CINXE.COM
Search results for: text classification
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: text classification</title> <meta name="description" content="Search results for: text classification"> <meta name="keywords" content="text classification"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="text classification" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="text classification"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3352</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: text classification</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3142</span> Novel Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a novel inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multi-class. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20rule" title="bayesian rule">bayesian rule</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process%20classification%20model%20with%20multiclass" title=" gaussian process classification model with multiclass"> gaussian process classification model with multiclass</a>, <a href="https://publications.waset.org/abstracts/search?q=gaussian%20process%20prior" title=" gaussian process prior"> gaussian process prior</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20action%20classification" title=" human action classification"> human action classification</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20approximation" title=" laplace approximation"> laplace approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20EM%20algorithm" title=" variational EM algorithm"> variational EM algorithm</a> </p> <a href="https://publications.waset.org/abstracts/34103/novel-inference-algorithm-for-gaussian-process-classification-model-with-multiclass-and-its-application-to-human-action-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3141</span> Evaluating 8D Reports Using Text-Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Kuester">Benjamin Kuester</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjoern%20Eilert"> Bjoern Eilert</a>, <a href="https://publications.waset.org/abstracts/search?q=Malte%20Stonis"> Malte Stonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludger%20Overmeyer"> Ludger Overmeyer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=8D%20report" title="8D report">8D report</a>, <a href="https://publications.waset.org/abstracts/search?q=complaint%20management" title=" complaint management"> complaint management</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20system" title=" evaluation system"> evaluation system</a>, <a href="https://publications.waset.org/abstracts/search?q=text-mining" title=" text-mining"> text-mining</a> </p> <a href="https://publications.waset.org/abstracts/75439/evaluating-8d-reports-using-text-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3140</span> Towards Learning Query Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Bouziri">Ahlem Bouziri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiraz%20Latiri"> Chiraz Latiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Gaussier"> Eric Gaussier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supervised%20leaning" title="supervised leaning">supervised leaning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20expansion" title=" query expansion"> query expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title=" association rules"> association rules</a> </p> <a href="https://publications.waset.org/abstracts/27524/towards-learning-query-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3139</span> Polarimetric Synthetic Aperture Radar Data Classification Using Support Vector Machine and Mahalanobis Distance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najoua%20El%20Hajjaji%20El%20Idrissi">Najoua El Hajjaji El Idrissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Necip%20Gokhan%20Kasapoglu"> Necip Gokhan Kasapoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polarimetric Synthetic Aperture Radar-based imaging is a powerful technique used for earth observation and classification of surfaces. Forest evolution has been one of the vital areas of attention for the remote sensing experts. The information about forest areas can be achieved by remote sensing, whether by using active radars or optical instruments. However, due to several weather constraints, such as cloud cover, limited information can be recovered using optical data and for that reason, Polarimetric Synthetic Aperture Radar (PolSAR) is used as a powerful tool for forestry inventory. In this [14paper, we applied support vector machine (SVM) and Mahalanobis distance to the fully polarimetric AIRSAR P, L, C-bands data from the Nezer forest areas, the classification is based in the separation of different tree ages. The classification results were evaluated and the results show that the SVM performs better than the Mahalanobis distance and SVM achieves approximately 75% accuracy. This result proves that SVM classification can be used as a useful method to evaluate fully polarimetric SAR data with sufficient value of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20aperture%20radar" title=" synthetic aperture radar"> synthetic aperture radar</a>, <a href="https://publications.waset.org/abstracts/search?q=SAR%20polarimetry" title=" SAR polarimetry"> SAR polarimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=mahalanobis%20distance" title=" mahalanobis distance"> mahalanobis distance</a> </p> <a href="https://publications.waset.org/abstracts/118435/polarimetric-synthetic-aperture-radar-data-classification-using-support-vector-machine-and-mahalanobis-distance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3138</span> Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Ayesha%20Fathima">Shaik Ayesha Fathima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Noor%20Jahan"> Shaik Noor Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duvvada%20Rajeswara%20Rao"> Duvvada Rajeswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20calculation" title="area calculation">area calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=atrous%20convolution" title=" atrous convolution"> atrous convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20globe%20land%20cover%20classification" title=" deep