https://publications.waset.org/abstracts/search?q=imitation%20wood" title=" imitation wood"> imitation wood</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20polyurethane%20foam" title=" rigid polyurethane foam"> rigid polyurethane foam</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20hardness" title=" surface hardness"> surface hardness</a> </p> <a href="https://publications.waset.org/abstracts/85853/properties-of-rigid-polyurethane-foam-for-imitation-wood-blown-by-distilled-water-and-cyclopentane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3943</span> Analysis of Flexural Behavior of Wood-Concrete Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Li">M. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20Thi"> V. D. Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khelifa"> M. Khelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20El%20Ganaoui"> M. El Ganaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load&ndash;deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20waste%20ash" title="wood waste ash">wood waste ash</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20tests" title=" bending tests"> bending tests</a> </p> <a href="https://publications.waset.org/abstracts/67172/analysis-of-flexural-behavior-of-wood-concrete-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3942</span> Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr-Robert%20Lazik">Piotr-Robert Lazik</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Garrecht"> Harald Garrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO<sub>2</sub> in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wood%20ashes" title="wood ashes">wood ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ashes" title=" fly ashes"> fly ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20filter" title=" electric filter"> electric filter</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20technology" title=" concrete technology"> concrete technology</a> </p> <a href="https://publications.waset.org/abstracts/117423/wood-ashes-from-electrostatic-filter-as-a-replacement-for-the-fly-ashes-in-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3941</span> Durability of Cement Bonded Particleboards Produced from Terminalia superba and Gmelina arborea against Subterranean Termite Attack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amos%20Olajide%20Oluyege">Amos Olajide Oluyege</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Uchechukwu%20Opara"> Emmanuel Uchechukwu Opara</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunday%20Adeniyi%20Adedutan"> Sunday Adeniyi Adedutan</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Adeola%20%20Fuwape"> Joseph Adeola Fuwape</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to determine the durability of wood-cement particleboards when exposed to attack by subterranean termites, Macrotermes subhylinus. The boards were made from Terminalia superba and Gmelina arborea wood sawdust at nominal board densities (BD) of 1000, 900, and 800 kg/m³ using wood-cement mixing ratios (MR) of 3:1, 2.5:1, 2:1, and 1:1. Above ground durability tests against termite attack were carried out according to ASTM D 2017 for 14 weeks. Results of visual assessment of the wood cement particleboards show that all the board samples had a visual rating that was not less than 7 (i.e., moderate attack) for both species irrespective of the MR and BD. T. superba boards were found to have higher resistance to termite attack compared to their G. arborea counterparts. The mean values for weight loss following exposure ranged from 1.93 to 6.13% and 3.24 to 12.44%. Analysis of variance (ANOVA) results of the weight loss assessment revealed a significant (p < 0.05) effect of species and mixing ratio on the weight loss of the boards due to termite attack with F(₁,₇₂) = 92.890 and P = 0.000 and F(₃,₇₂) = 8.318 and p = 0.000, while board density did not have any significant effect (p > 0.05) with F (₂,₇₂) = 1.307 and p = 0.277. Thus, boards made from a higher mixing ratio had better resistance against termite attacks. Thus, it can be concluded that the durability of cement-bonded particleboards when exposed to subterranean termite attack is not only dependent on the quality of the wood raw material (species) but also on the enhanced protection imparted by the cement matrix; the protection increased with increase in cement/wood mixing ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement-bonded%20particleboard" title="cement-bonded particleboard">cement-bonded particleboard</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20ratio" title=" mixing ratio"> mixing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=board%20density" title=" board density"> board density</a>, <a href="https://publications.waset.org/abstracts/search?q=Gmelina%20arborea" title=" Gmelina arborea"> Gmelina arborea</a>, <a href="https://publications.waset.org/abstracts/search?q=Terminalia%20superba" title=" Terminalia superba"> Terminalia superba</a> </p> <a href="https://publications.waset.org/abstracts/134957/durability-of-cement-bonded-particleboards-produced-from-terminalia-superba-and-gmelina-arborea-against-subterranean-termite-attack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3940</span> The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Altin">Mustafa Altin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Fahriye%20Pehlivan"> Gamze Fahriye Pehlivan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiye%20Didem%20Boztepe%20Erkis"> Sadiye Didem Boztepe