CINXE.COM

Search results for: ACSS2 Genes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ACSS2 Genes</title> <meta name="description" content="Search results for: ACSS2 Genes"> <meta name="keywords" content="ACSS2 Genes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ACSS2 Genes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ACSS2 Genes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 931</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ACSS2 Genes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">931</span> Expression of ACSS2 Genes in Peripheral Blood Mononuclear Cells of Patients with Alzheimer’s Disease </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bayram">Ali Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uz"> Burak Uz</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yi%C4%9Fiter"> Remzi Yiğiter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The impairment of lipid metabolism in the central nervous system has been suggested as a critical factor of Alzheimer’s disease (AD) pathogenesis. Homo sapiens acyl-coenyme A synthetase short-chain family member 2 (ACSS2) gene encodes the enzyme acetyl-Coenzyme A synthetase (AMP forming; AceCS) providing acetyl-coenzyme A (Ac-CoA) for various physiological processes, such as cholesterol and fatty acid synthesis, as well as the citric acid cycle. We investigated ACSS2, transcript variant 1 (ACSS2*1), mRNA levels in the peripheral blood mononuclear cells (PBMC) of patients with AD and compared them with the controls. The study group comprised 50 patients with the diagnosis of AD who have applied to Gaziantep University Faculty of Medicine, and Department of Neurology. 49 healthy individuals without any neurodegenerative disease are included as controls. ACSS2 mRNA expression in PBMC of AD/control patients was 0.495 (95% confidence interval: 0.410-0.598), p= .000000001902). Further studies are needed to better clarify this association. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title="Alzheimer’s disease">Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes" title=" ACSS2 Genes"> ACSS2 Genes</a>, <a href="https://publications.waset.org/abstracts/search?q=mRNA%20expression" title=" mRNA expression"> mRNA expression</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a> </p> <a href="https://publications.waset.org/abstracts/30063/expression-of-acss2-genes-in-peripheral-blood-mononuclear-cells-of-patients-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">930</span> Identifying Network Subgraph-Associated Essential Genes in Molecular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efendi%20Zaenudin">Efendi Zaenudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Huang"> Chien-Hung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network&rsquo;s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20molecular%20networks" title="biological molecular networks">biological molecular networks</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20genes" title=" essential genes"> essential genes</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20subgraphs" title=" network subgraphs"> network subgraphs</a> </p> <a href="https://publications.waset.org/abstracts/128285/identifying-network-subgraph-associated-essential-genes-in-molecular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">929</span> Detection of Viral-Plant Interaction Using Some Pathogenesis Related Protein Genes to Identify Resistant Genes against Potato LeafRoll Virus and Potato Virus Y in Egyptian Isolates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia.%20G.%20Aseel">Dalia. G. Aseel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Hafez"> E. E. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hammad"> S. M. Hammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viral RNAs of both potato leaf roll virus (PLRV) and potato virus Y (PVY) were extracted from infected potato leaves collected from different Egyptian regions. Differential Display Polymerase Chain Reaction (DD-PCR) using (Endogluconase, β-1,3-glucanases, Chitinase, Peroxidase and Polyphenol oxidase) primers (forward strand) for was performed. The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, a 58 up regulated and 19 down regulated genes were detected, while, 31 up regulated and 14 down regulated genes were observed in case of PVY. Based on the nucleotide sequencing, variable phylogenetic relationships were reported for the three sequenced genes coding for: Induced stolen tip protein, Disease resistance RPP-like protein and non-specific lipid-transfer protein. In a complementary approach, using the quantitative Real-time PCR, the expressions of PRs genes understudy were estimated in the infected leaves by PLRV and PVY of three potato cultivars (Spunta, Diamont and Cara). The infection with both viruses inhibited the expressions of the five PRs genes. On the contrary, infected leaves by PLRV or PVY elevated the expression of some defense genes. This interaction also may be enhanced and/or inhibited the expression of some genes responsible for the plant defense mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLRV" title="PLRV">PLRV</a>, <a href="https://publications.waset.org/abstracts/search?q=PVY" title=" PVY"> PVY</a>, <a href="https://publications.waset.org/abstracts/search?q=PR%20genes" title=" PR genes"> PR genes</a>, <a href="https://publications.waset.org/abstracts/search?q=DD-PCR" title=" DD-PCR"> DD-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=qRT-PCR" title=" qRT-PCR"> qRT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a> </p> <a href="https://publications.waset.org/abstracts/69117/detection-of-viral-plant-interaction-using-some-pathogenesis-related-protein-genes-to-identify-resistant-genes-against-potato-leafroll-virus-and-potato-virus-y-in-egyptian-isolates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">928</span> RNA-Seq Based Transcriptomic Analysis of Wheat Cultivars for Unveiling of Genomic Variations and Isolation of Drought Tolerant Genes for Genome Editing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghulam%20Muhammad%20Ali">Ghulam Muhammad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unveiling of genes involved in drought and root architecture using transcriptomic analyses remained fragmented for further improvement of wheat through genome editing. The purpose of this research endeavor was to unveil the variations in different genes implicated in drought tolerance and root architecture in wheat through RNA-seq data analysis. In this study seedlings of 8 days old, 6 cultivars of wheat namely, Batis, Blue Silver, Local White, UZ888, Chakwal 50 and Synthetic wheat S22 were subjected to transcriptomic analysis for root and shoot genes. Total of 12 RNA samples was sequenced by Illumina. Using updated wheat transcripts from Ensembl and IWGC references with 54,175 gene models, we found that 49,621 out of 54,175 (91.5%) genes are expressed at an RPKM of 0.1 or more (in at least 1 sample). The number of genes expressed was higher in Local White than Batis. Differentially expressed genes (DEG) were higher in Chakwal 50. Expression-based clustering indicated conserved function of DRO1and RPK1 between Arabidopsis and wheat. Dendrogram showed that Local White is sister to Chakwal 50 while Batis is closely related to Blue Silver. This study flaunts transcriptomic sequence variations in different cultivars that showed mutations in genes associated with drought that may directly contribute to drought tolerance. DRO1 and RPK1 genes were fetched/isolated for genome editing. These genes are being edited in wheat through CRISPR-Cas9 for yield enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transcriptomic" title="transcriptomic">transcriptomic</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20editing" title=" genome editing"> genome editing</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR-Cas9" title=" CRISPR-Cas9"> CRISPR-Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20enhancement" title=" yield enhancement"> yield enhancement</a> </p> <a