globe land cover classification"> deep globe land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deepLabv3" title=" deepLabv3"> deepLabv3</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20classification" title=" land cover classification"> land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=resnet%2050" title=" resnet 50"> resnet 50</a> </p> <a href="https://publications.waset.org/abstracts/147677/classification-of-land-cover-usage-from-satellite-images-using-deep-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3137</span> Enframing the Smart City: Utilizing Heidegger's 'The Question Concerning Technology' as a Framework to Interpret Smart Urbanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Will%20Brown">Will Brown</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Martin Heidegger is considered to be one of the leading philosophical lights of the 20th century with his lecture/essay 'The Question Concerning Technology' proving to be an invaluable text in the study of technology and the understanding of how technology influences the world it is set upon. However, this text has not as of yet been applied to the rapid rise and proliferation of ‘smart’ cities. This article is premised upon the application of the aforementioned text and the smart city in order to provide a fresh, if not critical analysis and interpretation of this phenomena. The first section below provides a brief literature review of smart urbanism in order to lay the groundwork necessary to apply Heidegger’s work to the smart city, from which a framework is developed to interpret the infusion of digital sensing technologies and the urban milieu. This framework is comprised of four concepts put forward in Heidegger’s text: circumscribing, bringing-forth, challenging, and standing-reserve. A concluding chapter is based upon the notion of enframement, arguing that once the rubric of data collection is placed within the urban system, future systems will require the capability to harvest data, resulting in an ever-renewing smart city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20sensing" title="air quality sensing">air quality sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Heidegger" title=" Martin Heidegger"> Martin Heidegger</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a> </p> <a href="https://publications.waset.org/abstracts/110342/enframing-the-smart-city-utilizing-heideggers-the-question-concerning-technology-as-a-framework-to-interpret-smart-urbanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3136</span> Classification of Opaque Exterior Walls of Buildings from a Sustainable Point of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20S%C3%A1nchez%20de%20Le%C3%B3n%20Brajkovich">Michelle Sánchez de León Brajkovich</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuria%20Mart%C3%AD%20Audi"> Nuria Martí Audi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The envelope is one of the most important elements when one analyzes the operation of the building in terms of sustainability. Taking this into consideration, this research focuses on setting a classification system of the envelopes opaque systems, crossing the knowledge and parameters of construction systems with requirements in terms of sustainability that they may have, to have a better understanding of how these systems work with respect to their sustainable contribution to the building. Therefore, this paper evaluates the importance of the envelope design on the building sustainability. It analyses the parameters that make the construction systems behave differently in terms of sustainability. At the same time it explains the classification process generated from this analysis that results in a classification where all opaque vertical envelope construction systems enter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable" title="sustainable">sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20walls" title=" exterior walls"> exterior walls</a>, <a href="https://publications.waset.org/abstracts/search?q=envelope" title=" envelope"> envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=facades" title=" facades"> facades</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20systems" title=" construction systems"> construction systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/13071/classification-of-opaque-exterior-walls-of-buildings-from-a-sustainable-point-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3135</span> Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bandhan%20Dey">Bandhan Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhsina%20Bintoon%20Yiasha"> Muhsina Bintoon Yiasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulam%20Sulaman%20Choudhury"> Gulam Sulaman Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20images" title=" X-ray images"> X-ray images</a>, <a href="https://publications.waset.org/abstracts/search?q=Tensorflow" title=" Tensorflow"> Tensorflow</a>, <a href="https://publications.waset.org/abstracts/search?q=Keras" title=" Keras"> Keras</a>, <a href="https://publications.waset.org/abstracts/search?q=chest%20diseases" title=" chest diseases"> chest diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-classification" title=" multi-classification"> multi-classification</a> </p> <a href="https://publications.waset.org/abstracts/158065/multi-classification-deep-learning-model-for-diagnosing-different-chest-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3134</span> Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20retrieval" title="data retrieval">data retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20structuring" title=" text structuring"> text structuring</a> </p> <a href="https://publications.waset.org/abstracts/21284/role-of-natural-language-processing-in-information-retrieval-challenges-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3133</span> Spacial Poetic Text throughout Samih al-Qasim's Poetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saleem%20Abu%20Jaber">Saleem Abu Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Igbaria"> Khaled Igbaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For readers, space/place is one of the most significant references to reveal deep significances and