Erkis</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakir%20Tasdemir"> Sakir Tasdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevda%20Altin"> Sevda Altin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20of%20wood%20against%20pressure" title="resistance of wood against pressure">resistance of wood against pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20of%20wood" title=" species of wood"> species of wood</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20analysis" title=" variance analysis"> variance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20coating" title=" wood coating"> wood coating</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20fire%20safety" title=" wood fire safety"> wood fire safety</a> </p> <a href="https://publications.waset.org/abstracts/19264/the-experimental-and-statistical-analysis-of-the-wood-strength-against-pressure-according-to-different-wood-types-sizes-and-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3939</span> Composite Panels from Under-Utilized Wood and Agricultural Fiber Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salim%20Hiziroglu">Salim Hiziroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw, jute, coconut fiber, oil palm, bagasse and bamboo are some of agricultural resources that can be used to produce different types of value-added composite panels including particleboard and medium density fiberboard (MDF). Invasive species such as Eastern red cedar in South Western states in the USA would also be considered as viable raw material to manufacture above products. The main objective of this study was to investigate both physical and mechanical properties of both structural and non-structural panels manufactured from underutilized and agricultural species. Eastern red cedar, bamboo and rice straw were used to manufacture experimental panels. Properties of such samples including bending, internal bond strength, thickness swelling, density profiles and surface roughness were evaluated. Panels made 100% bamboo had the best properties among the other samples. Having rice straw in particleboard and medium density fiberboard panels reduced overall properties of the samples. Manufacturing interior sandwich type of panels having fibers on the face layers while particle of the same type of materials in the core improved their surface quality. Based on the findings of this work such species could have potential to be used as raw material to manufacture value-added panels with accepted properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20panels" title="composite panels">composite panels</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20and%20non-wood%20fibers" title=" wood and non-wood fibers"> wood and non-wood fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a> </p> <a href="https://publications.waset.org/abstracts/8849/composite-panels-from-under-utilized-wood-and-agricultural-fiber-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3938</span> Chromium Adsorption by Modified Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Domingos">I. Domingos</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Esteves"> B. Esteves</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Figueirinha"> A. Figueirinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADsa%20P.%20Cruz-Lopes"> Luísa P. Cruz-Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ferreira"> J. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Pereira"> H. Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20modification" title=" wood modification"> wood modification</a> </p> <a href="https://publications.waset.org/abstracts/11132/chromium-adsorption-by-modified-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3937</span> Biotechonomy System Dynamics Modelling: Sustainability of Pellet Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andra%20Blumberga">Andra Blumberga</a>, <a href="https://publications.waset.org/abstracts/search?q=Armands%20Gravelsins"> Armands Gravelsins</a>, <a href="https://publications.waset.org/abstracts/search?q=Haralds%20Vigants"> Haralds Vigants</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagnija%20Blumberga"> Dagnija Blumberga </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discovers biotechonomy development analysis by use of system dynamics modelling. The research is connected with investigations of biomass application for production of bioproducts with higher added value. The most popular bioresource is wood, and therefore, the main question today is about future development and eco-design of products. The paper emphasizes and evaluates energy sector which is open for use of wood logs, wood chips, wood pellets and so on. The main aim for this research study was to build a framework to analyse development perspectives for wood pellet production. To reach the goal, a system dynamics model of energy wood supplies, processing, and consumption is built. Production capacity, energy consumption, changes in energy and technology efficiency, required labour source, prices of wood, energy and labour are taken into account. Validation and verification tests with available data and information have been carried out and indicate that the model constitutes the dynamic hypothesis. It is found that the more is invested into pellets production, the higher the specific profit per production unit compared to wood logs and wood chips. As a result, wood chips production is decreasing dramatically and is replaced by wood pellets. The limiting factor for pellet industry growth is availability of wood sources. This