href="https://publications.waset.org/abstracts/107535/rna-seq-based-transcriptomic-analysis-of-wheat-cultivars-for-unveiling-of-genomic-variations-and-isolation-of-drought-tolerant-genes-for-genome-editing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">927</span> hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen&#039;s Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Taghavi">Mahsa Taghavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tamoxifen" title="tamoxifen">tamoxifen</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics%20analysis" title=" bioinformatics analysis"> bioinformatics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EMT" title=" EMT"> EMT</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/149734/hsa-mir-1204-and-hsa-mir-639-prominent-role-in-tamoxifens-molecular-mechanisms-on-the-emt-phenomenon-in-breast-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">926</span> In silico Analysis of Differentially Expressed Genes in High-Grade Squamous Intraepithelial Lesion and Squamous Cell Carcinomas Stages of Cervical Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Agarwal">Rahul Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Singh"> Ashutosh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cervical cancer is one of the women related cancers which starts from the pre-cancerous cells and a fraction of women with pre-cancers of the cervix will develop cervical cancer. Cervical pre-cancers if treated in pre-invasive stage can prevent almost all true cervical squamous cell carcinoma. The present study investigates the genes and pathways that are involved in the progression of cervical cancer and are responsible in transition from pre-invasive stage to other advanced invasive stages. The study used GDS3292 microarray data to identify the stage specific genes in cervical cancer and further to generate the network of the significant genes. The microarray data GDS3292 consists of the expression profiling of 10 normal cervices, 7 HSILs and 21 SCCs samples. The study identifies 70 upregulated and 37 downregulated genes in HSIL stage while 95 upregulated and 60 downregulated genes in SCC stages. Biological process including cell communication, signal transduction are highly enriched in both HSIL and SCC stages of cervical cancer. Further, the ppi interaction of genes involved in HSIL and SCC stages helps in identifying the interacting partners. This work may lead to the identification of potential diagnostic biomarker which can be utilized for early stage detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervical%20cancer" title="cervical cancer">cervical cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=HSIL" title=" HSIL"> HSIL</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=SCC" title=" SCC"> SCC</a> </p> <a href="https://publications.waset.org/abstracts/72943/in-silico-analysis-of-differentially-expressed-genes-in-high-grade-squamous-intraepithelial-lesion-and-squamous-cell-carcinomas-stages-of-cervical-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">925</span> Suppression Subtractive Hybridization Technique for Identification of the Differentially Expressed Genes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tuhina-khatun">Tuhina-khatun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hanafi%20Musa"> Mohamed Hanafi Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rafii%20Yosup"> Mohd Rafii Yosup</a>, <a href="https://publications.waset.org/abstracts/search?q=Wong%20Mui%20Yun"> Wong Mui Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Aktar-uz-Zaman"> Aktar-uz-Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahbod%20Sahebi"> Mahbod Sahebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Suppression subtractive hybridization (SSH) method is valuable tool for identifying differentially regulated genes in disease specific or tissue specific genes important for cellular growth and differentiation. It is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. It is based primarily on a suppression polymerase chain reaction (PCR) technique and combines normalization and subtraction in a solitary procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNAs or genomic DNA fragments and simplifies analysis of the subtracted library. SSH technique is applicable to many comparative and functional genetic studies for the identification of disease, developmental, tissue specific, or other differentially expressed genes, as well as for the recovery of genomic DNA fragments distinguishing the samples under comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suppression%20subtractive%20hybridization" title="suppression subtractive hybridization">suppression subtractive hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20genes" title=" differentially expressed genes"> differentially expressed genes</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20specific%20genes" title=" disease specific genes"> disease specific genes</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20specific%20genes" title=" tissue specific genes"> tissue specific genes</a> </p> <a href="https://publications.waset.org/abstracts/36148/suppression-subtractive-hybridization-technique-for-identification-of-the-differentially-expressed-genes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">924</span> Virulence Genes of Salmonella typhimurium and Salmonella enteritidis Isolated from Milk and Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Rahimi">E. Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaigannia"> S. Shaigannia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salmonella typhimurium and Salmonella enteritidis are important infectious agents causing food poisoning and food-borne gastrointestinal diseases. This study was carried out in order to investigate the distribution of virulence genes and antimicrobial resistance properties of S. typhimurium and S. enteritidis isolated from ruminant milk and dairy products in Iran. Overall 360 raw and pasteurized milk and traditional and commercial dairy products were purchased from random selected supermarkets and retail stories of Isfahan province, Iran. Samples were cultured immediately and those found positive for Salmonella were analyzed for the presence of S. typhimurium, S. enteritidis and several putative genes using PCR. Totally, 13 (3.61%), 8 (2.22%), 1 (0.27%) and 4 (1.11%) samples were found to be contaminated with Salmonella spp., S. typhimurium, S. enteritidis and other species of Salmonella, respectively. PCR results showed that invA, rfbJ, fliC and spv were the detected virulence genes in S. typhimurium and S. enteritidis positive samples. To the authors’ knowledge, the present study is the first prevalence report of virulence genes of S. typhimurium and S. enteritidis isolated from ruminant milk and traditional and commercial dairy products in Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20typhimurium" title="Salmonella typhimurium">Salmonella typhimurium</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enteritidis" title=" Salmonella enteritidis"> Salmonella enteritidis</a>, <a href="https://publications.waset.org/abstracts/search?q=virulence%20genes" title=" virulence genes"> virulence genes</a>, <a href="https://publications.waset.org/abstracts/search?q=ruminant%20milk" title=" ruminant milk"> ruminant milk</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20products" title=" dairy products"> dairy products</a> </p> <a href="https://publications.waset.org/abstracts/21591/virulence-genes-of-salmonella-typhimurium-and-salmonella-enteritidis-isolated-from-milk-and-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">923</span> How OXA GENE Expression is Implicated in the Treatment Resistance and Poor Prognosis in Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naomi%20Seidu">Naomi Seidu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Poluyi"> Edward Poluyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chibuikem%20Ikwuegbuenyi"> Chibuikem Ikwuegbuenyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eghosa%20Morgan"> Eghosa Morgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current poor prognosis of glioblastoma has called for the need for an improvement in treatment methods in order to improve its survival rate. Despite the different interventions currently available for this tumor, the average survival is still only a few months. (12-15). The aim is to create a more favorable