indications in modern Arabic poetic texts. Generally, when poets evoke places and/or spaces, they do not mean to refer readers to detailed geographic or physical spaces, but to the symbolic significances and dimensions that those spaces have and through which poets encourage spacial awareness in their readers. Recently, as a result, there has been a great deal of interest in research addressing spacial poetic texts and dimensions in modern Arabic poetry in general and in Palestinian poetry in particular. Samih al-Qasim is one of the most recent prominent Palestinian revolutionary poets. Al-Qasim has published six series of poems that are well known in the Arab world. Although several researchers have studied al-Qasim's poetry, to our knowledge, yet no one has studied the aspect of spacial poetic text in his poetry. Therefore, this paper seeks to fill a gap in the scholarship that has not been addressed up to now. This article aims, not only to demonstrate the presence of spacial poetic text and dimensions throughout al-Qasim's poetry, but also to investigate the purpose for which the poet uses spacial poetic text. Our theory is that the poet, consciously and significantly, uses spacial poetic texts to magnify the Palestinian identity of the Palestinian readers. Methodologically, we applied a descriptive analytic method, referencing al-Qasim's poetry, addressing spacial poetic texts practically but not theoretically or statistically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20poetic%20text" title="spatial poetic text">spatial poetic text</a>, <a href="https://publications.waset.org/abstracts/search?q=Samih%20al-Qasim" title=" Samih al-Qasim"> Samih al-Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20and%20identity" title=" space and identity"> space and identity</a>, <a href="https://publications.waset.org/abstracts/search?q=Palestinian%20poetry" title=" Palestinian poetry"> Palestinian poetry</a> </p> <a href="https://publications.waset.org/abstracts/72114/spacial-poetic-text-throughout-samih-al-qasims-poetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3132</span> Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Ch.%20Vidyasagar">K. E. Ch. Vidyasagar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Moghavvemi"> M. Moghavvemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20S.%20T.%20Prabhat"> T. S. S. T. Prabhat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a>, <a href="https://publications.waset.org/abstracts/search?q=KNN" title=" KNN"> KNN</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a> </p> <a href="https://publications.waset.org/abstracts/14692/performance-evaluation-of-contemporary-classifiers-for-automatic-detection-of-epileptic-eeg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3131</span> 3D Receiver Operator Characteristic Histogram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoli%20Zhang">Xiaoli Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongfei%20Li"> Xiongfei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuncong%20Feng"> Yuncong Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20histogram" title=" receiver operating characteristic histogram"> receiver operating characteristic histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20prediction" title=" hardness prediction"> hardness prediction</a> </p> <a href="https://publications.waset.org/abstracts/44143/3d-receiver-operator-characteristic-histogram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3130</span> Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukari%20Nassim">Boukari Nassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title="epilepsy">epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signals%20classification" title=" EEG signals classification"> EEG signals classification</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20odd%20pair%20autoregressive%20coefficients" title=" combined odd pair autoregressive coefficients"> combined odd pair autoregressive coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20neural%20network" title=" radial basis function neural network"> radial basis function neural network</a> </p> <a href="https://publications.waset.org/abstracts/47454/combined-odd-pair-autoregressive-coefficients-for-epileptic-eeg-signals-classification-by-radial-basis-function-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3129</span> Procedures and Strategies in Translation: Two Marathi Translations of Train to Pakistan by Khushwant Singh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Gujar">Manoj Gujar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is an attempt to interpret two Marathi translations of Khushwant Singh’s (1915-2014) novel Train to Pakistan (1956). The 20th century was branded as an era of Liberalization, Privatization and Globalization. Different countries and cultures have enunciated interaction with one another in an unprecedented manner. The world is becoming multilingual and multicultural. The democratic countries such as the U.S.A., the U.K., and India have become pivotal centers of interlingual and cross-cultural exchange. People belonging to different nationalities showed keen interest in knowing the characteristic features of different languages and of their cultures. Here, ‘Translation’ plays an important role in such multilingual and multicultural contexts. Translation is not only translation of a language but a translation of a culture. However, in the act of translation a translator makes use of such procedures as borrowing, definition, literal translation, substitution, lexical creation, omission, addition as well as their various combinations. To him, a text produced in one linguistic and cultural context can reach other linguistic and cultural contexts through these processes of translation. A worthy work of art appeals many readers. India, being a multilingual country we find that there goes multiple translations of the same text in different Indian languages. But sometimes, if can be found that a same text appeals to different ages and the same text gets translated into the same language by the two or more authors. In this reference, the present paper is an attempt to study how different translations of the same text differ in terms of procedures and strategies