is governed by felling limit set by the government based on sustainable forestry principles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title="bioenergy">bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechonomy" title=" biotechonomy"> biotechonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20dynamics%20modelling" title=" system dynamics modelling"> system dynamics modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20pellets" title=" wood pellets"> wood pellets</a> </p> <a href="https://publications.waset.org/abstracts/56293/biotechonomy-system-dynamics-modelling-sustainability-of-pellet-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3936</span> Wood Framing Roof Resistant Support for Hurricane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Hajyalikhani">P. Hajyalikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gilmore"> E. Gilmore</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Petty"> C. Petty</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Duron"> J. Duron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood framed construction is the most popular method of construction for residential buildings. The typical roof framing for wood-framed buildings is sloped and consists of several structural members, such as rafters, hips, and valleys that link to the ridge and ceiling joists. The most common type of wood framing used is platform framing, also known as stick framing. Failures of the wood framing structures are among the most common types of wind damage in densely populated regions. Wood-framed buildings are under uplift during tornadoes and hurricanes which cause the failure in the roof. The bracing long structure members such as hip and valley have a large impact on the resilience of wood-framed buildings. As a result, the common failures in wood-framed buildings are reviewed, and the critical support locations for lengthy hips and valleys with various slopes are analyzed and recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rafters" title="rafters">rafters</a>, <a href="https://publications.waset.org/abstracts/search?q=hips" title=" hips"> hips</a>, <a href="https://publications.waset.org/abstracts/search?q=valleys" title=" valleys"> valleys</a>, <a href="https://publications.waset.org/abstracts/search?q=hip" title=" hip"> hip</a>, <a href="https://publications.waset.org/abstracts/search?q=ceiling%20joist" title=" ceiling joist"> ceiling joist</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20failures" title=" roof failures"> roof failures</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20and%20commercial%20structures" title=" residential and commercial structures"> residential and commercial structures</a>, <a href="https://publications.waset.org/abstracts/search?q=hurricane" title=" hurricane"> hurricane</a>, <a href="https://publications.waset.org/abstracts/search?q=tornadoes" title=" tornadoes"> tornadoes</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20codes" title=" building codes"> building codes</a> </p> <a href="https://publications.waset.org/abstracts/183819/wood-framing-roof-resistant-support-for-hurricane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3935</span> Microstructure Characterization on Silicon Carbide Formation from Natural Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Leha%20Abdul%20Rahman">Noor Leha Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Koay%20Mei%20Hyie"> Koay Mei Hyie</a>, <a href="https://publications.waset.org/abstracts/search?q=Anizah%20Kalam"> Anizah Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20Elias"> Husna Elias</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wang%20Dung"> Teng Wang Dung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dark Red Meranti and Kapur, kinds of important type of wood in Malaysia were used as a precursor to fabricate porous silicon carbide. A carbon template is produced by pyrolysis at 850°C in an oxygen free atmosphere. The carbon template then further subjected to infiltration with silicon by silicon melt infiltration method. The infiltration process was carried out in tube furnace in argon flow at 1500°C, at two different holding time; 2 hours and 3 hours. Thermo gravimetric analysis was done to investigate the decomposition behavior of two species of plants. The resulting silicon carbide was characterized by XRD which was found the formation of silicon carbide and also excess silicon. The microstructure was characterized by scanning electron microscope (SEM) and the density was determined by the Archimedes method. An increase in holding time during infiltration will increased the density as well as formation of silicon carbide. Dark Red Meranti precursor is likely suitable for production of silicon carbide compared to Kapur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/30071/microstructure-characterization-on-silicon-carbide-formation-from-natural-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3934</span> Olive Seed Tannins as Bioadhesives for Manufacturing Wood-Based Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajith%20K.%20A.%20Gedara">Ajith K. A. Gedara</a>, <a href="https://publications.waset.org/abstracts/search?q=Iva%20Chianella"> Iva Chianella</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20L.