prognosis and have a reduction in the resistance to treatment currently being experienced, even with surgical interventions and chemotherapy. From the available literature, there is a relationship between the presence of HOX genes (Homeobox genes) and glioblastoma, which could be attributable to the increasing treatment resistance. Hence silencing these genes can be a key to improving survival rates of glioblastoma. A series of studies have highlighted the role that HOX genes play in glioblastoma prognosis. Promotion of human glioblastoma initiation, aggressiveness, and resistance to Temozolomide has been associated with HOXA9. The role of HOX gene expression in cancer stem cells should be studied as it could provide a means of designing CSC-targeted therapies, as CSCs play a part in the initiation and progression of solid tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GBM-%20%20glioblastoma" title="GBM- glioblastoma">GBM- glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=HOXA%20gene-%20homeobox%20genes%20cluster" title=" HOXA gene- homeobox genes cluster"> HOXA gene- homeobox genes cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=signaling%20pathways" title=" signaling pathways"> signaling pathways</a>, <a href="https://publications.waset.org/abstracts/search?q=temozolomide" title=" temozolomide"> temozolomide</a> </p> <a href="https://publications.waset.org/abstracts/153813/how-oxa-gene-expression-is-implicated-in-the-treatment-resistance-and-poor-prognosis-in-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">922</span> New Active Dioxin Response Element Sites in Regulatory Region of Human and Viral Genes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilya%20B.%20Tsyrlov">Ilya B. Tsyrlov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Y.%20Oshchepkov"> Dmitry Y. Oshchepkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational search for dioxin response elements (DREs) in genes of proteins comprising the Ah receptor (AhR) cytosolic core complex was performed by highly efficient tool SITECON. Eventually, the following number of new DREs in 5’flanking region was detected by SITECON: one in AHR gene, five in XAP2, eight in HSP90AA1, and three in HSP90AB1 genes. Numerous DREs found in genes of AhR and AhR cytosolic complex members would shed a light on potential mechanisms of expression, the stoichiometry of unliganded AhR core complex, and its degradation vs biosynthesis dynamics resulted from treatment of target cells with the AhR most potent ligand, 2,3,7,8-TCDD. With human viruses, reduced susceptibility to TCDD of geneencoding HIV-1 P247 was justified by the only potential DRE determined in gag gene encoding HIV-1 P24 protein, whereas the regulatory region of CMV genes encoding IE gp/UL37 has five potent DRE, 1.65 kb/UL36 – six DRE, pp65 and pp71 – each has seven DRE, and pp150 – ten DRE. Also, from six to eight DRE were determined with SITECON in the regulatory region of HSV-1 IE genes encoding tegument proteins, UL36 and UL37, and of UL19 gene encoding bindingglycoprotein C (gC). So, TCDD in the low picomolar range may activate in human cells AhR: Arnt transcription pathway that triggers CMV and HSV-1 reactivation by binding to numerous promoter DRE within immediate-early (IE) genes UL37 and UL36, thus committing virus to the lytic cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dioxin%20response%20elements" title="dioxin response elements">dioxin response elements</a>, <a href="https://publications.waset.org/abstracts/search?q=Ah%20receptor" title=" Ah receptor"> Ah receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=AhR%3A%20Arnt%20transcription%20pathway" title=" AhR: Arnt transcription pathway"> AhR: Arnt transcription pathway</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20and%20viral%20genes" title=" human and viral genes"> human and viral genes</a> </p> <a href="https://publications.waset.org/abstracts/150381/new-active-dioxin-response-element-sites-in-regulatory-region-of-human-and-viral-genes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">921</span> Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Raissy">M. Raissy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahrani"> M. Shahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follow: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20garvieae" title="Lactococcus garvieae">Lactococcus garvieae</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline%20resistance%20genes" title=" tetracycline resistance genes"> tetracycline resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20trout" title=" rainbow trout"> rainbow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance "> antimicrobial resistance </a> </p> <a href="https://publications.waset.org/abstracts/21002/detection-of-tetracycline-resistance-genes-in-lactococcus-garvieae-strains-isolated-from-rainbow-trout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">920</span> Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mohammad%20Amin%20Mousavi%20Sagharchi">Seyyed Mohammad Amin Mousavi Sagharchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mahmoudi%20Nasab"> Alireza Mahmoudi Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Bakker"> Tim Bakker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=isoniazid" title=" isoniazid"> isoniazid</a>, <a href="https://publications.waset.org/abstracts/search?q=rifampicin" title=" rifampicin"> rifampicin</a> </p> <a href="https://publications.waset.org/abstracts/165030/investigation-of-rifampicin-and-isoniazid-resistance-mutated-genes-in-mycobacterium-tuberculosis-isolated-from-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">919</span> Hsa-miR-192-5p, and Hsa-miR-129-5p Prominent Biomarkers in Regulation Glioblastoma Cancer Stem Cells Genes Microenvironment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Ahmadi">Rasha Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma is one of the most frequent brain malignancies, having a high mortality rate and limited survival in individuals with this malignancy. Despite different treatments and surgery, recurrence of glioblastoma cancer stem cells may arise as a subsequent tumor. For this reason, it is crucial to research the markers associated with glioblastoma stem cells and specifically their microenvironment. In this study, using bioinformatics analysis, we analyzed and nominated genes in the microenvironment pathways of glioblastoma stem cells. In this study, an appropriate database was selected for analysis by referring to the GEO database. This dataset comprised gene expression patterns in stem cells derived from glioblastoma patients. Gene clusters were divided as high and low expression. Enrichment databases such as Enrichr, STRING, and GEPIA were utilized to analyze the data appropriately. Finally, we extracted the potential genes 2700 high-expression and 1100 low-expression genes are implicated in the metabolic pathways of glioblastoma cancer progression. Cellular senescence, MAPK, TNF, hypoxia, zimosterol biosynthesis, and phosphatidylinositol metabolism pathways were substantially expressed and the metabolic pathways were downregulated. After assessing the association between protein networks, MSMP, SOX2, FGD4 ,and CNTNAP3 genes with high expression and DMKN and SBSN genes with low were selected. All of these genes were observed in the survival curve, with a survival of fewer than 10 percent over around 15 months. hsa-mir-192-5p, hsa-mir-129-5p, hsa-mir-215-5p, hsa-mir-335-5p, and hsa-mir-340-5p played key function in glioblastoma cancer stem cells microenviroments. We introduced critical genes through integrated and regular bioinformatics studies by assessing the amount of gene expression profile data that can play an important role in targeting genes involved in the energy and microenvironment of glioblastoma cancer stem cells. Have. This study indicated that hsa-mir-192-5p, and hsa-mir-129-5p are appropriate candidates for this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glioblastoma" title="Glioblastoma">Glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Cancer%20Stem%20Cells" title="Cancer Stem Cells">Cancer Stem Cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomarker%20Discovery" title="Biomarker Discovery">Biomarker Discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Gene%20Expression%20Profiles" title="Gene Expression Profiles">Gene Expression Profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=Bioinformatics%20Analysis" title="Bioinformatics Analysis">Bioinformatics Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumor%20Microenvironment" title="Tumor Microenvironment">Tumor Microenvironment</a> </p> <a href="https://publications.waset.org/abstracts/147739/hsa-mir-192-5p-and-hsa-mir-129-5p-prominent-biomarkers-in-regulation-glioblastoma-cancer-stem-cells-genes-microenvironment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">918</span> Detection of Transgenes in Cotton (Gossypium hirsutum L.) by using Biotechnology/Molecular Biological Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ali%20Shahid">Ahmad Ali Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=M%20Shakil%20Shaukat"> M Shakil Shaukat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture is the backbone of economy of Pakistan and Cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat against the developing resistance in the target insects and combating these challenges wholesomely, a novel combination of pyramided/stacked genes was conceptualized and later realized, through the means of biotechnology i.e., transformation of three genes namely, Cry1Ac, Cry2A, and EPSP synthase (glyphosate tolerant) genes in the locally cultivated cotton variety. The progenies of the transformed plants were successfully raised and screened under the tunnel conditions for two generations and the present study focused on the screening of plants which were confirmed for containing all of these three genes and their expressions. Initially, the screening was done through glyphosate spray assay and the plants which were healthy and showed no damage on leaves were selected after 07 days of spray. In the laboratory, the DNA of these plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty were confirmed positive for Cry1Ac gene and ten out of twenty were positive for Cry2A gene and all twenty were positive for presence of EPSP synthase gene. Then, the ten plant samples which were confirmed with presence of all three genes were subjected to expression analysis of these proteins through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the expression levels of the EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes in T3 generation of the triple gene transformed cotton. These plants may be subjected to T4 generation to develop a new stable variety in due course of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=cry%20genes" title=" cry genes"> cry genes</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/17266/detection-of-transgenes-in-cotton-gossypium-hirsutum-l-by-using-biotechnologymolecular-biological-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">917</span> Staphylococcal Enterotoxins Play an Important Role in Clinical Signs in Bovine Mastitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9fani%20T.%20A.%20Dantas">Stéfani T. A. Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20T.%20S.%20Takume"> Laura T. S. Takume</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20F.%20Rossi"> Bruna F. Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rika%20R.%20Bonsaglia"> Érika R. Bonsaglia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20G.%20Castilho"> Ivana G. Castilho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20C.%20F.%20Pantoja"> José C. F. Pantoja</a>, <a href="https://publications.waset.org/abstracts/search?q=Ary%20Fernandes%20J%C3%BAnior"> Ary Fernandes Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliano%20L.%20Gon%C3%A7alves"> Juliano L. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcos%20V.%20Santos"> Marcos V. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Rinaldo%20A.%20Mota"> Rinaldo A. Mota</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20L.%20M.%20Rall"> Vera L. M. Rall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Staphylococcus aureus is one of the main pathogens causing contagious bovine mastitis, being more frequently isolated from subclinical form, although the clinical form also occurs. Clinical mastitis cause visual signs, such as swelling, fever, hardening of the mammary gland, or any change in the characteristics of the milk. Considering the subclinical type, there are no visible signs in the animal nor changes in the milk. S. aureus has many important virulence factors for the establishment of its pathogenicity in animals, such as enterotoxins, which are also responsible for foodborne poisoning. Our objective is to perform a comparative analysis between 103 isolates of S. aureus, obtained from the milk of cows with clinical mastitis and 103 more, from subclinical type, in relation to the presence of these enterotoxins and verify if their presence plays an important role in the signs of illness. We will investigate all enterotoxins described till now, such as sea-see, seg-sez, sel26, sel 27, se01, and se02 (This study was approved by the Sao Paulo State University Animal Use Ethics Committee, No. 0136/2017). For the PCR assay, we used Illustra Bacteria Mini Spin Kit for bacterial DNA. At this moment, we have already tested sea-see, seg-ser, sew, and sex, and the results have already been submitted to Fisher Exact Probability Test or Chi-square Test. Considering the isolates obtained from clinical mastitis, the most frequent enterotoxins were selw (99%), selx (78%) and selh (50.5%), and sec, see, sej, sell, selp,and ser were absent. Among the subclinics, selw (82.5%) selm (15.5%) and selx (14.6%) were the most frequent, and sea-see, seg, sei-sel, sem-ser were absent. We have already observed statistically significant differences for seb, seg, seh, sei, selo, selu, selw and selx. Other interesting results were the low number of genes in each isolate from subclinical mastitis [0 genes: 14 (13.6%); 1 gene: 55 (53.4%); 2 genes: 33 (32%) or 3: 1 (0.97%)] compared to clinical isolates [1 gene: 5 (4.9%); 2 genes: 29 (28.1%); 3 genes: 38 (36.9%); 4 genes: 14 (13.6%); 5 genes: 5 (4.9%); 6 genes: 4 (3.9%); 7 genes: 5 (4.9%); 8 genes: 2 (1.9%) and 9 genes: 1 (1%)]. Based on these results, we can conclude that enterotoxins indeed play an important role in clinical signs in cattle with mastitis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mastitis" title="mastitis">mastitis</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20aureus" title=" S. aureus"> S. aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcal%20enterotoxin" title=" staphylococcal enterotoxin"> staphylococcal enterotoxin</a> </p> <a href="https://publications.waset.org/abstracts/159459/staphylococcal-enterotoxins-play-an-important-role-in-clinical-signs-in-bovine-mastitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">916</span> Genotypic Characterization of Gram-Positive Bacteria Isolated on Ornamental Animals Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Miranda">C. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Soares"> R. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Cunha"> S. Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Ferreira"> L. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Igrejas"> G. Igrejas</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Poeta"> P. Poeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different animal species, including ornamental animals, are reported as potential reservoirs of antibiotic resistance genes. Consequently, these resistances can be disseminated in the environment and transferred to humans. Moreover, multidrug-resistant bacteria reduce the efficacy of antibiotics, as the case of vancomycin-resistant enterococci. Enterococcus faecalis and E. faecium are described as the main nosocomial pathogens. In this line, the aim of this study was to characterize resistance and virulence genes of enterococci species isolated from samples of food supplied to ornamental animals during 2020. The 29 enterococci isolates (10 E. faecalis and 19 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB and ermC), tetracycline (tetL, tetM, tetK and tetO), quinupristin/dalfopristin (vatD and vatE), gentamicin (aac(6’)-aph(2’’)-Ia), chloramphenicol (catA), streptomycin (ant(6)-Ia) and vancomycin (vanA and vanB). The same isolates were also tested for 10 virulence factors genes (esp, ace, gelE, agg, fsr, cpd, cylA, cylB, cylM and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. The most prevalent resistance genes detected in both enterococci species were ermB (n=15, 52%), ermC (n=7, 24%), tetK (n=8, 28%) and vatE (n=4, 14%). Resistance genes for vancomycin were found in ten (34%) E. faecalis and ten (34%) E. faecium isolates. Only E. faecium isolates showed the presence of ermA (n=2, 7%), tetL (n=13, 45%) and ant(6)-Ia gene (n=4, 14%). A total of nine (31%) enterococci isolates were classified as multidrug-resistant bacteria (3 E. faecalis and 6 E. faecium). In three E. faecalis and one E. faecium were not detected resistance genes. The virulence genes detected in both species were agg (n=6, 21%) and cylLL (n=11, 38%). In general, each isolate showed only one of these virulence genes. Five E. faecalis and eleven E. faecium isolates were negative for all analyzed virulence genes. These preliminary results showed the presence of multidrug-resistant enterococci in food supplied to ornamental animals, in particular vancomycin-resistant enterococci. This genotypic characterization reinforces the relevance to public health in the control of antibiotic-resistant bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococci" title=" enterococci"> enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=feed" title=" feed"> feed</a>, <a href="https://publications.waset.org/abstracts/search?q=ornamental%20animals" title=" ornamental animals"> ornamental animals</a> </p> <a href="https://publications.waset.org/abstracts/140449/genotypic-characterization-of-gram-positive-bacteria-isolated-on-ornamental-animals-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">915</span> The Use of Bleomycin and Analogues to Probe the Chromatin Structure of Human Genes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20Murray">Vincent Murray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chromatin structure at the transcription start sites (TSSs) of genes is very important in the control of gene expression. In order for gene expression to occur, the chromatin structure at the TSS has to be altered so that the transcriptional machinery can be assembled and RNA transcripts can be produced. In particular, the nucleosome structure and positioning around the TSS has to be changed. Bleomycin is utilized as an anti-tumor agent to treat Hodgkin's lymphoma, squamous cell carcinoma, and testicular cancer. Bleomycin produces DNA damage in human cells and DNA strand breaks, especially double-strand breaks, are thought to be responsible for the cancer chemotherapeutic activity of bleomycin. Bleomycin is a large glycopeptide with molecular weight of approximately 1500 Daltons and hence its DNA strand cleavage activity can be utilized as a probe of chromatin structure. In this project, Illumina next-generation DNA sequencing technology was used to determine the position of DNA double-strand breaks at the TSSs of genes in intact cells. In this genome-wide study, it was found that bleomycin cleavage preferentially occurred at the TSSs of actively transcribed human genes in comparison with non-transcribed genes. There was a correlation between the level of enhanced bleomycin cleavage at TSSs and the degree of transcriptional activity. In addition, bleomycin was able to determine the position of nucleosomes at the TSSs of human genes. Bleomycin analogues were also utilized as probes of chromatin structure at the TSSs of human genes. In a similar manner to bleomycin, the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin preferentially cleaved at the TSSs of human genes. Interestingly this degree of enhanced TSS cleavage inversely correlated with the cytotoxicity (IC50 values) of BLM analogues. This indicated that the degree of cleavage by bleomycin analogues at the TSSs of human genes was very important in the cytotoxicity of bleomycin and analogues. It also provided a deeper insight into the mechanism of action of this cancer chemotherapeutic agent since actively transcribed genes were preferentially targeted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer%20activity" title="anti-cancer activity">anti-cancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatin%20structure" title=" chromatin structure"> chromatin structure</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20DNA%20sequencing" title=" next-generation DNA sequencing"> next-generation DNA sequencing</a> </p> <a href="https://publications.waset.org/abstracts/112137/the-use-of-bleomycin-and-analogues-to-probe-the-chromatin-structure-of-human-genes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">914</span> Study on Developmental and Pathogenesis Related Genes Expression Deregulation in Brassica compestris Infected with 16Sr-IX Associated Phytoplasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samina%20Jam%20Nazeer%20Ahmad">Samina Jam Nazeer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20%20Yasin"> Samia Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijaz%20Ahmad"> Ijaz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tahir"> Muhammad Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Jam%20Nazeer%20Ahmad"> Jam Nazeer Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoplasmas are phloem-inhibited plant pathogenic bacteria that are transferred by insect vectors. Among biotic factors, Phytoplasma infection induces abnormality influencing the physiology as well as morphology of plants. In 16Sr-IX group phytoplasma-infected brassica compestris, flower abnormalities have been associated with changes in the expression of floral development genes. To determine whether methylation was involved in down-regulation of flower development, the process of DNA methylation and Demethylation was investigated as a possible mechanism for regulation of floral gene expression in phytoplasma infected Brassica transmitted by Orosious orientalis vector by using RT-PCR, MSRE-PCR, Southern blotting, Bisulfite Sequencing, etc. Transcriptional expression of methylated genes was found to be globally down-regulated in plants infected with phytoplasma, but not severely in those infested by insect vectors and variation in expression was found in genes involved in methylation. These results also showed that genes particularly orthologous to Arabidopsis APETALA3 involved in petal formation and flower development was down-regulated severely in phytoplasma-infected brassica and with the fact that phytoplasma and insect induce variation in developmental gene expression. The DNA methylation status of flower developmental gene in phytoplasma infected plants with 5-azacytidine restored gene expression strongly suggesting that DNA methylation was involved in down-regulation of floral development genes in phytoplasma infected brassica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genes%20expression" title="genes expression">genes expression</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoplasma" title=" phytoplasma"> phytoplasma</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title=" DNA methylation"> DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20development" title=" flower development"> flower development</a> </p> <a href="https://publications.waset.org/abstracts/87401/study-on-developmental-and-pathogenesis-related-genes-expression-deregulation-in-brassica-compestris-infected-with-16sr-ix-associated-phytoplasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">913</span> Association of Antibiotics Resistance with Efflux Pumps Genes among Multidrug-Resistant Klebsiella pneumonia Recovered from Hospital Waste Water Effluents in Eastern Cape, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okafor%20Joan">Okafor Joan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nwodo%20Uchechukwu"> Nwodo Uchechukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen responsible for opportunistic and nosocomial infection. One of the most significant antibiotic resistance mechanisms in K. pneumoniae isolates is efflux pumps. Our current study identified efflux genes (AcrAB, OqxAB, MacAB, and TolC) and regulatory genes (RamR and RarA) in multidrug-resistant (MDR) K. pneumoniae isolated from