during the process of the translation of culture. The source text is Khushwant Singh’s historical novel Train to Pakistan (1956). The novel was widely appreciated and so translated into different regional languages in India. The novel has two Marathi translations: Agniratha (1972) by Hidayatkhan and Train to Pakistan (1980) by Anil Kinikar. This paper is an attempt to evaluate the strategies and procedures in translation to analyze these two Marathi translations. Hidayat Khan made a lot of omissions of the significant details and distorted the original text to a large extent, whereas, Anil Kinikar has done justice to the Source Text by rendering it in Marathi as faithfully as possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=culture" title="culture">culture</a>, <a href="https://publications.waset.org/abstracts/search?q=multilingual" title=" multilingual"> multilingual</a>, <a href="https://publications.waset.org/abstracts/search?q=procedures%20and%20strategies" title=" procedures and strategies"> procedures and strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/51889/procedures-and-strategies-in-translation-two-marathi-translations-of-train-to-pakistan-by-khushwant-singh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3128</span> Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Duarte">Fernando Duarte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20space" title=" color space"> color space</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20tone" title=" skin tone"> skin tone</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitzpatrick" title=" Fitzpatrick"> Fitzpatrick</a> </p> <a href="https://publications.waset.org/abstracts/188975/use-of-segmentation-and-color-adjustment-for-skin-tone-classification-in-dermatological-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3127</span> Unraveling the Threads of Madness: Henry Russell’s 'The Maniac' as an Advocate for Deinstitutionalization in the Nineteenth Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20J.%20Laws-Nicola">T. J. Laws-Nicola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Henry Russell was best known as a composer of more than 300 songs. Many of his compositions were popular for both their sentimental texts, as in ‘The Old Armchair,’ and those of a more political nature, such as ‘Woodsman, Spare That Tree!’ Indeed, Russell had written such songs of advocacy as those associated with abolitionism (‘The Slave Ship’) and environmentalism (‘Woodsman, Spare that Tree!’). ‘The Maniac’ is his only composition addressing the issue of institutionalization. The text is borrowed and adapted from the monodrama The Captive by M.G. ‘Monk’ Lewis. Through an analysis of form, harmony, melody, text, and thematic development and interactions between text and music we can approach a clearer understanding of ‘The Maniac’ and how the text and music interact. Select periodicals, such as The London Times, provide contemporary critical review for ‘The Maniac.’ Additional nineteenth century songs whose texts focus on madness and/or institutionalization will assist in building a stylistic and cultural context for ‘The Maniac.’ Through comparative analyses of ‘The Maniac’ with a body of songs that focus on similar topics, we can approach a clear understanding of the song as a vehicle for deinstitutionalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=19th%20century%20song" title="19th century song">19th century song</a>, <a href="https://publications.waset.org/abstracts/search?q=institutionalization" title=" institutionalization"> institutionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Lewis" title=" M. G. Lewis"> M. G. Lewis</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20Russell" title=" Henry Russell"> Henry Russell</a> </p> <a href="https://publications.waset.org/abstracts/38248/unraveling-the-threads-of-madness-henry-russells-the-maniac-as-an-advocate-for-deinstitutionalization-in-the-nineteenth-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3126</span> Literary Theatre and Embodied Theatre: A Practice-Based Research in Exploring the Authorship of a Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Bishnoi">Rahul Bishnoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theatre, as Ann Ubersfld calls it, is a paradox. At once, it is both a literary work and a physical representation. Theatre as a text is eternal, reproducible, and identical while as a performance, theatre is momentary and never identical to the previous performances. In this dual existence of theatre, who is the author? Is the author the playwright who writes the dramatic text, or the director who orchestrates the performance, or the actor who embodies the text? From the poststructuralist lens of Barthes, the author is dead. Barthes’ argument of discrete temporality, i.e. the author is the before, and the text is the after, does not hold true for theatre. A published literary work is written, edited, printed, distributed and then gets consumed by the reader. On the other hand, theatrical production is immediate; an actor performs and the audience witnesses it instantaneously. Time, so to speak, does not separate the author, the text, and the reader anymore. The question of authorship gets further complicated in Augusto Boal’s “Theatre of the Oppressed” movement where the audience is a direct participant like the actors in the performance. In this research, through an experimental performance, the duality of theatre is explored with the authorship discourse. And the conventional definition of authorship is subjected to additional complexity by erasing the distinction between an actor and the audience. The design/methodology of the experimental performance is as follows: The audience will be asked to produce a text under an anonymous virtual alias. The text, as it is being produced, will be read and performed by the actor. The audience who are also collectively “authoring” the text, will watch this performance and write further until everyone has contributed with one input each. The cycle of writing, reading, performing, witnessing, and writing will continue until the end. The intention is to create a dynamic system of writing/reading with the embodiment of the text through the actor. The actor is giving