%20Endrino"> Jose L. Endrino</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The olive seed is a by-product of the olive oil production industry. Biuret test and ferric chloride test revealed that water or alkali NaOH extractions of olive seed flour are rich in proteins and tannins. Both protein and tannins are well-known bio-based wood adhesives in the wood-based panel industry. In general, tannins-based adhesives show better mechanical and physical properties than protein wood adhesives. This paper explores different methods of extracting tannins from olive seed flour against the tannins yield and their applications as bio-based adhesives in wood-based panels. Once investigated, the physical and the mechanical properties of wood-based panels made using bio-adhesives based tannins extracted from olive seed flour revealed that the resulting products seemed to satisfy the Japanese Industrial Standards JIS A 5908:2015. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesives" title="bio-adhesives">bio-adhesives</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20seed%20flour" title=" olive seed flour"> olive seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=wood-based%20panels" title=" wood-based panels"> wood-based panels</a> </p> <a href="https://publications.waset.org/abstracts/137443/olive-seed-tannins-as-bioadhesives-for-manufacturing-wood-based-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3933</span> The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eliska%20Oberhofnerova">Eliska Oberhofnerova</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20Panek"> Milos Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=Stepan%20Hysek"> Stepan Hysek</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Lexa"> Martin Lexa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colour%20stability" title="colour stability">colour stability</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20and%20artificial%20weathering" title=" natural and artificial weathering"> natural and artificial weathering</a>, <a href="https://publications.waset.org/abstracts/search?q=spruce%20wood" title=" spruce wood"> spruce wood</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20coating" title=" transparent coating"> transparent coating</a> </p> <a href="https://publications.waset.org/abstracts/73590/the-effect-of-transparent-oil-wood-stain-on-the-colour-stability-of-spruce-wood-during-weathering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3932</span> Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abduselam%20Faris">Abduselam Faris</a>, <a href="https://publications.waset.org/abstracts/search?q=Rijalu%20Negash"> Rijalu Negash</a>, <a href="https://publications.waset.org/abstracts/search?q=Zera%20Kedir"> Zera Kedir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=value%20chain%20analysis" title="value chain analysis">value chain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20production" title=" wood production"> wood production</a>, <a href="https://publications.waset.org/abstracts/search?q=southwest%20Ethiopia" title=" southwest Ethiopia"> southwest Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=constraints%20and%20opportunities" title=" constraints and opportunities"> constraints and opportunities</a> </p> <a href="https://publications.waset.org/abstracts/150339/constraints-and-opportunities-of-wood-production-value-chain-evidence-from-southwest-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3931</span> Analysis of Green Wood Preservation Chemicals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aitor%20Barbero-L%C3%B3pez">Aitor Barbero-López</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Chibily"> Soumaya Chibily</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Scheepers"> Gerhard Scheepers</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Grahn"> Thomas Grahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Martti%20Ven%C3%A4l%C3%A4inen"> Martti Venäläinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Antti%20Haapala"> Antti Haapala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wood decay is addressed continuously within the wood industry through use and development of wood preservatives. The increasing awareness on the negative effects of many chemicals towards the environment is causing political restrictions in their use and creating more urgent need for research on green alternatives. This paper discusses some of the possible natural extracts for wood preserving applications and compares the analytical methods available for testing their behavior and efficiency against decay fungi.&nbsp;The results indicate that natural extracts have interesting chemical constituents that delay fungal growth but vary in efficiency depending on the chemical concentration and substrate used. Results also suggest that presence and redistribution of preservatives in wood during exposure trials can be assessed by spectral imaging methods although standardized methods are not available. This study concludes that, in addition to the many standard methods available, there is a need to develop new faster methods for screening potential preservative formulation while maintaining the comparability and relevance of results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytics" title="analytics">analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=methods" title=" methods"> methods</a>, <a href="https://publications.waset.org/abstracts/search?q=preservatives" title=" preservatives"> preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20decay" title=" wood decay"> wood decay</a> </p> <a href="https://publications.waset.org/abstracts/85085/analysis-of-green-wood-preservation-chemicals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wood%20density&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10