hospital effluents and investigated their relationship with antibiotic resistance. The sum of 145 K. pneumoniae isolates was established by PCR and screened for antibiotic susceptibility. PCR detected efflux pump genes, and their link with antibiotic resistance was statistically examined. However, 120 (83%) of the confirmed isolated were multidrug-resistant, with the largest percentage of resistance to ampicillin (88.3%) and the weakest rate of resistance to imipenem (5.5%). Resistance to the other antibiotics ranged from 11% to 76.6%. Molecular distribution tests show that AcrA, AcrB, MacA, oqxB oqxA, TolC, MacB were detected in 96.7%, 85%, 76.7%, 70.8%, 55.8%, 39.1%, and 29.1% respectively. However, 14.3% of the isolates harboured all seven genes screened. Efflux pump system AcrAB (83.2%) was the most commonly detected in K. pneumonia isolated across all the antibiotics class-tested. In addition, the frequencies of RamR and RarA were 46.2% and 31.4%, respectively. AcrAB and OqxAB efflux pump genes were significantly associated with fluoroquinolone, beta-lactam, carbapenem, and tetracycline resistance (p<0.05). The high rate of efflux genes in this study demonstrated that this resistance mechanism is the dominant way in K. pneumoniae isolates. Appropriate treatment must be used to reduce and tackle the burden of resistant Klebsiella pneumonia in hospital wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumonia" title="Klebsiella pneumonia">Klebsiella pneumonia</a>, <a href="https://publications.waset.org/abstracts/search?q=efflux%20pumps" title=" efflux pumps"> efflux pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=regulatory%20genes" title=" regulatory genes"> regulatory genes</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug-resistant" title=" multidrug-resistant"> multidrug-resistant</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a> </p> <a href="https://publications.waset.org/abstracts/159759/association-of-antibiotics-resistance-with-efflux-pumps-genes-among-multidrug-resistant-klebsiella-pneumonia-recovered-from-hospital-waste-water-effluents-in-eastern-cape-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">912</span> Altered Gene Expression: Induction/Suppression of some Pathogenesis Related Protein Genes in an Egyptian Isolate of Potato Leafroll Virus (PLRV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20G.%20Aseel">Dalia G. Aseel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potato (Solanum tubersum, L.) has become one of the major vegetable crops in Egypt and all over the world. Potato leafroll virus(PLRV) was observed on potato plants collected from different governorates in Egypt. Three cultivars, Spunta, Diamont, and Cara, infected with PLRV were collected; RNA was extracted and subjected to Real-Time PCR using the coat protein gene primers. The results showed that the expression of the coat protein was 39.6-fold, 12.45-fold, and 47.43-fold, respectively, for Spunta, Diamont, and Cara cultivars. Differential Display Polymerase Chain Reaction (DD-PCR) using pathogenesis-related protein 1 (PR-1), β-1,3-glucanases (PR-2), chitinase (PR-3), peroxidase (POD), and polyphenol oxidase (PPO) forward primers for pathogenesis-related proteins (PR). The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, 58 up-regulated and 19 down-regulated genes were detected. Sequence analysis of the up-and down-regulated genes revealed that infected plants were observed in comparison with the healthy control. Sequence analysis of the up-regulated gene was performed, and the encoding sequence analysis showed that the obtained genes include: induced stolen tip protein. On the other hand, two down-regulated genes were identified: disease resistance RPP-like protein and non-specific lipid-transfer protein. In this study, the expressions of PR-1, PR-2, PR-3, POD, and PPO genes in the infected leaves of three potato cultivars were estimated by quantitative real-time PCR. We can conclude that the PLRV-infection of potato plants inhibited the expression of the five PR genes. On the contrary, infected leaves by PLRV elevated the expression of some defense genes. This interaction may also induce and/or suppress the expression of some genes responsible for the plant's defense mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLRV" title="PLRV">PLRV</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis-related%20proteins%20%28PRs%29" title=" pathogenesis-related proteins (PRs)"> pathogenesis-related proteins (PRs)</a>, <a href="https://publications.waset.org/abstracts/search?q=DD-PCR" title=" DD-PCR"> DD-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence" title=" sequence"> sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20PCR" title=" real-time PCR"> real-time PCR</a> </p> <a href="https://publications.waset.org/abstracts/158773/altered-gene-expression-inductionsuppression-of-some-pathogenesis-related-protein-genes-in-an-egyptian-isolate-of-potato-leafroll-virus-plrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">911</span> Identification and Characterization of Genes Expressed in Diseased Condition Silkworms (Bombyx mori): A Systematic Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Soni">Siddharth Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gourav%20Kumar%20Pandey"> Gourav Kumar Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Kumari"> Sneha Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dev%20Mani%20Pandey"> Dev Mani Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Koel%20Mukherjee"> Koel Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The silkworm Bombyx mori is a commercially important insect, but a major roadblock in silk production are silkworm diseases. Flacherie is one of the diseases of the silkworm, that affects the midgut of the 4th and 5th instar larvae and eventually makes them lethargic, stop feeding and finally result in their death. The concerned disease is a result of bacterial and viral infection and in some instances a combination of both. The present study aims to identify and study the expression level of genes in the flacherie condition. For the said work, total RNA was isolated from the infected larvae at their most probable infectious instar and cDNA was synthesized using Reverse Transcriptase PCR (RT-PCR). This cDNA was then used to amplify disease relalted genes whose expression levels were checked using quantitaive PCR (qPCR) using the double delta Ct method. Cry toxin receptors like APN and BtR-175, ROS mediator Dual Oxidase are few proteins whose genes were overexpressed. Interestingly, pattern recognition receptors (PRRs) C-type lectins' genes were found to be downregulated. The results explain about the strong expression of genes that can distinguish the concerned protein in the midgut of diseased silkworm and thereby aiding knowledge in the field of inhibitor designing research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bombyx%20mori" title="Bombyx mori">Bombyx mori</a>, <a href="https://publications.waset.org/abstracts/search?q=flacherie%20disease" title=" flacherie disease"> flacherie disease</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor%20designing" title=" inhibitor designing"> inhibitor designing</a>, <a href="https://publications.waset.org/abstracts/search?q=up%20and%20down%20regulation" title=" up and down regulation"> up and down regulation</a> </p> <a href="https://publications.waset.org/abstracts/64217/identification-and-characterization-of-genes-expressed-in-diseased-condition-silkworms-bombyx-mori-a-systematic-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">910</span> An Integrated Visualization Tool for Heat Map and Gene Ontology Graph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somyung%20Oh">Somyung Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghyeon%20Ha"> Jeonghyeon Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyungwon%20Lee"> Kyungwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sejong%20Oh"> Sejong Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microarray is a general scheme to find differentially expressed genes for target concept. The output is expressed by heat map, and biologists analyze related terms of gene ontology to find some characteristics of differentially expressed