up the power to the audience to write the spoken word, stage instruction and direction while still keeping the agency of interpreting that input and performing in the chosen manner. This rapid conversation between the actor and the audience also creates a conversion of authorship. The main conclusion of this study is a perspective on the nature of dynamic authorship of theatre containing a critical enquiry of the collaboratively produced text, an individually performed act, and a collectively witnessed event. Using practice as a methodology, this paper contests the poststructuralist notion of the author as merely a ‘scriptor’ and breaks it further by involving the audience in the authorship as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=practice%20based%20research" title="practice based research">practice based research</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20studies" title=" performance studies"> performance studies</a>, <a href="https://publications.waset.org/abstracts/search?q=post-humanism" title=" post-humanism"> post-humanism</a>, <a href="https://publications.waset.org/abstracts/search?q=Avant-garde%20art" title=" Avant-garde art"> Avant-garde art</a>, <a href="https://publications.waset.org/abstracts/search?q=theatre" title=" theatre"> theatre</a> </p> <a href="https://publications.waset.org/abstracts/157537/literary-theatre-and-embodied-theatre-a-practice-based-research-in-exploring-the-authorship-of-a-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3125</span> Text Mining Techniques for Prioritizing Pathogenic Mutations in Protein Families Known to Misfold or Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaleel%20Saleh%20Al-Rababah">Khaleel Saleh Al-Rababah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amyloid fibril forming regions, which are known as protein aggregates, in sequences of some protein families are associated with a number of diseases known as amyloidosis. Mutations play a role in forming fibrils by accelerating the fibril formation process. In this paper we want to extract diseases that caused by those mutations as a result of the impact of the mutations on structural and functional properties of the aggregated protein. We propose a text mining system, to automatically extract mutations, diseases and relations between mutations and diseases. We presented an algorithm based on finite state to cluster mutations found in the same sentence as a sentence could contain different mutation cause different diseases. Also, we presented a co reference algorithm that enables cross-link sentences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amyloid" title="amyloid">amyloid</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloidosis" title=" amyloidosis"> amyloidosis</a>, <a href="https://publications.waset.org/abstracts/search?q=co%20reference" title=" co reference"> co reference</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/24232/text-mining-techniques-for-prioritizing-pathogenic-mutations-in-protein-families-known-to-misfold-or-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3124</span> The Application of Lesson Study Model in Writing Review Text in Junior High School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulastriningsih%20Djumingin">Sulastriningsih Djumingin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has some objectives. It aims at describing the ability of the second-grade students to write review text without applying the Lesson Study model at SMPN 18 Makassar. Second, it seeks to describe the ability of the second-grade students to write review text by applying the Lesson Study model at SMPN 18 Makassar. Third, it aims at testing the effectiveness of the Lesson Study model in writing review text at SMPN 18 Makassar. This research was true experimental design with posttest Only group design involving two groups consisting of one class of the control group and one class of the experimental group. The research populations were all the second-grade students at SMPN 18 Makassar amounted to 250 students consisting of 8 classes. The sampling technique was purposive sampling technique. The control class was VIII2 consisting of 30 students, while the experimental class was VIII8 consisting of 30 students. The research instruments were in the form of observation and tests. The collected data were analyzed using descriptive statistical techniques and inferential statistical techniques with t-test types processed using SPSS 21 for windows. The results shows that: (1) of 30 students in control class, there are only 14 (47%) students who get the score more than 7.5, categorized as inadequate; (2) in the experimental class, there are 26 (87%) students who obtain the score of 7.5, categorized as adequate; (3) the Lesson Study models is effective to be applied in writing review text. Based on the comparison of the ability of the control class and experimental class, it indicates that the value of t-count is greater than the value of t-table (2.411> 1.667). It means that the alternative hypothesis (H1) proposed by the researcher is accepted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=lesson%20study" title=" lesson study"> lesson study</a>, <a href="https://publications.waset.org/abstracts/search?q=review%20text" title=" review text"> review text</a>, <a href="https://publications.waset.org/abstracts/search?q=writing" title=" writing"> writing</a> </p> <a href="https://publications.waset.org/abstracts/61745/the-application-of-lesson-study-model-in-writing-review-text-in-junior-high-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3123</span> A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Addin%20Osman">Addin Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Ali%20Yahya"> Anwar Ali Yahya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Basit%20Kamal"> Mohammed Basit Kamal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABET" title="ABET">ABET</a>, <a href="https://publications.waset.org/abstracts/search?q=accreditation" title=" accreditation"> accreditation</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmark%20collection" title=" benchmark collection"> benchmark collection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=program%20educational%20objectives" title=" program educational objectives"> program educational objectives</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20outcomes" title=" student outcomes"> student outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20multi-class%20classification" title=" supervised multi-class classification"> supervised multi-class classification</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a> </p> <a href="https://publications.waset.org/abstracts/91604/a-dataset-of-program-educational-objectives-mapped-to-abet-outcomes-data-cleansing-exploratory-data-analysis-and-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3122</span> Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkhalek%20Bakkari">Abdelkhalek Bakkari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=segmentation" title="segmentation">segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20image" title=" MR image"> MR image</a> </p> <a href="https://publications.waset.org/abstracts/13711/automatic-classification-using-dynamic-fuzzy-c-means-algorithm-and-mathematical-morphology-application-in-3d-mri-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3121</span> Classification of Construction Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Safa">M. Safa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sabet"> A. Sabet</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20MacGillivray"> S. MacGillivray</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Davidson"> M. Davidson</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kaczmarczyk"> K. Kaczmarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Haas"> C. T. Haas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Gibson"> G. E. Gibson</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rayside"> D. Rayside </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To address construction project requirements and specifications, scholars and practitioners need to establish a taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=project%20classification" title="project classification">project classification</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20definition%20rating%20index%20%28PDRI%29" title=" project definition rating index (PDRI)"> project definition rating index (PDRI)</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20goals%20alignment" title=" project goals alignment"> project goals alignment</a> </p> <a href="https://publications.waset.org/abstracts/22973/classification-of-construction-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3120</span> New Approach to Construct Phylogenetic Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouafae%20Baida">Ouafae Baida</a>, <a href="https://publications.waset.org/abstracts/search?q=Najma%20Hamzaoui"> Najma Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Akbib"> Maha Akbib</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelfettah%20Sedqui"> Abdelfettah Sedqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahid%20Lyhyaoui"> Abdelouahid Lyhyaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerous scientific works present various methods to analyze the data for several domains, specially the comparison of classifications. In our recent work, we presented a new approach to help the user choose the best classification method from the results obtained by every method, by basing itself on the distances between the trees of classification. The result of our approach was in the form of a dendrogram contains methods as a succession of connections. This approach is much needed in phylogeny analysis. This discipline is intended to analyze the sequences of biological macro molecules for information on the evolutionary history of living beings, including their relationship. The product of phylogeny analysis is a phylogenetic tree. In this paper, we recommend the use of a new method of construction the phylogenetic tree based on comparison of different classifications obtained by different molecular genes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20classification" title="hierarchical classification">hierarchical classification</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20methods" title=" classification methods"> classification methods</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20of%20tree" title=" structure of tree"> structure of tree</a>, <a href="https://publications.waset.org/abstracts/search?q=genes" title=" genes"> genes</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/21857/new-approach-to-construct-phylogenetic-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3119</span> Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian-Gabriel%20Chifu">Adrian-Gabriel Chifu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Fournier"> Sebastien Fournier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title="sentiment analysis">sentiment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=difficulty" title=" difficulty"> difficulty</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/177853/linguistic-features-for-sentence-difficulty-prediction-in-aspect-based-sentiment-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3118</span> Developed Text-Independent Speaker Verification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Arif">Mohammed Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalam%20Kifouche"> Abdessalam Kifouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speaker%20verification" title="speaker verification">speaker verification</a>, <a href="https://publications.waset.org/abstracts/search?q=text-independent" title=" text-independent"> text-independent</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=cepstral%20analysis" title=" cepstral analysis"> cepstral analysis</a> </p> <a href="https://publications.waset.org/abstracts/183493/developed-text-independent-speaker-verification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3117</span> Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Fuad">N. Fuad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Taib"> M. N. Taib</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jailani"> R. Jailani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Marwan"> M. E. Marwan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20spectral%20density" title="power