genes. In this paper, we propose integrated visualization tool for heat map and gene ontology graph. Previous two methods are used by static manner and separated way. Proposed visualization tool integrates them and users can interactively manage it. Users may easily find and confirm related terms of gene ontology for given differentially expressed genes. Proposed tool also visualize connections between genes on heat map and gene ontology graph. We expect biologists to find new meaningful topics by proposed tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20map" title="heat map">heat map</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20ontology" title=" gene ontology"> gene ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20expressed%20gene" title=" differentially expressed gene"> differentially expressed gene</a> </p> <a href="https://publications.waset.org/abstracts/49151/an-integrated-visualization-tool-for-heat-map-and-gene-ontology-graph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">909</span> Identification of Blood Biomarkers Unveiling Early Alzheimer&#039;s Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hediyeh%20Talebi">Hediyeh Talebi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shokoofeh%20Ghiam"> Shokoofeh Ghiam</a>, <a href="https://publications.waset.org/abstracts/search?q=Changiz%20Eslahchi"> Changiz Eslahchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alzheimer%27s%20disease" title="alzheimer&#039;s disease">alzheimer&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=single-cell%20RNA-seq" title=" single-cell RNA-seq"> single-cell RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20biomarkers" title=" blood biomarkers"> blood biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/179335/identification-of-blood-biomarkers-unveiling-early-alzheimers-disease-diagnosis-through-single-cell-rna-sequencing-data-and-autoencoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">908</span> Pathway and Differential Gene Expression Studies for Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Shukla">Ankita Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiratha%20Raj%20Singh"> Tiratha Raj Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) imposes serious mortality burden worldwide and it has been increasing for past consecutive years. Continuous efforts have been made so far to diagnose the disease condition and to identify the root cause for it. In this study, we performed the pathway level as well as the differential gene expression studies for CRC. We analyzed the gene expression profile GSE24514 from Gene Expression Omnibus (GEO) along with the gene pathways involved in the CRC. This analysis helps us to understand the behavior of the genes that have shown differential expression through their targeted pathways. Pathway analysis for the targeted genes covers the wider area which therefore decreases the possibility to miss the significant ones. This will prove to be beneficial to expose the ones that have not been given attention so far. Through this analysis, we attempt to understand the various neighboring genes that have close relationship to the targeted one and thus proved to be significantly controlling the CRC. It is anticipated that the identified hub and neighboring genes will provide new directions to look at the pathway level differently and will be crucial for the regulatory processes of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mismatch%20repair" title="mismatch repair">mismatch repair</a>, <a href="https://publications.waset.org/abstracts/search?q=microsatellite%20instability" title=" microsatellite instability"> microsatellite instability</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogenesis" title=" carcinogenesis"> carcinogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=morbidity" title=" morbidity"> morbidity</a> </p> <a href="https://publications.waset.org/abstracts/63300/pathway-and-differential-gene-expression-studies-for-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">907</span> The Phylogenetic Investigation of Candidate Genes Related to Type II Diabetes in Man and Other Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijoni%20Banerjee">Srijoni Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequences of some of the candidate genes (e.g., CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG) implicated in some of the complex disease, e.g. Type II diabetes in man has been compared with other species to investigate phylogenetic affinity. Based on mRNA sequence of these genes of 7 to 8 species, using bioinformatics tools Mega 5, Bioedit, Clustal W, distance matrix was obtained. Phylogenetic trees were obtained by NJ and UPGMA clustering methods. The results of the phylogenetic analyses show that of the species compared: Xenopus l., Danio r., Macaca m., Homo sapiens s., Rattus n., Mus m. and Gallus g., Bos taurus, both NJ and UPGMA clustering show close affinity between clustering of Homo sapiens s. (Man) with Rattus n. (Rat), Mus m. species for the candidate genes, except in case of Lipin1 gene. The results support the functional similarity of these genes in physiological and biochemical process involving man and mouse/rat. Therefore, in understanding the complex etiology and treatment of the complex disease mouse/rate model is the best laboratory choice for experimentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title="phylogeny">phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=candidate%20gene%20of%20type-2%20diabetes" title=" candidate gene of type-2 diabetes"> candidate gene of type-2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=CPE" title=" CPE"> CPE</a>, <a href="https://publications.waset.org/abstracts/search?q=CDKAL1" title=" CDKAL1"> CDKAL1</a>, <a href="https://publications.waset.org/abstracts/search?q=GCKR" title=" GCKR"> GCKR</a>, <a href="https://publications.waset.org/abstracts/search?q=HSD11B1" title=" HSD11B1"> HSD11B1</a>, <a href="https://publications.waset.org/abstracts/search?q=IGF2BP2" title=" IGF2BP2"> IGF2BP2</a>, <a href="https://publications.waset.org/abstracts/search?q=IRS1" title=" IRS1"> IRS1</a>, <a href="https://publications.waset.org/abstracts/search?q=LPIN1" title=" LPIN1"> LPIN1</a>, <a href="https://publications.waset.org/abstracts/search?q=PKLR" title=" PKLR"> PKLR</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF" title=" TNF"> TNF</a>, <a href="https://publications.waset.org/abstracts/search?q=PPARG" title=" PPARG"> PPARG</a> </p> <a href="https://publications.waset.org/abstracts/5222/the-phylogenetic-investigation-of-candidate-genes-related-to-type-ii-diabetes-in-man-and-other-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> Robustness Conditions for the Establishment of Stationary Patterns of Drosophila Segmentation Gene Expression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20M.%20Myasnikova">Ekaterina M. Myasnikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20A.%20Makashov"> Andrey A. Makashov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20V.%20Spirov"> Alexander V. Spirov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First manifestation of a segmentation pattern in the early Drosophila development is the formation of expression domains (along with the main embryo axis) of genes belonging to the trunk gene class. Highly variable expression of genes from gap family in early Drosophila embryo is strongly reduced by the start of gastrulation due to the gene cross-regulation. The dynamics of gene expression is described by a gene circuit model for a system of four gap genes. It is shown that for the formation of a steep and stationary border by the model it is necessary that there existed a nucleus (modeling point) in which the gene expression level is constant in time and hence is described by a stationary equation. All the rest genes expressed in this nucleus are in a dynamic equilibrium. The mechanism of border formation associated with the existence of a stationary nucleus is also confirmed by the experiment. An important advantage of this approach is that properties of the system in a stationary nucleus are described by algebraic equations and can be easily handled analytically. Thus we explicitly characterize the cross-regulation properties necessary for the robustness and formulate the conditions providing this effect through the properties of the initial input data. It is shown that our formally derived conditions are satisfied for the previously published model solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drosophila" title="drosophila">drosophila</a>, <a href="https://publications.waset.org/abstracts/search?q=gap%20genes" title=" gap genes"> gap genes</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-diffusion%20model" title=" reaction-diffusion model"> reaction-diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a> </p> <a href="https://publications.waset.org/abstracts/73794/robustness-conditions-for-the-establishment-of-stationary-patterns-of-drosophila-segmentation-gene-expression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Expression of Slit Diaphragm Genes of Chicken Embryo Mesonephros </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abdelsabour-Khalaf">Mohammed Abdelsabour-Khalaf</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Yusuf"> F. Yusuf </a>, <a href="https://publications.waset.org/abstracts/search?q=B%20Brand-Saberi"> B Brand-Saberi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Applications of nanotechnology nowadays extended to include a wide range of scientific areas such electron micrscopy and gene expression. The aim of the current study was to investigate the developmental expression pattern of genes involved in human glomerulo-nephropathies associated with massive proteinuria and podocyte differentiation using the chicken mesonephros as a model system. Method: We performed in situ hybridization using chicken specific mRNA probes for genes expressed in the early nephron and slit diaphragm genes. The probes used were cNeph1, cNeph2, cSim1, cLmx1b, and cAtoh8. Chicken embryos from Hamburger Hamilton developmental stage HH19 (E3) to HH 34 (E9) were used for the in situ hybridization (ISH). ISH was performed on whole mount embryos which were sectioned by vibratome. Results: Our result show that Neph1, Neph2, Sim1. Lmx1b and Atoh8 genes are dynamically expressed during nephron morphogenesis and Neph1 and Atoh8 are also specifically expressed in the podocytes during late stages of differentiation. Conclusion: We conclude from our results that the genes implicated in congenital and acquired glomerulo-nephropathies like Neph1 and Neph2 are dynamically expressed during mesonephros development pointing towards a role in the formation of the filtration barrier and the differentiation of the mesonephric podocytes. Thus the avian mesonephros could serve as a model to study human kidney diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mesonephros" title="mesonephros">mesonephros</a>, <a href="https://publications.waset.org/abstracts/search?q=chicken%20embryo" title=" chicken embryo"> chicken embryo</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=immunohistochemistry" title=" immunohistochemistry"> immunohistochemistry</a> </p> <a href="https://publications.waset.org/abstracts/17923/expression-of-slit-diaphragm-genes-of-chicken-embryo-mesonephros" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khin%20Thanda%20Win">Khin Thanda Win</a>, <a href="https://publications.waset.org/abstracts/search?q=Chunying%20Zhang"> Chunying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghyeob%20Lee"> Sanghyeob Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mildew%20resistance%20locus%20o%20%28Mlo%29" title="Mildew resistance locus o (Mlo)">Mildew resistance locus o (Mlo)</a>, <a href="https://publications.waset.org/abstracts/search?q=powdery%20mildew" title=" powdery mildew"> powdery mildew</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20relationship" title=" phylogenetic relationship"> phylogenetic relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20genes" title=" susceptibility genes"> susceptibility genes</a> </p> <a href="https://publications.waset.org/abstracts/75919/genome-wide-identification-and-characterization-of-mlo-family-genes-in-pumpkin-cucurbita-maxima-duch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Diversities, Antibiogram and Antibiotic Resistance Genes in Staphylococcus Species in Raw Meat from a Research Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Ayodeji%20Adegoke">Anthony Ayodeji Adegoke</a>, <a href="https://publications.waset.org/abstracts/search?q=Olayinka%20Ayobami%20Aiyegoro"> Olayinka Ayobami Aiyegoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Thor%20Axel%20Stenstrom"> Thor Axel Stenstrom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study to investigate the species diversities, antibiogram and antibiotic resistance genes in Staphylococcus species from raw meat and dairy products collected from an abattoir and a farm shop of a research institute in Irene, South Africa over a six-month period was conducted. Polymerase Chain Reaction was used to speciate the bacteria and to detect the presence and otherwise of resistance genes. Antibiotic susceptibility testing was performed by disk diffusion method on Mueller-Hinton agar according to the Clinical Laboratory Standards Institute standards. A total of twenty-six (26) antibiotics were used to determine the antibiotic susceptibility. S. xylosus was the predominant isolate with 30% total occurrence, followed by S. epidermis, S. aureus, S. saprophyticus and S. haemolyticus with 25%, 15%, 15%, and 10% abundance respectively. The isolates were resistant to ceftezidime, gentamycin, nalidixic acid, nortrafuration, ampicillin, penicillin, oxytetracycline, tetracycline, doxycycline, clindamycin and lincomycin. mecA genes was detected among the methicillin resistant Staphylococcus species (MRSS) but no vancomycin resistance genes (van A and van B) were detected in these isolates. The presence of MRSS and multidrug resistant Staphylococcus species in meat affirms the need to avoid consumption of partially cooked meat currently rampant in South Africa, to avoid the spread of difficult to control pathogens in epidemiological proportion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Staphylococcus%20species" title="Staphylococcus species">Staphylococcus species</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance%20genes" title=" antibiotic resistance genes"> antibiotic resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20products" title=" food products"> food products</a>, <a href="https://publications.waset.org/abstracts/search?q=methicillin%20resistance" title=" methicillin resistance"> methicillin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=mecA%20gene" title=" mecA gene"> mecA gene</a> </p> <a href="https://publications.waset.org/abstracts/52262/diversities-antibiogram-and-antibiotic-resistance-genes-in-staphylococcus-species-in-raw-meat-from-a-research-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengying%20Wang">Mengying Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongjing%20Liu"> Dongjing Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20%20Schwender"> Holger Schwender</a>, <a href="https://publications.waset.org/abstracts/search?q=Ping%20Wang"> Ping Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongping%20Zhu"> Hongping Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wu"> Tao Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Terri%20H%20Beaty"> Terri H Beaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gene-Gene%20Interaction" title="Gene-Gene Interaction">Gene-Gene Interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=Maternal%20Smoking" title=" Maternal Smoking"> Maternal Smoking</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicotine%20Dependence" title=" Nicotine Dependence"> Nicotine Dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=Non-Syndromic%20Cleft%20Lip%20with%20or%20without%20Cleft%20Palate" title=" Non-Syndromic Cleft Lip with or without Cleft Palate"> Non-Syndromic Cleft Lip with or without Cleft Palate</a> </p> <a href="https://publications.waset.org/abstracts/66238/evaluating-gene-gene-interaction-among-nicotine-dependence-genes-on-the-risk-of-oral-clefts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=32">32</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ACSS2%20Genes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10