spectral density">power spectral density</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20EEG%20model" title=" 3D EEG model"> 3D EEG model</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20balancing" title=" brain balancing"> brain balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=kNN" title=" kNN"> kNN</a> </p> <a href="https://publications.waset.org/abstracts/11285/brainwave-classification-for-brain-balancing-index-bbi-via-3d-eeg-model-using-k-nn-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3116</span> Evolutionary Methods in Cryptography </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Slaibi%20Alsharafat">Wafa Slaibi Alsharafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithms (GA) are random algorithms as random numbers that are generated during the operation of the algorithm determine what happens. This means that if GA is applied twice to optimize exactly the same problem it might produces two different answers. In this project, we propose an evolutionary algorithm and Genetic Algorithm (GA) to be implemented in symmetric encryption and decryption. Here, user's message and user secret information (key) which represent plain text to be transferred into cipher text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GA" title="GA">GA</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a> </p> <a href="https://publications.waset.org/abstracts/21507/evolutionary-methods-in-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3115</span> A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Pallavi">Smita Pallavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Ratn%20Pranesh"> Raj Ratn Pranesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar"> Sumit Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20extraction" title="table extraction">table extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20character%20recognition" title=" optical character recognition"> optical character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20extraction" title=" text extraction"> text extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20transformation" title=" morphological transformation"> morphological transformation</a> </p> <a href="https://publications.waset.org/abstracts/127575/a-conglomerate-of-multiple-optical-character-recognition-table-detection-and-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3114</span> Classifying and Predicting Efficiencies Using Interval DEA Grid Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiannis%20G.%20Smirlis">Yiannis G. Smirlis </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20DEA" title=" interval DEA"> interval DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20classification" title=" efficiency classification"> efficiency classification</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20prediction" title=" efficiency prediction"> efficiency prediction</a> </p> <a href="https://publications.waset.org/abstracts/86988/classifying-and-predicting-efficiencies-using-interval-dea-grid-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3113</span> Wasting Human and Computer Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1ria%20Csernoch">Mária Csernoch</a>, <a href="https://publications.waset.org/abstracts/search?q=Piroska%20Bir%C3%B3"> Piroska Biró</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The legends about “user-friendly” and “easy-to-use” birotical tools (computer-related office tools) have been spreading and misleading end-users. This approach has led us to the extremely high number of incorrect documents, causing serious financial losses in the creating, modifying, and retrieving processes. Our research proved that there are at least two sources of this underachievement: (1) The lack of the definition of the correctly edited, formatted documents. Consequently, end-users do not know whether their methods and results are correct or not. They are not aware of their ignorance. They are so ignorant that their ignorance does not allow them to realize their lack of knowledge. (2) The end-users’ problem-solving methods. We have found that in non-traditional programming environments end-users apply, almost exclusively, surface approach metacognitive methods to carry out their computer related activities, which are proved less effective than deep approach methods. Based on these findings we have developed deep approach methods which are based on and adapted from traditional programming languages. In this study, we focus on the most popular type of birotical documents, the text-based documents. We have provided the definition of the correctly edited text, and based on this definition, adapted the debugging method known in programming. According to the method, before the realization of text editing, a thorough debugging of already existing texts and the categorization of errors are carried out. With this method in advance to real text editing users learn the requirements of text-based documents and also of the correctly formatted text. The method has been proved much more effective than the previously applied surface approach methods. The advantages of the method are that the real text handling requires much less human and computer sources than clicking aimlessly in the GUI (Graphical User Interface), and the data retrieval is much more effective than from error-prone documents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20approach%20metacognitive%20methods" title="deep approach metacognitive methods">deep approach metacognitive methods</a>, <a href="https://publications.waset.org/abstracts/search?q=error-prone%20birotical%20documents" title=" error-prone birotical documents"> error-prone birotical documents</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20losses" title=" financial losses"> financial losses</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20and%20computer%20resources" title=" human and computer resources"> human and computer resources</a> </p> <a href="https://publications.waset.org/abstracts/23502/wasting-human-and-computer-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=111">111</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=text%20classification&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>